Files
insightface/deploy/benchmark.py
2020-11-06 13:59:21 +08:00

40 lines
1.3 KiB
Python

import face_embedding
import argparse
import cv2
import numpy as np
import datetime
parser = argparse.ArgumentParser(description='face model test')
# general
parser.add_argument('--image-size', default='112,112', help='')
parser.add_argument('--model',
default='../models/model-r34-amf/model,0',
help='path to load model.')
parser.add_argument('--gpu', default=0, type=int, help='gpu id')
parser.add_argument('--det',
default=2,
type=int,
help='mtcnn option, 2 means using R+O, else using O')
parser.add_argument('--flip',
default=0,
type=int,
help='whether do lr flip aug')
parser.add_argument('--threshold',
default=1.24,
type=float,
help='ver dist threshold')
args = parser.parse_args()
model = face_embedding.FaceModel(args)
#img = cv2.imread('/raid5data/dplearn/lfw/Jude_Law/Jude_Law_0001.jpg')
img = cv2.imread(
'/raid5data/dplearn/megaface/facescrubr/112x112/Tom_Hanks/Tom_Hanks_54745.png'
)
time_now = datetime.datetime.now()
for i in range(3000):
f1 = model.get_feature(img)
time_now2 = datetime.datetime.now()
diff = time_now2 - time_now
print(diff.total_seconds() / 3000)