mirror of
https://github.com/deepinsight/insightface.git
synced 2025-12-30 08:02:27 +00:00
160 lines
5.6 KiB
Python
160 lines
5.6 KiB
Python
import cv2
|
|
import numpy as np
|
|
import os
|
|
import mxnet as mx
|
|
from skimage import transform as trans
|
|
import insightface
|
|
|
|
|
|
def square_crop(im, S):
|
|
if im.shape[0] > im.shape[1]:
|
|
height = S
|
|
width = int(float(im.shape[1]) / im.shape[0] * S)
|
|
scale = float(S) / im.shape[0]
|
|
else:
|
|
width = S
|
|
height = int(float(im.shape[0]) / im.shape[1] * S)
|
|
scale = float(S) / im.shape[1]
|
|
resized_im = cv2.resize(im, (width, height))
|
|
det_im = np.zeros((S, S, 3), dtype=np.uint8)
|
|
det_im[:resized_im.shape[0], :resized_im.shape[1], :] = resized_im
|
|
return det_im, scale
|
|
|
|
|
|
def transform(data, center, output_size, scale, rotation):
|
|
scale_ratio = scale
|
|
rot = float(rotation) * np.pi / 180.0
|
|
#translation = (output_size/2-center[0]*scale_ratio, output_size/2-center[1]*scale_ratio)
|
|
t1 = trans.SimilarityTransform(scale=scale_ratio)
|
|
cx = center[0] * scale_ratio
|
|
cy = center[1] * scale_ratio
|
|
t2 = trans.SimilarityTransform(translation=(-1 * cx, -1 * cy))
|
|
t3 = trans.SimilarityTransform(rotation=rot)
|
|
t4 = trans.SimilarityTransform(translation=(output_size / 2,
|
|
output_size / 2))
|
|
t = t1 + t2 + t3 + t4
|
|
M = t.params[0:2]
|
|
cropped = cv2.warpAffine(data,
|
|
M, (output_size, output_size),
|
|
borderValue=0.0)
|
|
return cropped, M
|
|
|
|
|
|
def trans_points2d(pts, M):
|
|
new_pts = np.zeros(shape=pts.shape, dtype=np.float32)
|
|
for i in range(pts.shape[0]):
|
|
pt = pts[i]
|
|
new_pt = np.array([pt[0], pt[1], 1.], dtype=np.float32)
|
|
new_pt = np.dot(M, new_pt)
|
|
#print('new_pt', new_pt.shape, new_pt)
|
|
new_pts[i] = new_pt[0:2]
|
|
|
|
return new_pts
|
|
|
|
|
|
def trans_points3d(pts, M):
|
|
scale = np.sqrt(M[0][0] * M[0][0] + M[0][1] * M[0][1])
|
|
#print(scale)
|
|
new_pts = np.zeros(shape=pts.shape, dtype=np.float32)
|
|
for i in range(pts.shape[0]):
|
|
pt = pts[i]
|
|
new_pt = np.array([pt[0], pt[1], 1.], dtype=np.float32)
|
|
new_pt = np.dot(M, new_pt)
|
|
#print('new_pt', new_pt.shape, new_pt)
|
|
new_pts[i][0:2] = new_pt[0:2]
|
|
new_pts[i][2] = pts[i][2] * scale
|
|
|
|
return new_pts
|
|
|
|
|
|
def trans_points(pts, M):
|
|
if pts.shape[1] == 2:
|
|
return trans_points2d(pts, M)
|
|
else:
|
|
return trans_points3d(pts, M)
|
|
|
|
|
|
class Handler:
|
|
def __init__(self, prefix, epoch, im_size=192, det_size=224, ctx_id=0):
|
|
print('loading', prefix, epoch)
|
|
if ctx_id >= 0:
|
|
ctx = mx.gpu(ctx_id)
|
|
else:
|
|
ctx = mx.cpu()
|
|
image_size = (im_size, im_size)
|
|
