mirror of
https://github.com/deepinsight/insightface.git
synced 2025-12-30 08:02:27 +00:00
381 lines
13 KiB
Python
381 lines
13 KiB
Python
# coding: utf-8
|
||
|
||
import os
|
||
import numpy as np
|
||
#import cPickle
|
||
import pickle
|
||
import pandas as pd
|
||
import matplotlib
|
||
matplotlib.use('Agg')
|
||
import matplotlib.pyplot as plt
|
||
import timeit
|
||
import sklearn
|
||
import argparse
|
||
from sklearn.metrics import roc_curve, auc
|
||
from sklearn import preprocessing
|
||
import cv2
|
||
import sys
|
||
import glob
|
||
sys.path.append('./recognition')
|
||
from embedding import Embedding
|
||
from menpo.visualize import print_progress
|
||
from menpo.visualize.viewmatplotlib import sample_colours_from_colourmap
|
||
from prettytable import PrettyTable
|
||
from pathlib import Path
|
||
import warnings
|
||
warnings.filterwarnings("ignore")
|
||
|
||
parser = argparse.ArgumentParser(description='do ijb test')
|
||
# general
|
||
parser.add_argument('--model-prefix', default='', help='path to load model.')
|
||
parser.add_argument('--model-epoch', default=1, type=int, help='')
|
||
parser.add_argument('--gpu', default=7, type=int, help='gpu id')
|
||
parser.add_argument('--batch-size', default=32, type=int, help='')
|
||
parser.add_argument('--job', default='insightface', type=str, help='job name')
|
||
parser.add_argument('--target',
|
||
default='IJBC',
|
||
type=str,
|
||
help='target, set to IJBC or IJBB')
|
||
args = parser.parse_args()
|
||
|
||
target = args.target
|
||
model_path = args.model_prefix
|
||
gpu_id = args.gpu
|
||
epoch = args.model_epoch
|
||
use_norm_score = True # if Ture, TestMode(N1)
|
||
use_detector_score = True # if Ture, TestMode(D1)
|
||
use_flip_test = True # if Ture, TestMode(F1)
|
||
job = args.job
|
||
|
||
|
||
def read_template_media_list(path):
|
||
#ijb_meta = np.loadtxt(path, dtype=str)
|
||
ijb_meta = pd.read_csv(path, sep=' ', header=None).values
|
||
templates = ijb_meta[:, 1].astype(np.int)
|
||
medias = ijb_meta[:, 2].astype(np.int)
|
||
return templates, medias
|
||
|
||
|
||
# In[ ]:
|
||
|
||
|
||
def read_template_pair_list(path):
|
||
#pairs = np.loadtxt(path, dtype=str)
|
||
pairs = pd.read_csv(path, sep=' ', header=None).values
|
||
#print(pairs.shape)
|
||
#print(pairs[:, 0].astype(np.int))
|
||
t1 = pairs[:, 0].astype(np.int)
|
||
t2 = pairs[:, 1].astype(np.int)
|
||
label = pairs[:, 2].astype(np.int)
|
||
return t1, t2, label
|
||
|
||
|
||
# In[ ]:
|
||
|
||
|
||
def read_image_feature(path):
|
||
with open(path, 'rb') as fid:
|
||
img_feats = pickle.load(fid)
|
||
return img_feats
|
||
|
||
|
||
# In[ ]:
|
||
|
||
|
||
def get_image_feature(img_path, img_list_path, model_path, epoch, gpu_id):
|
||
img_list = open(img_list_path)
|
||
embedding = Embedding(model_path, epoch, gpu_id)
|
||
files = img_list.readlines()
|
||
print('files:', len(files))
|
||
faceness_scores = []
|
||
img_feats = []
|
||
for img_index, each_line in enumerate(files):
|
||
if img_index % 500 == 0:
|
||
print('processing', img_index)
|
||
name_lmk_score = each_line.strip().split(' ')
|
||
img_name = os.path.join(img_path, name_lmk_score[0])
|
||
img = cv2.imread(img_name)
|
||
lmk = np.array([float(x) for x in name_lmk_score[1:-1]],
|
||
dtype=np.float32)
|
||
lmk = lmk.reshape((5, 2))
|
||
img_feats.append(embedding.get(img, lmk))
|
||
faceness_scores.append(name_lmk_score[-1])
|
||
img_feats = np.array(img_feats).astype(np.float32)
|
||
faceness_scores = np.array(faceness_scores).astype(np.float32)
|
||
|
||
#img_feats = np.ones( (len(files), 1024), dtype=np.float32) * 0.01
|
||
#faceness_scores = np.ones( (len(files), ), dtype=np.float32 )
|
||
return img_feats, faceness_scores
|
||
|
||
|
||
# In[ ]:
|
||
|
||
|
||
def image2template_feature(img_feats=None, templates=None, medias=None):
