Files
insightface/detection/retinaface/rcnn/processing/bbox_transform.py
2021-06-19 23:57:15 +08:00

224 lines
7.2 KiB
Python

import numpy as np
from ..cython.bbox import bbox_overlaps_cython
#from rcnn.config import config
def bbox_overlaps(boxes, query_boxes):
return bbox_overlaps_cython(boxes, query_boxes)
def bbox_overlaps_py(boxes, query_boxes):
"""
determine overlaps between boxes and query_boxes
:param boxes: n * 4 bounding boxes
:param query_boxes: k * 4 bounding boxes
:return: overlaps: n * k overlaps
"""
n_ = boxes.shape[0]
k_ = query_boxes.shape[0]
overlaps = np.zeros((n_, k_), dtype=np.float)
for k in range(k_):
query_box_area = (query_boxes[k, 2] - query_boxes[k, 0] +
1) * (query_boxes[k, 3] - query_boxes[k, 1] + 1)
for n in range(n_):
iw = min(boxes[n, 2], query_boxes[k, 2]) - max(
boxes[n, 0], query_boxes[k, 0]) + 1
if iw > 0:
ih = min(boxes[n, 3], query_boxes[k, 3]) - max(
boxes[n, 1], query_boxes[k, 1]) + 1
if ih > 0:
box_area = (boxes[n, 2] - boxes[n, 0] +
1) * (boxes[n, 3] - boxes[n, 1] + 1)
all_area = float(box_area + query_box_area - iw * ih)
overlaps[n, k] = iw * ih / all_area
return overlaps
def clip_boxes(boxes, im_shape):
"""
Clip boxes to image boundaries.
:param boxes: [N, 4* num_classes]
:param im_shape: tuple of 2
:return: [N, 4* num_classes]
"""
# x1 >= 0
boxes[:, 0::4] = np.maximum(np.minimum(boxes[:, 0::4], im_shape[1] - 1), 0)
# y1 >= 0
boxes[:, 1::4] = np.maximum(np.minimum(boxes[:, 1::4], im_shape[0] - 1), 0)
# x2 < im_shape[1]
boxes[:, 2::4] = np.maximum(np.minimum(boxes[:, 2::4], im_shape[1] - 1), 0)
# y2 < im_shape[0]
boxes[:, 3::4] = np.maximum(np.minimum(boxes[:, 3::4], im_shape[0] - 1), 0)
return boxes
def nonlinear_transform(ex_rois, gt_rois):
"""
compute bounding box regression targets from ex_rois to gt_rois
:param ex_rois: [N, 4]
:param gt_rois: [N, 4]
:return: [N, 4]
"""
assert ex_rois.shape[0] == gt_rois.shape[0], 'inconsistent rois number'
ex_widths = ex_rois[:, 2] - ex_rois[:, 0] + 1.0
ex_heights = ex_rois[:, 3] - ex_rois[:, 1] + 1.0
ex_ctr_x = ex_rois[:, 0] + 0.5 * (ex_widths - 1.0)
ex_ctr_y = ex_rois[:, 1] + 0.5 * (ex_heights - 1.0)
gt_widths = gt_rois[:, 2] - gt_rois[:, 0] + 1.0
gt_heights = gt_rois[:, 3] - gt_rois[:, 1] + 1.0
gt_ctr_x = gt_rois[:, 0] + 0.5 * (gt_widths - 1.0)
gt_ctr_y = gt_rois[:, 1] + 0.5 * (gt_heights - 1.0)
targets_dx = (gt_ctr_x - ex_ctr_x) / (ex_widths + 1e-14)
targets_dy = (gt_ctr_y - ex_ctr_y) / (ex_heights + 1e-14)
targets_dw = np.log(gt_widths / ex_widths)
targets_dh = np.log(gt_heights / ex_heights)
if gt_rois.shape[1] <= 4:
targets = np.vstack(
(targets_dx, targets_dy, targets_dw, targets_dh)).transpose()
return targets
else:
targets = [targets_dx, targets_dy, targets_dw, targets_dh]
#if config.USE_BLUR:
# for i in range(4, gt_rois.shape[1]):
# t = gt_rois[:,i]
# targets.append(t)
targets = np.vstack(targets).transpose()
return targets
def landmark_transform(ex_rois, gt_rois):
assert ex_rois.shape[0] == gt_rois.shape[0], 'inconsistent rois number'
ex_widths = ex_rois[:, 2] - ex_rois[:, 0] + 1.0
ex_heights = ex_rois[:, 3] - ex_rois[:, 1] + 1.0
ex_ctr_x = ex_rois[:, 0] + 0.5 * (ex_widths - 1.0)
ex_ctr_y = ex_rois[:, 1] + 0.5 * (ex_heights - 1.0)
targets = []
