Files
insightface/reconstruction/jmlr/dataset.py
2022-10-11 12:28:36 +08:00

812 lines
33 KiB
Python

import numbers
import os
import os.path as osp
import pickle
import queue as Queue
import threading
import logging
import numbers
import math
import pandas as pd
from scipy.spatial.transform import Rotation
import mxnet as mx
from pathlib import Path
import numpy as np
import torch
from torch.utils.data import DataLoader, Dataset
from skimage import transform as sktrans
import cv2
import albumentations as A
from albumentations.pytorch import ToTensorV2
from augs import *
def Rt26dof(R_t, degrees=False):
yaw_gt, pitch_gt, roll_gt = Rotation.from_matrix(R_t[:3, :3].T).as_euler('yxz', degrees=degrees)
label_euler = np.array([pitch_gt, yaw_gt, roll_gt])
label_translation = R_t[3, :3]
label_6dof = np.concatenate([label_euler, label_translation])
return label_6dof
def gen_target_pip(target, target_map, target_local_x, target_local_y):
map_channel, map_height, map_width = target_map.shape
target = target.reshape(-1, 2)
assert map_channel == target.shape[0]
for i in range(map_channel):
mu_x = int(math.floor(target[i][0] * map_width))
mu_y = int(math.floor(target[i][1] * map_height))
mu_x = max(0, mu_x)
mu_y = max(0, mu_y)
mu_x = min(mu_x, map_width-1)
mu_y = min(mu_y, map_height-1)
target_map[i, mu_y, mu_x] = 1
shift_x = target[i][0] * map_width - mu_x
shift_y = target[i][1] * map_height - mu_y
target_local_x[i, mu_y, mu_x] = shift_x
target_local_y[i, mu_y, mu_x] = shift_y
return target_map, target_local_x, target_local_y
def get_tris(cfg):
import trimesh
data_root = Path(cfg.root_dir)
obj_path = data_root / 'resources/example.obj'
mesh = trimesh.load(obj_path, process=False)
verts_template = np.array(mesh.vertices, dtype=np.float32)
tris = np.array(mesh.faces, dtype=np.int32)
#print(verts_template.shape, tris.shape)
return tris
class BackgroundGenerator(threading.Thread):
def __init__(self, generator, local_rank, max_prefetch=6):
super(BackgroundGenerator, self).__init__()
self.queue = Queue.Queue(max_prefetch)
self.generator = generator
self.local_rank = local_rank
self.daemon = True
self.start()
def run(self):
torch.cuda.set_device(self.local_rank)
for item in self.generator:
self.queue.put(item)
self.queue.put(None)
def next(self):
next_item = self.queue.get()
if next_item is None:
raise StopIteration
return next_item
def __next__(self):
return self.next()
def __iter__(self):
return self
class DataLoaderX(DataLoader):
def __init__(self, local_rank, **kwargs):
super(DataLoaderX, self).__init__(**kwargs)
self.stream = torch.cuda.Stream(local_rank)
self.local_rank = local_rank
def __iter__(self):
self.iter = super(DataLoaderX, self).__iter__()
self.iter = BackgroundGenerator(self.iter, self.local_rank)
self.preload()
return self
def preload(self):
self.batch = next(self.iter, None)
if self.batch is None:
return None
with torch.cuda.stream(self.stream):
for k in range(len(self.batch)):
self.batch[k] = self.batch[k].to(device=self.local_rank,
non_blocking=True)
def __next__(self):
torch.cuda.current_stream().wait_stream(self.stream)
batch = self.batch
if batch is None:
raise StopIteration
self.preload()
return batch
class FaceDataset(Dataset):
def __init__(self, cfg, is_train=True, is_test=False, local_rank=0):
