Files
insightface/recognition/arcface_mxnet/triplet_image_iter.py
2021-06-19 23:37:10 +08:00

629 lines
24 KiB
Python

# THIS FILE IS FOR EXPERIMENTS, USE image_iter.py FOR NORMAL IMAGE LOADING.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import random
import logging
import sys
import numbers
import math
import sklearn
import datetime
import numpy as np
import cv2
import mxnet as mx
from mxnet import ndarray as nd
#from . import _ndarray_internal as _internal
#from mxnet._ndarray_internal import _cvimresize as imresize
#from ._ndarray_internal import _cvcopyMakeBorder as copyMakeBorder
from mxnet import io
from mxnet import recordio
sys.path.append(os.path.join(os.path.dirname(__file__), 'common'))
import face_preprocess
logger = logging.getLogger()
class FaceImageIter(io.DataIter):
def __init__(self,
batch_size,
data_shape,
path_imgrec=None,
shuffle=False,
aug_list=None,
rand_mirror=False,
cutoff=0,
ctx_num=0,
images_per_identity=0,
triplet_params=None,
mx_model=None,
data_name='data',
label_name='softmax_label',
**kwargs):
super(FaceImageIter, self).__init__()
assert path_imgrec
assert shuffle
logging.info('loading recordio %s...', path_imgrec)
path_imgidx = path_imgrec[0:-4] + ".idx"
self.imgrec = recordio.MXIndexedRecordIO(path_imgidx, path_imgrec, 'r') # pylint: disable=redefined-variable-type
s = self.imgrec.read_idx(0)
header, _ = recordio.unpack(s)
assert header.flag > 0
print('header0 label', header.label)
self.header0 = (int(header.label[0]), int(header.label[1]))
#assert(header.flag==1)
self.imgidx = range(1, int(header.label[0]))
self.id2range = {}
self.seq_identity = range(int(header.label[0]), int(header.label[1]))
for identity in self.seq_identity:
s = self.imgrec.read_idx(identity)
header, _ = recordio.unpack(s)
a, b = int(header.label[0]), int(header.label[1])
self.id2range[identity] = (a, b)
print('id2range', len(self.id2range))
self.seq = self.imgidx
print(len(self.seq))
self.check_data_shape(data_shape)
self.provide_data = [(data_name, (batch_size, ) + data_shape)]
self.batch_size = batch_size
self.data_shape = data_shape
self.shuffle = shuffle
self.image_size = '%d,%d' % (data_shape[1], data_shape[2])
self.rand_mirror = rand_mirror
print('rand_mirror', rand_mirror)
self.cutoff = cutoff
#self.cast_aug = mx.image.CastAug()
#self.color_aug = mx.image.ColorJitterAug(0.4, 0.4, 0.4)
self.ctx_num = ctx_num
self.per_batch_size = int(self.batch_size / self.ctx_num)
self.images_per_identity = images_per_identity
if self.images_per_identity > 0:
self.identities = int(self.per_batch_size /
self.images_per_identity)
self.per_identities = self.identities
self.repeat = 3000000.0 / (self.images_per_identity *
len(self.id2range))
self.repeat = int(self.repeat)
print(self.images_per_identity, self.identities, self.repeat)
self.mx_model = mx_model
self.triplet_params = triplet_params
self.triplet_mode = False
#self.provide_label = None
self.provide_label = [(label_name, (batch_size, ))]
if self.triplet_params is not None:
assert self.images_per_identity > 0
assert self.mx_model is not None
self.triplet_bag_size = self.triplet_params[0]
self.triplet_alpha = self.triplet_params[1]
self.triplet_max_ap = self.triplet_params[2]
assert self.triplet_bag_size > 0
assert self.triplet_alpha >= 0.0
assert self.triplet_alpha <= 1.0
self.triplet_mode = True
self.triplet_cur = 0
self.triplet_seq = []
self.triplet_reset()
self.seq_min_size = self.batch_size * 2
self.cur = 0
self.nbatch = 0