for i in range(gt_rois.shape[1]):
for j in range(gt_rois.shape[2]):
#if not config.USE_OCCLUSION and j==2:
# continue
if j == 2:
continue
if j == 0: #w
target = (gt_rois[:, i, j] - ex_ctr_x) / (ex_widths + 1e-14)
elif j == 1: #h
target = (gt_rois[:, i, j] - ex_ctr_y) / (ex_heights + 1e-14)
else: #visibile
target = gt_rois[:, i, j]
targets.append(target)
targets = np.vstack(targets).transpose()
return targets
def nonlinear_pred(boxes, box_deltas):
"""
Transform the set of class-agnostic boxes into class-specific boxes
by applying the predicted offsets (box_deltas)
:param boxes: !important [N 4]
:param box_deltas: [N, 4 * num_classes]
:return: [N 4 * num_classes]
"""
if boxes.shape[0] == 0:
return np.zeros((0, box_deltas.shape[1]))
boxes = boxes.astype(np.float, copy=False)
widths = boxes[:, 2] - boxes[:, 0] + 1.0
heights = boxes[:, 3] - boxes[:, 1] + 1.0
ctr_x = boxes[:, 0] + 0.5 * (widths - 1.0)
ctr_y = boxes[:, 1] + 0.5 * (heights - 1.0)
dx = box_deltas[:, 0::4]
dy = box_deltas[:, 1::4]
dw = box_deltas[:, 2::4]
dh = box_deltas[:, 3::4]
pred_ctr_x = dx * widths[:, np.newaxis] + ctr_x[:, np.newaxis]
pred_ctr_y = dy * heights[:, np.newaxis] + ctr_y[:, np.newaxis]
pred_w = np.exp(dw) * widths[:, np.newaxis]
pred_h = np.exp(dh) * heights[:, np.newaxis]
pred_boxes = np.zeros(box_deltas.shape)
# x1
pred_boxes[:, 0::4] = pred_ctr_x - 0.5 * (pred_w - 1.0)
# y1
pred_boxes[:, 1::4] = pred_ctr_y - 0.5 * (pred_h - 1.0)
# x2
pred_boxes[:, 2::4] = pred_ctr_x + 0.5 * (pred_w - 1.0)
# y2
pred_boxes[:, 3::4] = pred_ctr_y + 0.5 * (pred_h - 1.0)
return pred_boxes
def landmark_pred(boxes, landmark_deltas):
if boxes.shape[0] == 0:
return np.zeros((0, landmark_deltas.shape[1]))
boxes = boxes.astype(np.float, copy=False)
widths = boxes[:, 2] - boxes[:, 0] + 1.0
heights = boxes[:, 3] - boxes[:, 1] + 1.0
ctr_x = boxes[:, 0] + 0.5 * (widths - 1.0)
ctr_y = boxes[:, 1] + 0.5 * (heights - 1.0)
preds = []
for i in range(landmark_deltas.shape[1]):
if i % 2 == 0:
pred = (landmark_deltas[:, i] * widths + ctr_x)
else:
pred = (landmark_deltas[:, i] * heights + ctr_y)
preds.append(pred)
preds = np.vstack(preds).transpose()
return preds
def iou_transform(ex_rois, gt_rois):
""" return bbox targets, IoU loss uses gt_rois as gt """
assert ex_rois.shape[0] == gt_rois.shape[0], 'inconsistent rois number'
return gt_rois
def iou_pred(boxes, box_deltas):
"""
Transform the set of class-agnostic boxes into class-specific boxes
by applying the predicted offsets (box_deltas)
:param boxes: !important [N 4]
:param box_deltas: [N, 4 * num_classes]
:return: [N 4 * num_classes]
"""
if boxes.shape[0] == 0:
return np.zeros((0, box_deltas.shape[1]))
boxes = boxes.astype(np.float, copy=False)
x1 = boxes[:, 0]
y1 = boxes[:, 1]
x2 = boxes[:, 2]
y2 = boxes[:, 3]
dx1 = box_deltas[:, 0::4]
dy1 = box_deltas[:, 1::4]
dx2 = box_deltas[:, 2::4]
dy2 = box_deltas[:, 3::4]
pred_boxes = np.zeros(box_deltas.shape)
# x1
pred_boxes[:, 0::4] = dx1 + x1[:, np.newaxis]
# y1
pred_boxes[:, 1::4] = dy1 + y1[:, np.newaxis]
# x2
pred_boxes[:, 2::4] = dx2 + x2[:, np.newaxis]
# y2
pred_boxes[:, 3::4] = dy2 + y2[:, np.newaxis]
return pred_boxes
# define bbox_transform and bbox_pred
bbox_transform = nonlinear_transform
bbox_pred = nonlinear_pred