super(FaceDataset, self).__init__()
self.data_root = Path(cfg.root_dir)
self.input_size = cfg.input_size
self.transform = get_aug_transform(cfg)
self.local_rank = local_rank
self.is_test = is_test
txt_path = self.data_root / 'resources/projection_matrix.txt'
self.M_proj = np.loadtxt(txt_path, dtype=np.float32)
if is_test:
data_root = Path(cfg.root_dir)
csv_path = data_root / 'list/WCPA_track2_test.csv'
self.df = pd.read_csv(csv_path, dtype={'subject_id': str, 'facial_action': str, 'img_id': str})
else:
if is_train:
self.df = pd.read_csv(osp.join(cfg.cache_dir, 'train_list.csv'), dtype={'subject_id': str, 'facial_action': str, 'img_id': str})
else:
self.df = pd.read_csv(osp.join(cfg.cache_dir, 'val_list.csv'), dtype={'subject_id': str, 'facial_action': str, 'img_id': str})
self.label_6dof_mean = [-0.018197, -0.017891, 0.025348, -0.005368, 0.001176, -0.532206] # mean of pitch, yaw, roll, tx, ty, tz
self.label_6dof_std = [0.314015, 0.271809, 0.081881, 0.022173, 0.048839, 0.065444] # std of pitch, yaw, roll, tx, ty, tz
self.align_face = cfg.align_face
if not self.align_face:
self.dst_pts = np.float32([
[0, 0],
[0, cfg.input_size- 1],
[cfg.input_size- 1, 0]
])
else:
dst_pts = np.array([
[38.2946, 51.6963],
[73.5318, 51.5014],
[56.0252, 71.7366],
[41.5493, 92.3655],
[70.7299, 92.2041] ], dtype=np.float32 )
new_size = 144
dst_pts[:,0] += ((new_size-112)//2)
dst_pts[:,1] += 8
dst_pts[:,:] *= (self.input_size/float(new_size))
self.dst_pts = dst_pts
if local_rank==0:
logging.info('data_transform_list:%s'%self.transform)
logging.info('len:%d'%len(self.df))
self.is_test_aug = False
self.eye_dataset = None
if cfg.eyes is not None:
from eye_dataset import EyeDataset
self.eye_dataset = EyeDataset(cfg.eyes['root'])
def set_test_aug(self):
if not self.is_test_aug:
from easydict import EasyDict as edict
cfg = edict()
cfg.aug_modes = ['test-aug']
cfg.input_size = self.input_size
cfg.task = 0
self.transform = get_aug_transform(cfg)
self.is_test_aug = True
def get_names(self, index):
subject_id = self.df['subject_id'][index]
facial_action = self.df['facial_action'][index]
img_id = self.df['img_id'][index]
return subject_id, facial_action, img_id
def __getitem__(self, index):
subject_id = self.df['subject_id'][index]
facial_action = self.df['facial_action'][index]
img_id = self.df['img_id'][index]
img_path = self.data_root / 'image' / subject_id / facial_action / f'{img_id}_ar.jpg'
npz_path = self.data_root / 'info' / subject_id / facial_action / f'{img_id}_info.npz'
txt_path = self.data_root / '68landmarks' / subject_id / facial_action / f'{img_id}_68landmarks.txt'
#if not osp.exists(img_path):
# continue
#print(img_path)
img_raw = cv2.imread(str(img_path))
#if img_raw is None:
# print('XXX ERR:', img_path)
img_raw = cv2.cvtColor(img_raw, cv2.COLOR_BGR2RGB)
#print(img_raw.shape)
img_h, img_w, _ = img_raw.shape
pts68 = np.loadtxt(txt_path, dtype=np.int32)
x_min, y_min = pts68.min(axis=0)
x_max, y_max = pts68.max(axis=0)
x_center = (x_min + x_max) / 2
y_center = (y_min + y_max) / 2
w, h = x_max - x_min, y_max - y_min
if not self.align_face:
size = max(w, h)
ss = np.array([0.75, 0.75, 0.85, 0.65]) # predefined expand size
left = x_center - ss[0] * size
right = x_center + ss[1] * size