self.is_init = False
self.times = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
#self.reset()
def pairwise_dists(self, embeddings):
nd_embedding_list = []
for i in range(self.ctx_num):
nd_embedding = mx.nd.array(embeddings, mx.gpu(i))
nd_embedding_list.append(nd_embedding)
nd_pdists = []
pdists = []
for idx in range(embeddings.shape[0]):
emb_idx = idx % self.ctx_num
nd_embedding = nd_embedding_list[emb_idx]
a_embedding = nd_embedding[idx]
body = mx.nd.broadcast_sub(a_embedding, nd_embedding)
body = body * body
body = mx.nd.sum_axis(body, axis=1)
nd_pdists.append(body)
if len(nd_pdists
) == self.ctx_num or idx == embeddings.shape[0] - 1:
for x in nd_pdists:
pdists.append(x.asnumpy())
nd_pdists = []
return pdists
def pick_triplets(self, embeddings, nrof_images_per_class):
emb_start_idx = 0
triplets = []
people_per_batch = len(nrof_images_per_class)
#self.time_reset()
pdists = self.pairwise_dists(embeddings)
#self.times[3] += self.time_elapsed()
for i in range(people_per_batch):
nrof_images = int(nrof_images_per_class[i])
for j in range(1, nrof_images):
#self.time_reset()
a_idx = emb_start_idx + j - 1
#neg_dists_sqr = np.sum(np.square(embeddings[a_idx] - embeddings), 1)
neg_dists_sqr = pdists[a_idx]
#self.times[3] += self.time_elapsed()
for pair in range(
j, nrof_images): # For every possible positive pair.
p_idx = emb_start_idx + pair
#self.time_reset()
pos_dist_sqr = np.sum(
np.square(embeddings[a_idx] - embeddings[p_idx]))
#self.times[4] += self.time_elapsed()
#self.time_reset()
neg_dists_sqr[emb_start_idx:emb_start_idx +
nrof_images] = np.NaN
if self.triplet_max_ap > 0.0:
if pos_dist_sqr > self.triplet_max_ap:
continue
all_neg = np.where(
np.logical_and(
neg_dists_sqr - pos_dist_sqr < self.triplet_alpha,
pos_dist_sqr <
neg_dists_sqr))[0] # FaceNet selection
#self.times[5] += self.time_elapsed()
#self.time_reset()
#all_neg = np.where(neg_dists_sqr-pos_dist_sqr<alpha)[0] # VGG Face selecction
nrof_random_negs = all_neg.shape[0]
if nrof_random_negs > 0:
rnd_idx = np.random.randint(nrof_random_negs)
n_idx = all_neg[rnd_idx]
triplets.append((a_idx, p_idx, n_idx))
emb_start_idx += nrof_images
np.random.shuffle(triplets)
return triplets
def triplet_reset(self):
#reset self.oseq by identities seq
self.triplet_cur = 0
ids = []
for k in self.id2range:
ids.append(k)
random.shuffle(ids)
self.triplet_seq = []
for _id in ids:
v = self.id2range[_id]
_list = range(*v)
random.shuffle(_list)
if len(_list) > self.images_per_identity:
_list = _list[0:self.images_per_identity]
self.triplet_seq += _list
print('triplet_seq', len(self.triplet_seq))
assert len(self.triplet_seq) >= self.triplet_bag_size
def time_reset(self):
self.time_now = datetime.datetime.now()
def time_elapsed(self):
time_now = datetime.datetime.now()
diff = time_now - self.time_now
return diff.total_seconds()
def select_triplets(self):
self.seq = []
while len(self.seq) < self.seq_min_size:
self.time_reset()
embeddings = None
bag_size = self.triplet_bag_size
batch_size = self.batch_size
#data = np.zeros( (bag_size,)+self.data_shape )
#label = np.zeros( (bag_size,) )
tag = []
#idx = np.zeros( (bag_size,) )
print('eval %d images..' % bag_size, self.triplet_cur)
print('triplet time stat', self.times)
if self.triplet_cur + bag_size > len(self.triplet_seq):
self.triplet_reset()
#bag_size = min(bag_size, len(self.triplet_seq))
print('eval %d images..' % bag_size, self.triplet_cur)
self.times[0] += self.time_elapsed()
self.time_reset()