self.detector = insightface.model_zoo.get_model(
|
|
'retinaface_mnet025_v2') #can replace with your own face detector
|
|
#self.detector = insightface.model_zoo.get_model('retinaface_r50_v1')
|
|
self.detector.prepare(ctx_id=ctx_id)
|
|
self.det_size = det_size
|
|
sym, arg_params, aux_params = mx.model.load_checkpoint(prefix, epoch)
|
|
all_layers = sym.get_internals()
|
|
sym = all_layers['fc1_output']
|
|
self.image_size = image_size
|
|
model = mx.mod.Module(symbol=sym, context=ctx, label_names=None)
|
|
model.bind(for_training=False,
|
|
data_shapes=[('data', (1, 3, image_size[0], image_size[1]))
|
|
])
|
|
model.set_params(arg_params, aux_params)
|
|
self.model = model
|
|
self.image_size = image_size
|
|
|
|
def get(self, img, get_all=False):
|
|
out = []
|
|
det_im, det_scale = square_crop(img, self.det_size)
|
|
bboxes, _ = self.detector.detect(det_im)
|
|
if bboxes.shape[0] == 0:
|
|
return out
|
|
bboxes /= det_scale
|
|
if not get_all:
|
|
areas = []
|
|
for i in range(bboxes.shape[0]):
|
|
x = bboxes[i]
|
|
area = (x[2] - x[0]) * (x[3] - x[1])
|
|
areas.append(area)
|
|
m = np.argsort(areas)[-1]
|
|
bboxes = bboxes[m:m + 1]
|
|
for i in range(bboxes.shape[0]):
|
|
bbox = bboxes[i]
|
|
input_blob = np.zeros((1, 3) + self.image_size, dtype=np.float32)
|
|
w, h = (bbox[2] - bbox[0]), (bbox[3] - bbox[1])
|
|
center = (bbox[2] + bbox[0]) / 2, (bbox[3] + bbox[1]) / 2
|
|
rotate = 0
|
|
_scale = self.image_size[0] * 2 / 3.0 / max(w, h)
|
|
rimg, M = transform(img, center, self.image_size[0], _scale,
|
|
rotate)
|
|
rimg = cv2.cvtColor(rimg, cv2.COLOR_BGR2RGB)
|
|
rimg = np.transpose(rimg, (2, 0, 1)) #3*112*112, RGB
|
|
input_blob[0] = rimg
|
|
data = mx.nd.array(input_blob)
|
|
db = mx.io.DataBatch(data=(data, ))
|
|
self.model.forward(db, is_train=False)
|
|
pred = self.model.get_outputs()[-1].asnumpy()[0]
|
|
if pred.shape[0] >= 3000:
|
|
pred = pred.reshape((-1, 3))
|
|
else:
|
|
pred = pred.reshape((-1, 2))
|
|
pred[:, 0:2] += 1
|
|
pred[:, 0:2] *= (self.image_size[0] // 2)
|
|
if pred.shape[1] == 3:
|
|
pred[:, 2] *= (self.image_size[0] // 2)
|
|
|
|
IM = cv2.invertAffineTransform(M)
|
|
pred = trans_points(pred, IM)
|
|
out.append(pred)
|
|
return out
|
|
|
|
|
|
if __name__ == '__main__':
|
|
handler = Handler('./model/2d106det', 0, ctx_id=7, det_size=640)
|
|
im = cv2.imread('../../sample-images/t1.jpg')
|
|
tim = im.copy()
|
|
preds = handler.get(im, get_all=True)
|
|
color = (200, 160, 75)
|
|
for pred in preds:
|
|
pred = np.round(pred).astype(np.int)
|
|
for i in range(pred.shape[0]):
|
|
p = tuple(pred[i])
|
|
cv2.circle(tim, p, 1, color, 1, cv2.LINE_AA)
|
|
cv2.imwrite('./test_out.jpg', tim)
|