top = y_center - ss[2] * size
bottom = y_center + ss[3] * size
src_pts = np.float32([
[left, top],
[left, bottom],
[right, top]
])
tform = cv2.getAffineTransform(src_pts, self.dst_pts)
else:
src_pts = np.float32([
(pts68[36] + pts68[39])/2,
(pts68[42] + pts68[45])/2,
pts68[30],
pts68[48],
pts68[54]
])
tf = sktrans.SimilarityTransform()
tf.estimate(src_pts, self.dst_pts)
tform = tf.params[0:2,:]
img_local = cv2.warpAffine(img_raw, tform, (self.input_size,)*2, flags=cv2.INTER_CUBIC)
fake_points2d = np.ones( (1,2), dtype=np.float32) * (self.input_size//2)
#tform_inv = cv2.invertAffineTransform(tform)
#img_global = cv2.warpAffine(img_local, tform_inv, (img_w, img_h), borderValue=0.0)
#img_global = cv2.resize(img_global, (self.input_size, self.input_size))
if self.transform is not None:
t = self.transform(image=img_local, keypoints=fake_points2d)
img_local = t['image']
if self.is_test_aug:
height, width = img_local.shape[:2]
for trans in t["replay"]["transforms"]:
if trans['__class_fullname__']=='ShiftScaleRotate' and trans['applied']:
param = trans['params']
dx, dy, angle, scale = param['dx'], param['dy'], param['angle'], param['scale']
center = (width / 2, height / 2)
matrix = cv2.getRotationMatrix2D(center, angle, scale)
matrix[0, 2] += dx * width
matrix[1, 2] += dy * height
new_matrix = np.identity(3)
new_matrix[:2,:3] = matrix
old_tform = np.identity(3)
old_tform[:2,:3] = tform
#new_tform = np.dot(old_tform, new_matrix)
new_tform = np.dot(new_matrix, old_tform)
#print('label_tform:')
#print(label_tform.flatten())
#print(new_matrix.flatten())
#print(new_tform.flatten())
tform = new_tform[:2,:3]
break
#print('trans param:', param)
#img_global = self.transform(image=img_global)['image']
tform_tensor = torch.tensor(tform, dtype=torch.float32)
d = {'img_local': img_local, 'tform': tform_tensor}
if self.eye_dataset is not None:
eye_key = str(Path('image') / subject_id / facial_action / f'{img_id}_ar.jpg')
#print(eye_key)
eyel, eyer = self.eye_dataset.get(eye_key, to_homo=True)
if eyel is not None:
#print(eye_key, el_inv.shape, er_inv.shape)
d['eye_world_left'] = torch.tensor(eyel, dtype=torch.float32)
d['eye_world_right'] = torch.tensor(eyer, dtype=torch.float32)
if not self.is_test:
M = np.load(npz_path)
#yaw_gt, pitch_gt, roll_gt = Rotation.from_matrix(M['R_t'][:3, :3].T).as_euler('yxz', degrees=False)
#label_euler = np.array([pitch_gt, yaw_gt, roll_gt])
#label_translation = M['R_t'][3, :3]
#label_6dof = np.concatenate([label_euler, label_translation])
#label_6dof = (label_6dof - self.label_6dof_mean) / self.label_6dof_std
#label_6dof_tensor = torch.tensor(label_6dof, dtype=torch.float32)
#label_verts = M['verts'] * 10.0 # roughly [-1, 1]
#label_verts_tensor = torch.tensor(label_verts, dtype=torch.float32)
#return img_local, label_verts_tensor, label_6dof_tensor
label_verts_tensor = torch.tensor(M['verts'], dtype=torch.float32)
label_Rt_tensor = torch.tensor(M['R_t'], dtype=torch.float32)
d['verts'] = label_verts_tensor
d['rt'] = label_Rt_tensor
#return img_local, img_global, label_verts_tensor, label_Rt_tensor, tform_tensor
#return img_local, label_verts_tensor, label_Rt_tensor, tform_tensor
else:
#return img_local, img_global, tform_tensor
index_tensor = torch.tensor(index, dtype=torch.long)