#print(data.shape)
data = nd.zeros(self.provide_data[0][1])
label = None
if self.provide_label is not None:
label = nd.zeros(self.provide_label[0][1])
ba = 0
while True:
bb = min(ba + batch_size, bag_size)
if ba >= bb:
break
_count = bb - ba
#data = nd.zeros( (_count,)+self.data_shape )
#_batch = self.data_iter.next()
#_data = _batch.data[0].asnumpy()
#print(_data.shape)
#_label = _batch.label[0].asnumpy()
#data[ba:bb,:,:,:] = _data
#label[ba:bb] = _label
for i in range(ba, bb):
#print(ba, bb, self.triplet_cur, i, len(self.triplet_seq))
_idx = self.triplet_seq[i + self.triplet_cur]
s = self.imgrec.read_idx(_idx)
header, img = recordio.unpack(s)
img = self.imdecode(img)
data[i - ba][:] = self.postprocess_data(img)
_label = header.label
if not isinstance(_label, numbers.Number):
_label = _label[0]
if label is not None:
label[i - ba][:] = _label
tag.append((int(_label), _idx))
#idx[i] = _idx
db = mx.io.DataBatch(data=(data, ))
self.mx_model.forward(db, is_train=False)
net_out = self.mx_model.get_outputs()
#print('eval for selecting triplets',ba,bb)
#print(net_out)
#print(len(net_out))
#print(net_out[0].asnumpy())
net_out = net_out[0].asnumpy()
#print(net_out)
#print('net_out', net_out.shape)
if embeddings is None:
embeddings = np.zeros((bag_size, net_out.shape[1]))
embeddings[ba:bb, :] = net_out
ba = bb
assert len(tag) == bag_size
self.triplet_cur += bag_size
embeddings = sklearn.preprocessing.normalize(embeddings)
self.times[1] += self.time_elapsed()
self.time_reset()
nrof_images_per_class = [1]
for i in range(1, bag_size):
if tag[i][0] == tag[i - 1][0]:
nrof_images_per_class[-1] += 1
else:
nrof_images_per_class.append(1)
triplets = self.pick_triplets(embeddings,
nrof_images_per_class) # shape=(T,3)
print('found triplets', len(triplets))
ba = 0
while True:
bb = ba + self.per_batch_size // 3
if bb > len(triplets):
break
_triplets = triplets[ba:bb]
for i in range(3):
for triplet in _triplets:
_pos = triplet[i]
_idx = tag[_pos][1]
self.seq.append(_idx)
ba = bb
self.times[2] += self.time_elapsed()
def hard_mining_reset(self):
#import faiss
from annoy import AnnoyIndex
data = nd.zeros(self.provide_data[0][1])
label = nd.zeros(self.provide_label[0][1])
#label = np.zeros( self.provide_label[0][1] )
X = None
ba = 0
batch_num = 0
while ba < len(self.oseq):
batch_num += 1
if batch_num % 10 == 0:
print('loading batch', batch_num, ba)
bb = min(ba + self.batch_size, len(self.oseq))
_count = bb - ba
for i in range(_count):
idx = self.oseq[i + ba]
s = self.imgrec.read_idx(idx)
header, img = recordio.unpack(s)
img = self.imdecode(img)
data[i][:] = self.postprocess_data(img)
label[i][:] = header.label
db = mx.io.DataBatch(data=(data, self.data_extra), label=(label, ))
self.mx_model.forward(db, is_train=False)
net_out = self.mx_model.get_outputs()
embedding = net_out[0].asnumpy()
nembedding = sklearn.preprocessing.normalize(embedding)
if _count < self.batch_size:
nembedding = nembedding[0:_count, :]
if X is None:
X = np.zeros((len(self.id2range), nembedding.shape[1]),
dtype=np.float32)
nplabel = label.asnumpy()
for i in range(_count):
ilabel = int(nplabel[i])
#print(ilabel, ilabel.__class__)
X[ilabel] += nembedding[i]
ba = bb
X = sklearn.preprocessing.normalize(X)
d = X.shape[1]
t = AnnoyIndex(d, metric='euclidean')
for i in range(X.shape[0]):
t.add_item(i, X[i])
print('start to build index')
t.build(20)
print(X.shape)
k = self.per_identities
self.seq = []
for i in range(X.shape[0]):
nnlist = t.get_nns_by_item(i, k)
