Files
insightface/recognition/arcface_mxnet/common/build_eval_pack.py
2021-06-19 23:37:10 +08:00

137 lines
4.4 KiB
Python

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
#import mxnet as mx
#from mxnet import ndarray as nd
import argparse
import cv2
import pickle
import numpy as np
import sys
import os
sys.path.append(os.path.join(os.path.dirname(__file__), '..', '..', 'common'))
sys.path.append(
os.path.join(os.path.dirname(__file__), '..', '..', 'RetinaFace'))
import face_align
from retinaface import RetinaFace
def to_rgb(img):
w, h = img.shape
ret = np.empty((w, h, 3), dtype=np.uint8)
ret[:, :, 0] = ret[:, :, 1] = ret[:, :, 2] = img
return ret
def IOU(Reframe, GTframe):
x1 = Reframe[0]
y1 = Reframe[1]
width1 = Reframe[2] - Reframe[0]
height1 = Reframe[3] - Reframe[1]
x2 = GTframe[0]
y2 = GTframe[1]
width2 = GTframe[2] - GTframe[0]
height2 = GTframe[3] - GTframe[1]
endx = max(x1 + width1, x2 + width2)
startx = min(x1, x2)
width = width1 + width2 - (endx - startx)
endy = max(y1 + height1, y2 + height2)
starty = min(y1, y2)
height = height1 + height2 - (endy - starty)
if width <= 0 or height <= 0:
ratio = 0
else:
Area = width * height
Area1 = width1 * height1
Area2 = width2 * height2
ratio = Area * 1. / (Area1 + Area2 - Area)
return ratio
parser = argparse.ArgumentParser(description='Package eval images')
# general
parser.add_argument('--data-dir', default='', help='')
parser.add_argument('--image-size', type=int, default=112, help='')
parser.add_argument('--gpu', type=int, default=0, help='')
parser.add_argument('--det-prefix', type=str, default='./model/R50', help='')
parser.add_argument('--output', default='./', help='path to save.')
parser.add_argument('--align-mode', default='arcface', help='align mode.')
args = parser.parse_args()
gpu_id = args.gpu
detector = RetinaFace(args.det_prefix, 0, gpu_id, network='net3')
target_size = 400
max_size = 800
def get_norm_crop(image_path):
im = cv2.imread(image_path)
im_shape = im.shape
im_size_min = np.min(im_shape[0:2])
im_size_max = np.max(im_shape[0:2])
im_scale = float(target_size) / float(im_size_min)
# prevent bigger axis from being more than max_size:
if np.round(im_scale * im_size_max) > max_size:
im_scale = float(max_size) / float(im_size_max)
bbox, landmark = detector.detect(im, threshold=0.5, scales=[im_scale])
#print(im.shape, bbox.shape, landmark.shape)
if bbox.shape[0] == 0:
bbox, landmark = detector.detect(
im,
threshold=0.05,
scales=[im_scale * 0.75, im_scale, im_scale * 2.0])
print('refine', im.shape, bbox.shape, landmark.shape)
nrof_faces = bbox.shape[0]
if nrof_faces > 0:
det = bbox[:, 0:4]
img_size = np.asarray(im.shape)[0:2]
bindex = 0
if nrof_faces > 1:
bounding_box_size = (det[:, 2] - det[:, 0]) * (det[:, 3] -
det[:, 1])
img_center = img_size / 2
offsets = np.vstack([(det[:, 0] + det[:, 2]) / 2 - img_center[1],
(det[:, 1] + det[:, 3]) / 2 - img_center[0]])
offset_dist_squared = np.sum(np.power(offsets, 2.0), 0)
bindex = np.argmax(bounding_box_size - offset_dist_squared *
2.0) # some extra weight on the centering
#_bbox = bounding_boxes[bindex, 0:4]
_landmark = landmark[bindex]
warped = face_align.norm_crop(im,
landmark=_landmark,
image_size=args.image_size,
mode=args.align_mode)
return warped
else:
return None
bins = []
issame_list = []
pp = 0
for line in open(os.path.join(args.data_dir, 'pairs_label.txt'), 'r'):
pp += 1
if pp % 100 == 0:
print('processing', pp)
line = line.strip().split()
assert len(line) == 3
path1 = os.path.join(args.data_dir, line[0])
path2 = os.path.join(args.data_dir, line[1])
im1 = get_norm_crop(path1)
im2 = get_norm_crop(path2)
issame = True
if line[2] == '0':
issame = False
issame_list.append(issame)
for im in [im1, im2]:
_, s = cv2.imencode('.jpg', im)
bins.append(s)
with open(args.output, 'wb') as f:
pickle.dump((bins, issame_list), f, protocol=pickle.HIGHEST_PROTOCOL)