d['index'] = index_tensor
#return img_local, tform_tensor, index_tensor
return d
def __len__(self):
return len(self.df)
class MXFaceDataset(Dataset):
def __init__(self, cfg, is_train=True, norm_6dof=True, degrees_6dof=False, local_rank=0):
super(MXFaceDataset, self).__init__()
self.is_train = is_train
self.data_root = Path(cfg.root_dir)
self.input_size = cfg.input_size
self.transform = get_aug_transform(cfg)
self.local_rank = local_rank
self.use_trainval = cfg.use_trainval
self.use_eye = cfg.eyes is not None
if is_train:
#self.df = pd.read_csv(osp.join(cfg.cache_dir, 'train_list.csv'), dtype={'subject_id': str, 'facial_action': str, 'img_id': str})
path_imgrec = os.path.join(cfg.cache_dir, 'train.rec')
path_imgidx = os.path.join(cfg.cache_dir, 'train.idx')
self.imgrec = mx.recordio.MXIndexedRecordIO(path_imgidx, path_imgrec, 'r')
self.imgidx = list(self.imgrec.keys)
self.imggroup = [0] * len(self.imgidx)
self.size_train = len(self.imgidx)
if self.use_trainval:
assert not cfg.sampling_hard
path_imgrec = os.path.join(cfg.cache_dir, 'val.rec')
path_imgidx = os.path.join(cfg.cache_dir, 'val.idx')
self.imgrec2 = mx.recordio.MXIndexedRecordIO(path_imgidx, path_imgrec, 'r')
imgidx2 = list(self.imgrec2.keys)
self.imggroup += [1] * len(imgidx2)
self.imgidx += imgidx2
else:
#self.df = pd.read_csv(osp.join(cfg.cache_dir, 'val_list.csv'), dtype={'subject_id': str, 'facial_action': str, 'img_id': str})
path_imgrec = os.path.join(cfg.cache_dir, 'val.rec')
path_imgidx = os.path.join(cfg.cache_dir, 'val.idx')
self.imgrec = mx.recordio.MXIndexedRecordIO(path_imgidx, path_imgrec, 'r')
self.imgidx = list(self.imgrec.keys)
self.imggroup = [0] * len(self.imgidx)
self.imgidx = np.array(self.imgidx)
self.imggroup = np.array(self.imggroup)
if cfg.sampling_hard and is_train:
meta = np.load(os.path.join(cfg.cache_dir, 'train.meta.npy'))
assert meta.shape[0]==len(self.imgidx)
new_imgidx = []
for i in range(len(self.imgidx)):
idx = self.imgidx[i]
assert i==idx
pose = np.abs(meta[i,:2])
#repeat = np.sum(pose>=35)*3+1
if np.max(pose)<15:
repeat = 2
else:
repeat = 1
new_imgidx += [idx]*repeat
if local_rank==0:
print('new-imgidx:', len(self.imgidx), len(new_imgidx))
self.imgidx = np.array(new_imgidx)
self.label_6dof_mean = [-0.018197, -0.017891, 0.025348, -0.005368, 0.001176, -0.532206] # mean of pitch, yaw, roll, tx, ty, tz
self.label_6dof_std = [0.314015, 0.271809, 0.081881, 0.022173, 0.048839, 0.065444] # std of pitch, yaw, roll, tx, ty, tz
txt_path = self.data_root / 'resources/projection_matrix.txt'
self.M_proj = np.loadtxt(txt_path, dtype=np.float32)
self.M1 = np.array([
[400.0, 0, 0, 0],
[ 0, 400.0, 0, 0],
[ 0, 0, 1, 0],
[400.0, 400.0, 0, 1]
])
self.dst_pts = np.float32([
[0, 0],
[0, cfg.input_size- 1],
[cfg.input_size- 1, 0]
])
self.norm_6dof = norm_6dof
self.degrees_6dof = degrees_6dof
self.task = cfg.task
self.num_verts = cfg.num_verts
self.loss_pip = cfg.loss_pip
self.net_stride = 32
if local_rank==0:
logging.info('data_transform_list:%s'%self.transform)
logging.info('len:%d'%len(self.imgidx))
logging.info('glen:%d'%len(self.imggroup))
self.is_test_aug = False
self.enable_flip = cfg.enable_flip
self.flipindex = cfg.flipindex.copy()
self.verts3d_central_index = cfg.verts3d_central_index
self.eye_dataset = None