assert nnlist[0] == i
for _label in nnlist:
assert _label < len(self.id2range)
_id = self.header0[0] + _label
v = self.id2range[_id]
_list = range(*v)
if len(_list) < self.images_per_identity:
random.shuffle(_list)
else:
_list = np.random.choice(_list,
self.images_per_identity,
replace=False)
for i in range(self.images_per_identity):
_idx = _list[i % len(_list)]
self.seq.append(_idx)
#faiss_params = [20,5]
#quantizer = faiss.IndexFlatL2(d) # the other index
#index = faiss.IndexIVFFlat(quantizer, d, faiss_params[0], faiss.METRIC_L2)
#assert not index.is_trained
#index.train(X)
#index.add(X)
#assert index.is_trained
#print('trained')
#index.nprobe = faiss_params[1]
#D, I = index.search(X, k) # actual search
#print(I.shape)
#self.seq = []
#for i in range(I.shape[0]):
# #assert I[i][0]==i
# for j in range(k):
# _label = I[i][j]
# assert _label<len(self.id2range)
# _id = self.header0[0]+_label
# v = self.id2range[_id]
# _list = range(*v)
# if len(_list)<self.images_per_identity:
# random.shuffle(_list)
# else:
# _list = np.random.choice(_list, self.images_per_identity, replace=False)
# for i in range(self.images_per_identity):
# _idx = _list[i%len(_list)]
# self.seq.append(_idx)
def reset(self):
"""Resets the iterator to the beginning of the data."""
print('call reset()')
self.cur = 0
if self.images_per_identity > 0:
if self.triplet_mode:
self.select_triplets()
elif not self.hard_mining:
self.seq = []
idlist = []
for _id in self.id2range:
v = self.id2range[_id]
idlist.append((_id, range(*v)))
for r in range(self.repeat):
if r % 10 == 0:
print('repeat', r)
if self.shuffle:
random.shuffle(idlist)
for item in idlist:
_id = item[0]
_list = item[1]
#random.shuffle(_list)
if len(_list) < self.images_per_identity:
random.shuffle(_list)
else:
_list = np.random.choice(_list,
self.images_per_identity,
replace=False)
for i in range(self.images_per_identity):
_idx = _list[i % len(_list)]
self.seq.append(_idx)
else:
self.hard_mining_reset()
print('seq len', len(self.seq))
else:
if self.shuffle:
random.shuffle(self.seq)
if self.seq is None and self.imgrec is not None:
self.imgrec.reset()
def num_samples(self):
return len(self.seq)
def next_sample(self):
while True:
if self.cur >= len(self.seq):
raise StopIteration
idx = self.seq[self.cur]
self.cur += 1
s = self.imgrec.read_idx(idx)
header, img = recordio.unpack(s)
label = header.label
if not isinstance(label, numbers.Number):
label = label[0]
return label, img, None, None
def brightness_aug(self, src, x):
alpha = 1.0 + random.uniform(-x, x)
src *= alpha
return src
def contrast_aug(self, src, x):
alpha = 1.0 + random.uniform(-x, x)
coef = np.array([[[0.299, 0.587, 0.114]]])
gray = src * coef
gray = (3.0 * (1.0 - alpha) / gray.size) * np.sum(gray)
src *= alpha
src += gray
return src
def saturation_aug(self, src, x):
alpha = 1.0 + random.uniform(-x, x)
coef = np.array([[[0.299, 0.587, 0.114]]])
gray = src * coef
gray = np.sum(gray, axis=2, keepdims=True)
gray *= (1.0 - alpha)
src *= alpha
src += gray
return src
def color_aug(self, img, x):
augs = [self.brightness_aug, self.contrast_aug, self.saturation_aug]
random.shuffle(augs)
for aug in augs:
#print(img.shape)
img = aug(img, x)
#print(img.shape)
return img
def mirror_aug(self, img):
_rd = random.randint(0, 1)
if _rd == 1:
for c in range(img.shape[2]):
img[:, :, c] = np.fliplr(img[:, :, c])
return img
def next(self):
if not self.is_init:
self.reset()
self.is_init = True
"""Returns the next batch of data."""