|
||
# ==========================================================
|
||
# 1. face image feature l2 normalization. img_feats:[number_image x feats_dim]
|
||
# 2. compute media feature.
|
||
# 3. compute template feature.
|
||
# ==========================================================
|
||
unique_templates = np.unique(templates)
|
||
template_feats = np.zeros((len(unique_templates), img_feats.shape[1]))
|
||
|
||
for count_template, uqt in enumerate(unique_templates):
|
||
(ind_t, ) = np.where(templates == uqt)
|
||
face_norm_feats = img_feats[ind_t]
|
||
face_medias = medias[ind_t]
|
||
unique_medias, unique_media_counts = np.unique(face_medias,
|
||
return_counts=True)
|
||
media_norm_feats = []
|
||
for u, ct in zip(unique_medias, unique_media_counts):
|
||
(ind_m, ) = np.where(face_medias == u)
|
||
if ct == 1:
|
||
media_norm_feats += [face_norm_feats[ind_m]]
|
||
else: # image features from the same video will be aggregated into one feature
|
||
media_norm_feats += [
|
||
np.mean(face_norm_feats[ind_m], axis=0, keepdims=True)
|
||
]
|
||
media_norm_feats = np.array(media_norm_feats)
|
||
# media_norm_feats = media_norm_feats / np.sqrt(np.sum(media_norm_feats ** 2, -1, keepdims=True))
|
||
template_feats[count_template] = np.sum(media_norm_feats, axis=0)
|
||
if count_template % 2000 == 0:
|
||
print('Finish Calculating {} template features.'.format(
|
||
count_template))
|
||
#template_norm_feats = template_feats / np.sqrt(np.sum(template_feats ** 2, -1, keepdims=True))
|
||
template_norm_feats = sklearn.preprocessing.normalize(template_feats)
|
||
#print(template_norm_feats.shape)
|
||
return template_norm_feats, unique_templates
|
||
|
||
|
||
# In[ ]:
|
||
|
||
|
||
def verification(template_norm_feats=None,
|
||
unique_templates=None,
|
||
p1=None,
|
||
p2=None):