self.use_eye = False
if cfg.eyes is not None:
#from eye_dataset import EyeDataset
#self.eye_dataset = EyeDataset(cfg.eyes['root'], load_data=False)
self.use_eye = True
def set_test_aug(self):
if not self.is_test_aug:
from easydict import EasyDict as edict
cfg = edict()
cfg.aug_modes = ['test-aug']
cfg.input_size = self.input_size
cfg.task = 0
self.transform = get_aug_transform(cfg)
self.is_test_aug = True
def __getitem__(self, index):
idx = self.imgidx[index]
group = self.imggroup[index]
if group==0:
imgrec = self.imgrec
elif group==1:
imgrec = self.imgrec2
elif group==2:
imgrec = self.imgrec3
s = imgrec.read_idx(idx)
header, img = mx.recordio.unpack(s)
hlabel = header.label
img = mx.image.imdecode(img).asnumpy() #rgb numpy
label_verts = np.array(hlabel[:1220*3], dtype=np.float32).reshape(-1,3)
label_Rt = np.array(hlabel[1220*3:1220*3+16], dtype=np.float32).reshape(4,4)
label_tform = np.array(hlabel[1220*3+16:1220*3+16+6], dtype=np.float32).reshape(2,3)
label_6dof = Rt26dof(label_Rt, self.degrees_6dof)
if self.norm_6dof:
label_6dof = (label_6dof - self.label_6dof_mean) / self.label_6dof_std
label_6dof_tensor = torch.tensor(label_6dof, dtype=torch.float32)
el_inv = None
er_inv = None
if self.use_eye:
a = 1220*3+16+6
el_inv = np.array(hlabel[a:a+481*3], dtype=np.float32).reshape(-1,3)
a+=481*3
er_inv = np.array(hlabel[a:a+481*3], dtype=np.float32).reshape(-1,3)
#el_inv = torch.tensor(el_inv, dtype=torch.float32)
#er_inv = torch.tensor(er_inv, dtype=torch.float32)
#eye_verts = [el_inv, er_inv]
eye_verts = np.concatenate( (el_inv, er_inv), axis=0 )
#img_local = None
img_raw = None
#if self.task==0 or self.task==2:
# img_raw = img[:,self.input_size:,:]
#if self.task==0 or self.task==1 or self.task==3:
# img_local = img[:,:self.input_size,:]
assert img.shape[0]==img.shape[1] and img.shape[0]>=self.input_size
if img.shape[0]>self.input_size:
scale = float(self.input_size) / img.shape[0]
#print('scale:', scale)
#src_pts = np.float32([
# [0, 0],
# [0, 799],
# [799, 0]
#])
#tform = cv2.getAffineTransform(src_pts, self.dst_pts)
#new_tform = np.identity(3)
#new_tform[:2,:3] = tform
#label_tform = np.dot(new_tform, label_tform.T).T
src_pts = np.float32([
[0, 0, 1],
[0, 799, 1],
[799, 0, 1]
])
dst_pts = np.dot(label_tform, src_pts.T).T
dst_pts *= scale
dst_pts = dst_pts.copy()
src_pts = src_pts[:,:2].copy()
#print('index:', index)
#print(src_pts.shape, dst_pts.shape)
#print(label_tform.shape)
#print(src_pts.dtype)
#print(dst_pts.dtype)
tform = cv2.getAffineTransform(src_pts, dst_pts)
label_tform = tform
img = cv2.resize(img, (self.input_size, self.input_size))
img_local = img
need_points2d = (self.task==0 or self.task==3)
if need_points2d:
ones = np.ones([label_verts.shape[0], 1])
verts_homo = np.concatenate([label_verts, ones], axis=1)
verts = verts_homo @ label_Rt @ self.M_proj @ self.M1
w_ = verts[:, [3]]
verts = verts / w_
points2d = verts[:, :3]
points2d[:, 1] = 800.0 - points2d[:, 1]
verts2d = points2d[:,:2].copy()
points2d[:,2] = 1.0
points2d = np.dot(label_tform, points2d.T).T
else:
points2d = np.ones( (1,2), dtype=np.float32) * (self.input_size//2)
if self.use_eye:
verts_homo = eye_verts
if verts_homo.shape[1] == 3:
ones = np.ones([verts_homo.shape[0], 1])
verts_homo = np.concatenate([verts_homo, ones], axis=1)
