Files
insightface/recognition/arcface_paddle/tools/inference.py
2021-11-02 18:21:46 +00:00

235 lines
8.0 KiB
Python

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import os
import cv2
import time
import json
import argparse
import numpy as np
sys.path.insert(0, os.path.abspath('.'))
def str2bool(v):
return v.lower() in ("True","true", "t", "1")
def parse_args():
parser = argparse.ArgumentParser(description='Paddle Face Predictor')
parser.add_argument(
'--export_type', type=str, help='export type, paddle or onnx')
parser.add_argument(
"--model_file",
type=str,
required=False,
help="paddle save inference model filename")
parser.add_argument(
"--params_file",
type=str,
required=False,
help="paddle save inference parameter filename")
parser.add_argument(
"--onnx_file", type=str, required=False, help="onnx model filename")
parser.add_argument("--image_path", type=str, help="path to test image")
parser.add_argument("--benchmark", type=str2bool, default=False, help="Is benchmark mode")
# params for paddle inferece engine
parser.add_argument("--use_gpu", type=str2bool, default=True)
parser.add_argument("--ir_optim", type=str2bool, default=True)
parser.add_argument("--use_tensorrt", type=str2bool, default=False)
parser.add_argument("--min_subgraph_size", type=int, default=15)
parser.add_argument("--max_batch_size", type=int, default=1)
parser.add_argument("--precision", type=str, default="fp32")
parser.add_argument("--gpu_mem", type=int, default=500)
parser.add_argument("--enable_mkldnn", type=str2bool, default=False)
parser.add_argument("--cpu_threads", type=int, default=10)
args = parser.parse_args()
return args
def get_infer_gpuid():
cmd = "nvidia-smi"
res = os.popen(cmd).readlines()
if len(res) == 0:
return None
cmd = "env | grep CUDA_VISIBLE_DEVICES"
env_cuda = os.popen(cmd).readlines()
if len(env_cuda) == 0:
return 0
else:
gpu_id = env_cuda[0].strip().split("=")[1]
return int(gpu_id[0])
def init_paddle_inference_config(args):
import paddle.inference as paddle_infer
config = paddle_infer.Config(args.model_file, args.params_file)
if hasattr(args, 'precision'):
if args.precision == "fp16" and args.use_tensorrt:
precision = paddle_infer.PrecisionType.Half
elif args.precision == "int8":
precision = paddle_infer.PrecisionType.Int8
else:
precision = paddle_infer.PrecisionType.Float32
else:
precision = paddle_infer.PrecisionType.Float32
if args.use_gpu:
gpu_id = get_infer_gpuid()
if gpu_id is None:
raise ValueError(
"Not found GPU in current device. Please check your device or set args.use_gpu as False"
)
config.enable_use_gpu(args.gpu_mem, 0)
if args.use_tensorrt:
config.enable_tensorrt_engine(
precision_mode=precision,
max_batch_size=args.max_batch_size,
min_subgraph_size=args.min_subgraph_size)
# skip the minmum trt subgraph
min_input_shape = {"x": [1, 3, 10, 10]}
max_input_shape = {"x": [1, 3, 1000, 1000]}
opt_input_shape = {"x": [1, 3, 112, 112]}
config.set_trt_dynamic_shape_info(min_input_shape, max_input_shape,
opt_input_shape)
else:
config.disable_gpu()
cpu_threads = args.cpu_threads if hasattr(args, "cpu_threads") else 10
config.set_cpu_math_library_num_threads(cpu_threads)
if args.enable_mkldnn:
# cache 10 different shapes for mkldnn to avoid memory leak
config.enable_mkldnn()
config.set_mkldnn_cache_capacity(10)
if args.precision == "fp16":
config.enable_mkldnn_bfloat16()
return config
def get_image_file_list(img_file):
import imghdr
imgs_lists = []
if img_file is None or not os.path.exists(img_file):
raise Exception("not found any img file in {}".format(img_file))
img_end = {'jpg', 'bmp', 'png', 'jpeg', 'rgb', 'tif', 'tiff', 'gif', 'GIF'}
if os.path.isfile(img_file) and imghdr.what(img_file) in img_end:
imgs_lists.append(img_file)
elif os.path.isdir(img_file):
for single_file in os.listdir(img_file):
file_path = os.path.join(img_file, single_file)
if os.path.isfile(file_path) and imghdr.what(file_path) in img_end:
imgs_lists.append(file_path)
if len(imgs_lists) == 0:
raise Exception("not found any img file in {}".format(img_file))
imgs_lists = sorted(imgs_lists)
return imgs_lists
def paddle_inference(args):
import paddle.inference as paddle_infer
config = init_paddle_inference_config(args)
predictor = paddle_infer.create_predictor(config)
input_names = predictor.get_input_names()
input_handle = predictor.get_input_handle(input_names[0])
if args.benchmark:
import auto_log
pid = os.getpid()
autolog = auto_log.AutoLogger(
model_name="det",
model_precision='fp32',
batch_size=1,
data_shape="dynamic",
save_path="./output/auto_log.log",
inference_config=config,
pids=pid,
process_name=None,
gpu_ids=0,
time_keys=[
'preprocess_time', 'inference_time','postprocess_time'
],
warmup=0)
img = np.random.uniform(0, 255, [1, 3, 112,112]).astype(np.float32)
input_handle.copy_from_cpu(img)
for i in range(10):
predictor.run()
img_list = get_image_file_list(args.image_path)
for img_path in img_list:
img = cv2.imread(img_path)
st = time.time()
if args.benchmark:
autolog.times.start()
# normalize to mean 0.5, std 0.5
img = (img - 127.5) * 0.00784313725
# BGR2RGB
img = img[:, :, ::-1]
img = img.transpose((2, 0, 1))
img = np.expand_dims(img, 0)
img = img.astype('float32')
if args.benchmark:
autolog.times.stamp()
input_handle.copy_from_cpu(img)
predictor.run()
output_names = predictor.get_output_names()
output_handle = predictor.get_output_handle(output_names[0])
output_data = output_handle.copy_to_cpu()
if args.benchmark:
autolog.times.stamp()
autolog.times.end(stamp=True)
print('{}\t{}'.format(img_path,json.dumps(output_data.tolist())))
print('paddle inference result: ', output_data.shape)
if args.benchmark:
autolog.report()
def onnx_inference(args):
import onnxruntime
ort_sess = onnxruntime.InferenceSession(args.onnx_file)
img = cv2.imread(args.image_path)
# normalize to mean 0.5, std 0.5
img = (img - 127.5) * 0.00784313725
# BGR2RGB
img = img[:, :, ::-1]
img = img.transpose((2, 0, 1))
img = np.expand_dims(img, 0)
img = img.astype('float32')
ort_inputs = {ort_sess.get_inputs()[0].name: img}
ort_outs = ort_sess.run(None, ort_inputs)
print('onnx inference result: ', ort_outs[0].shape)
if __name__ == '__main__':
args = parse_args()
assert args.export_type in ['paddle', 'onnx']
if args.export_type == 'onnx':
assert os.path.exists(args.onnx_file)
onnx_inference(args)
else:
assert os.path.exists(args.model_file)
assert os.path.exists(args.params_file)
paddle_inference(args)