#print('in next', self.cur, self.labelcur)
self.nbatch += 1
batch_size = self.batch_size
c, h, w = self.data_shape
batch_data = nd.empty((batch_size, c, h, w))
if self.provide_label is not None:
batch_label = nd.empty(self.provide_label[0][1])
i = 0
try:
while i < batch_size:
label, s, bbox, landmark = self.next_sample()
_data = self.imdecode(s)
if self.rand_mirror:
_rd = random.randint(0, 1)
if _rd == 1:
_data = mx.ndarray.flip(data=_data, axis=1)
if self.cutoff > 0:
centerh = random.randint(0, _data.shape[0] - 1)
centerw = random.randint(0, _data.shape[1] - 1)
half = self.cutoff // 2
starth = max(0, centerh - half)
endh = min(_data.shape[0], centerh + half)
startw = max(0, centerw - half)
endw = min(_data.shape[1], centerw + half)
_data = _data.astype('float32')
#print(starth, endh, startw, endw, _data.shape)
_data[starth:endh, startw:endw, :] = 127.5
#_npdata = _data.asnumpy()
#if landmark is not None:
# _npdata = face_preprocess.preprocess(_npdata, bbox = bbox, landmark=landmark, image_size=self.image_size)
#if self.rand_mirror:
# _npdata = self.mirror_aug(_npdata)
#if self.mean is not None:
# _npdata = _npdata.astype(np.float32)
# _npdata -= self.mean
# _npdata *= 0.0078125
#nimg = np.zeros(_npdata.shape, dtype=np.float32)
#nimg[self.patch[1]:self.patch[3],self.patch[0]:self.patch[2],:] = _npdata[self.patch[1]:self.patch[3], self.patch[0]:self.patch[2], :]
#_data = mx.nd.array(nimg)
data = [_data]
try:
self.check_valid_image(data)
except RuntimeError as e:
logging.debug('Invalid image, skipping: %s', str(e))
continue
#print('aa',data[0].shape)
#data = self.augmentation_transform(data)
#print('bb',data[0].shape)
for datum in data:
assert i < batch_size, 'Batch size must be multiples of augmenter output length'
#print(datum.shape)
batch_data[i][:] = self.postprocess_data(datum)
if self.provide_label is not None:
batch_label[i][:] = label
i += 1
except StopIteration:
if i < batch_size:
raise StopIteration
#print('next end', batch_size, i)
_label = None
if self.provide_label is not None:
_label = [batch_label]
return io.DataBatch([batch_data], _label, batch_size - i)
def check_data_shape(self, data_shape):
"""Checks if the input data shape is valid"""
if not len(data_shape) == 3:
raise ValueError(
'data_shape should have length 3, with dimensions CxHxW')
if not data_shape[0] == 3:
raise ValueError(
'This iterator expects inputs to have 3 channels.')
def check_valid_image(self, data):
"""Checks if the input data is valid"""
if len(data[0].shape) == 0:
raise RuntimeError('Data shape is wrong')
def imdecode(self, s):
"""Decodes a string or byte string to an NDArray.
See mx.img.imdecode for more details."""
img = mx.image.imdecode(s) #mx.ndarray
return img
def read_image(self, fname):
"""Reads an input image `fname` and returns the decoded raw bytes.
Example usage:
----------
>>> dataIter.read_image('Face.jpg') # returns decoded raw bytes.
"""
with open(os.path.join(self.path_root, fname), 'rb') as fin:
img = fin.read()
return img
def augmentation_transform(self, data):
"""Transforms input data with specified augmentation."""
for aug in self.auglist:
data = [ret for src in data for ret in aug(src)]
return data
def postprocess_data(self, datum):
"""Final postprocessing step before image is loaded into the batch."""
return nd.transpose(datum, axes=(2, 0, 1))
class FaceImageIterList(io.DataIter):
def __init__(self, iter_list):
assert len(iter_list) > 0
self.provide_data = iter_list[0].provide_data
self.provide_label = iter_list[0].provide_label
self.iter_list = iter_list
self.cur_iter = None
def reset(self):
self.cur_iter.reset()
def next(self):
self.cur_iter = random.choice(self.iter_list)
while True:
try:
ret = self.cur_iter.next()
except StopIteration:
self.cur_iter.reset()
continue
return ret