verts_out = verts_homo @ label_Rt @ self.M_proj @ self.M1
w_ = verts_out[:, [3]]
verts_out = verts_out / w_
_points2d = verts_out[:, :3]
_points2d[:, 1] = 800.0 - _points2d[:, 1]
_points2d[:,2] = 1.0
_points2d = np.dot(label_tform, _points2d.T).T
eye_points = _points2d
#if img.shape[0]!=self.input_size:
# assert img.shape[0]>self.input_size
#img = cv2.resize(img, (self.input_size, self.input_size))
#scale = float(self.input_size) / img.shape[0]
#points2d *= scale
if self.transform is not None:
if img_raw is not None:
img_raw = self.transform(image=img_raw, keypoints=points2d)['image']
if img_local is not None:
height, width = img_local.shape[:2]
x = self.transform(image=img_local, keypoints=points2d)
img_local = x['image']
points2d = x['keypoints']
points2d = np.array(points2d, dtype=np.float32)
if self.is_test_aug:
for trans in x["replay"]["transforms"]:
if trans['__class_fullname__']=='ShiftScaleRotate' and trans['applied']:
param = trans['params']
dx, dy, angle, scale = param['dx'], param['dy'], param['angle'], param['scale']
center = (width / 2, height / 2)
matrix = cv2.getRotationMatrix2D(center, angle, scale)
matrix[0, 2] += dx * width
matrix[1, 2] += dy * height
new_matrix = np.identity(3)
new_matrix[:2,:3] = matrix
old_tform = np.identity(3)
old_tform[:2,:3] = label_tform
#new_tform = np.dot(old_tform, new_matrix)
new_tform = np.dot(new_matrix, old_tform)
#print('label_tform:')
#print(label_tform.flatten())
#print(new_matrix.flatten())
#print(new_tform.flatten())
label_tform = new_tform[:2,:3]
break
#print('trans param:', param)
if self.loss_pip:
target_map = np.zeros((self.num_verts, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
target_local_x = np.zeros((self.num_verts, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
target_local_y = np.zeros((self.num_verts, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
target = points2d / self.input_size
target_map, target_local_x, target_local_y = gen_target_pip(target, target_map, target_local_x, target_local_y)
target_map_tensor = torch.tensor(target_map, dtype=torch.float32)
target_x_tensor = torch.tensor(target_local_x, dtype=torch.float32)
target_y_tensor = torch.tensor(target_local_y, dtype=torch.float32)
d['pip_map'] = target_map_tensor
d['pip_x'] = target_x_tensor
d['pip_y'] = target_y_tensor
if self.is_train and self.enable_flip and np.random.random()<0.5:
#if self.local_rank==0:
# print('XXX:', label_verts[:5,:2])
img_local = img_local.flip([2])
x_of_central = 0.0
#x_of_central = label_verts[self.verts3d_central_index,0]
#x_of_central = np.mean(x_of_central)
label_verts = label_verts[self.flipindex,:]
label_verts[:,0] -= x_of_central
label_verts[:,0] *= -1.0
label_verts[:,0] += x_of_central
if need_points2d:
flipped_p2d = points2d[self.flipindex,:].copy()
flipped_p2d[:,0] = self.input_size - 1 - flipped_p2d[:,0]
points2d = flipped_p2d
if self.use_eye:
flipped_p2d = eye_points[self.flipindex,:].copy()
flipped_p2d[:,0] = self.input_size - 1 - flipped_p2d[:,0]
eye_points = flipped_p2d
label_verts_tensor = torch.tensor(label_verts*10.0, dtype=torch.float32)
d = {}
d['img_local'] = img_local
d['verts'] = label_verts_tensor
d['6dof'] = label_6dof_tensor
d['rt'] = torch.tensor(label_Rt, dtype=torch.float32)
