Files
insightface/detection/retinaface_anticov/test.py
2021-06-19 23:37:10 +08:00

67 lines
1.8 KiB
Python

import cv2
import sys
import numpy as np
import datetime
import os
import glob
from retinaface_cov import RetinaFaceCoV
thresh = 0.8
mask_thresh = 0.2
scales = [640, 1080]
count = 1
gpuid = 0
#detector = RetinaFaceCoV('./model/mnet_cov1', 0, gpuid, 'net3')
detector = RetinaFaceCoV('./model/mnet_cov2', 0, gpuid, 'net3l')
img = cv2.imread('n1.jpg')
print(img.shape)
im_shape = img.shape
target_size = scales[0]
max_size = scales[1]
im_size_min = np.min(im_shape[0:2])
im_size_max = np.max(im_shape[0:2])
#im_scale = 1.0
#if im_size_min>target_size or im_size_max>max_size:
im_scale = float(target_size) / float(im_size_min)
# prevent bigger axis from being more than max_size:
if np.round(im_scale * im_size_max) > max_size:
im_scale = float(max_size) / float(im_size_max)
print('im_scale', im_scale)
scales = [im_scale]
flip = False
for c in range(count):
faces, landmarks = detector.detect(img,
thresh,
scales=scales,
do_flip=flip)
if faces is not None:
print('find', faces.shape[0], 'faces')
for i in range(faces.shape[0]):
#print('score', faces[i][4])
face = faces[i]
box = face[0:4].astype(np.int)
mask = face[5]
print(i, box, mask)
#color = (255,0,0)
if mask >= mask_thresh:
color = (0, 0, 255)
else:
color = (0, 255, 0)
cv2.rectangle(img, (box[0], box[1]), (box[2], box[3]), color, 2)
landmark5 = landmarks[i].astype(np.int)
#print(landmark.shape)
for l in range(landmark5.shape[0]):
color = (255, 0, 0)
cv2.circle(img, (landmark5[l][0], landmark5[l][1]), 1, color, 2)
filename = './cov_test.jpg'
print('writing', filename)
cv2.imwrite(filename, img)