if need_points2d:
points2d = points2d / (self.input_size//2) - 1.0
points2d_tensor = torch.tensor(points2d, dtype=torch.float32)
d['points2d'] = points2d_tensor
if self.use_eye:
d['eye_verts'] = torch.tensor(eye_verts, dtype=torch.float32)
eye_points = eye_points / (self.input_size//2) - 1.0
eye_points_tensor = torch.tensor(eye_points, dtype=torch.float32)
d['eye_points'] = eye_points_tensor
loss_weight = 1.0
if group!=0:
loss_weight = 0.0
loss_weight_tensor = torch.tensor(loss_weight, dtype=torch.float32)
d['loss_weight'] = loss_weight_tensor
label_tform_tensor = torch.tensor(label_tform, dtype=torch.float32)
d['tform'] = label_tform_tensor
#if img_local is None:
# image = (img_raw,)
#elif img_raw is None:
# image = (img_local,)
#else:
# image = (img_local,img_raw)
#ret = image + (label_verts_tensor, label_6dof_tensor, points2d_tensor)
if not self.is_train:
idx_tensor = torch.tensor([idx], dtype=torch.long)
d['idx'] = idx_tensor
d['verts2d'] = torch.tensor(verts2d, dtype=torch.float32)
return d
def __len__(self):
return len(self.imgidx)
def test_dataset1(cfg):
cfg.task = 0
is_train = False
center_axis = []
dataset = MXFaceDataset(cfg, is_train=is_train, norm_6dof=False, local_rank=0)
for i in range(len(dataset.flipindex)):
if i==dataset.flipindex[i]:
center_axis.append(i)
print(center_axis)
#dataset.transform = None
print('total:', len(dataset))
total = len(dataset)
#total = 50
list_6dof = []
all_mean_xs = []
for idx in range(total):
#img_local, img_raw, label_verts, label_6dof, = dataset[idx]
#img_local, img_raw, label_verts, label_6dof, points2d, tform, data_idx = dataset[idx]
#img_local, label_verts, label_6dof, points2d, tform, data_idx = dataset[idx]
d = dataset[idx]
img_local = d['img_local']
label_verts = d['verts']
label_6dof = d['6dof']
points2d = d['points2d']
label_verts = label_verts.numpy()
label_6dof = label_6dof.numpy()
points2d = points2d.numpy()
#print(img_local.shape, label_verts.shape, label_6dof.shape, points2d.shape)
verts3d = label_verts / 10.0
xs = []
for c in center_axis:
_x = verts3d[c,0]
xs.append(_x)
_std = np.std(xs)
print(xs)
print(_std)
#print(np.mean(xs))
all_mean_xs.append(np.mean(xs))
if idx%100==0:
print('processing:', idx, np.mean(all_mean_xs))
#print(label_verts[:3,:], label_6dof)
#list_6dof.append(label_6dof)
#print(image.__class__, label_verts.__class__)
#label = list(label_verts.numpy().flatten()) + list(label_6dof.numpy().flatten())
#points2d = label_verts2[:,:2]
#points2d = (points2d+1) * 128.0
#img_local = img_local.numpy()
#img_local = (img_local+1.0) * 128.0
#draw = img_local.astype(np.uint8).transpose( (1,2,0) )[:,:,::-1].copy()
#for i in range(points2d.shape[0]):
# pt = points2d[i].astype(np.int)
# cv2.circle(draw, pt, 2, (255,0,0), 2)
##output_path = "outputs/%d_%.3f_%.3f_%.3f.jpg"%(idx, label_6dof[0], label_6dof[1], label_6dof[2])
#output_path = "outputs/%06d.jpg"%(idx)
#cv2.imwrite(output_path, draw)
#list_6dof = np.array(list_6dof)
#print('MEAN:')
#print(np.mean(list_6dof, axis=0))
def test_loader1(cfg):
cfg.task = 0
is_train = True
dataset = MXFaceDataset(cfg, is_train=is_train, norm_6dof=False, local_rank=0)
loader = DataLoader(dataset, batch_size=64, shuffle=True)
for index, d in enumerate(loader):
#img_local = d['img_local']
label_verts = d['verts']
points2d = d['points2d']
tform = d['tform']
label_verts /= 10.0
points2d = (points2d + 1.0) * (cfg.input_size//2)
tform = tform.numpy()
verts = label_verts.numpy()
points2d = points2d.numpy()
print(verts.shape, points2d.shape, tform.shape)
np.save("temp/verts3d.npy", verts)
np.save("temp/points2d.npy", points2d)
np.save("temp/tform.npy", tform)
break
def test_facedataset1(cfg):
cfg.task = 0
cfg.input_size = 512
dataset = FaceDataset(cfg, is_train=True, local_rank=0)
for idx in range(100000):
img_local, label_verts, label_Rt, tform = dataset[idx]
label_Rt = label_Rt.numpy()
if label_Rt[0,0]>1.0:
print(idx, label_Rt.shape)
print(label_Rt)
break
def test_arcface(cfg):
cfg.task = 0
is_train = True
dataset = MXFaceDataset(cfg, is_train=is_train, norm_6dof=False, local_rank=0)
loader = DataLoader(dataset, batch_size=1, shuffle=True)
for index, d in enumerate(loader):
img = d['img_local'].numpy()
img /= 2.0
img += 0.5
img *= 255.0
img = img[0]
img = img.transpose( (1,2,0) )
img = img.astype(np.uint8)
img = cv2.resize(img, (144,144))
img = img[:,:,::-1]
img = img[8:120,16:128,:]
print(img.shape)
cv2.imwrite("temp/arc_%d.jpg"%index, img)
#np.save("temp/verts3d.npy", verts)
#np.save("temp/points2d.npy", points2d)
#np.save("temp/tform.npy", tform)
if index>100:
break
def test_dataset2(cfg):
cfg.task = 0
is_train = False
center_axis = []
dataset = MXFaceDataset(cfg, is_train=is_train, norm_6dof=False, local_rank=0)
for i in range(len(dataset.flipindex)):
if i==dataset.flipindex[i]:
center_axis.append(i)
print(center_axis)
#dataset.transform = None
print('total:', len(dataset))
total = len(dataset)
total = 50
list_6dof = []
all_mean_xs = []
for idx in range(total):
d = dataset[idx]
img_local = d['img_local']
label_verts = d['verts']
label_6dof = d['6dof']
points2d = d['points2d']
label_verts = label_verts.numpy()
label_6dof = label_6dof.numpy()
points2d = points2d.numpy()
eye_points = d['eye_points'].numpy()
eye_verts = d['eye_verts'].numpy()
print(eye_verts[:5,:])
#print(img_local.shape, label_verts.shape, label_6dof.shape, points2d.shape)
verts3d = label_verts / 10.0
#print(label_verts[:3,:], label_6dof)
#list_6dof.append(label_6dof)
#print(image.__class__, label_verts.__class__)
#label = list(label_verts.numpy().flatten()) + list(label_6dof.numpy().flatten())
#points2d = label_verts2[:,:2]
points2d = (points2d+1) * 128.0
eye_points = (eye_points+1) * 128.0
img_local = img_local.numpy()
img_local = (img_local+1.0) * 128.0
draw = img_local.astype(np.uint8).transpose( (1,2,0) )[:,:,::-1].copy()
for i in range(points2d.shape[0]):
pt = points2d[i].astype(np.int)
cv2.circle(draw, pt, 2, (255,0,0), 2)
for i in range(eye_points.shape[0]):
pt = eye_points[i].astype(np.int)
cv2.circle(draw, pt, 2, (0,255,0), 2)
##output_path = "outputs/%d_%.3f_%.3f_%.3f.jpg"%(idx, label_6dof[0], label_6dof[1], label_6dof[2])
output_path = "outputs/%06d.jpg"%(idx)
cv2.imwrite(output_path, draw)
#list_6dof = np.array(list_6dof)
#print('MEAN:')
#print(np.mean(list_6dof, axis=0))
if __name__ == "__main__":
from utils.utils_config import get_config
#cfg = get_config('configs/r0_a1.py')
cfg = get_config('configs/s2')
#test_loader1(cfg)
#test_facedataset1(cfg)
#test_arcface(cfg)
test_dataset2(cfg)