|
||
# ==========================================================
|
||
# Compute set-to-set Similarity Score.
|
||
# ==========================================================
|
||
template2id = np.zeros((max(unique_templates) + 1, 1), dtype=int)
|
||
for count_template, uqt in enumerate(unique_templates):
|
||
template2id[uqt] = count_template
|
||
|
||
score = np.zeros((len(p1), )) # save cosine distance between pairs
|
||
|
||
total_pairs = np.array(range(len(p1)))
|
||
batchsize = 100000 # small batchsize instead of all pairs in one batch due to the memory limiation
|
||
sublists = [
|
||
total_pairs[i:i + batchsize] for i in range(0, len(p1), batchsize)
|
||
]
|
||
total_sublists = len(sublists)
|
||
for c, s in enumerate(sublists):
|
||
feat1 = template_norm_feats[template2id[p1[s]]]
|
||
feat2 = template_norm_feats[template2id[p2[s]]]
|
||
similarity_score = np.sum(feat1 * feat2, -1)
|
||
score[s] = similarity_score.flatten()
|
||
if c % 10 == 0:
|
||
print('Finish {}/{} pairs.'.format(c, total_sublists))
|
||
return score
|
||
|
||
|
||
# In[ ]:
|
||
def verification2(template_norm_feats=None,
|
||
unique_templates=None,
|
||
p1=None,
|
||
p2=None):
|
||
template2id = np.zeros((max(unique_templates) + 1, 1), dtype=int)
|
||
for count_template, uqt in enumerate(unique_templates):
|
||
template2id[uqt] = count_template
|
||
score = np.zeros((len(p1), )) # save cosine distance between pairs
|
||
total_pairs = np.array(range(len(p1)))
|
||
batchsize = 100000 # small batchsize instead of all pairs in one batch due to the memory limiation
|
||
sublists = [
|
||
total_pairs[i:i + batchsize] for i in range(0, len(p1), batchsize)
|
||
]
|
||
total_sublists = len(sublists)
|
||
for c, s in enumerate(sublists):
|
||
feat1 = template_norm_feats[template2id[p1[s]]]
|
||
feat2 = template_norm_feats[template2id[p2[s]]]
|
||
similarity_score = np.sum(feat1 * feat2, -1)
|
||
score[s] = similarity_score.flatten()
|
||
if c % 10 == 0:
|
||
print('Finish {}/{} pairs.'.format(c, total_sublists))
|
||
return score
|
||
|
||
|
||
def read_score(path):
|
||
with open(path, 'rb') as fid:
|
||
img_feats = pickle.load(fid)
|
||
return img_feats
|
||
|
||
|
||
# # Step1: Load Meta Data
|
||
|
||
# In[ ]:
|
||
|
||
assert target == 'IJBC' or target == 'IJBB'
|
||
|
||
# =============================================================
|
||
# load image and template relationships for template feature embedding
|
||
# tid --> template id, mid --> media id
|
||
# format:
|
||
# image_name tid mid
|
||
# =============================================================
|
||
start = timeit.default_timer()
|
||
templates, medias = read_template_media_list(
|
||
os.path.join('%s/meta' % target, '%s_face_tid_mid.txt' % target.lower()))
|
||
stop = timeit.default_timer()
|
||
print('Time: %.2f s. ' % (stop - start))
|
||
|
||
# In[ ]:
|
||
|
||
# =============================================================
|
||
# load template pairs for template-to-template verification
|
||
# tid : template id, label : 1/0
|
||
# format:
|
||
# tid_1 tid_2 label
|
||
# =============================================================
|
||
start = timeit.default_timer()
|
||
p1, p2, label = read_template_pair_list(
|
||
os.path.join('%s/meta' % target,
|
||
'%s_template_pair_label.txt' % target.lower()))
|
||
stop = timeit.default_timer()
|
||
print('Time: %.2f s. ' % (stop - start))
|
||
|
||
# # Step 2: Get Image Features
|
||
|
||
# In[ ]:
|
||
|
||
# =============================================================
|
||
# load image features
|
||
# format:
|
||
# img_feats: [image_num x feats_dim] (227630, 512)
|
||
# =============================================================
|
||
start = timeit.default_timer()
|
||
img_path = './%s/loose_crop' % target
|
||
img_list_path = './%s/meta/%s_name_5pts_score.txt' % (target, target.lower())
|
||
img_feats, faceness_scores = get_image_feature(img_path, img_list_path,
|
||
model_path, epoch, gpu_id)
|
||
stop = timeit.default_timer()
|
||
print('Time: %.2f s. ' % (stop - start))
|
||
print('Feature Shape: ({} , {}) .'.format(img_feats.shape[0],
|
||
img_feats.shape[1]))
|
||
|
||
# # Step3: Get Template Features
|
||
|
||
# In[ ]:
|
||
|
||
# =============================================================
|
||
# compute template features from image features.
|
||
# =============================================================
|
||
start = timeit.default_timer()
|
||
# ==========================================================
|
||
# Norm feature before aggregation into template feature?
|
||
# Feature norm from embedding network and faceness score are able to decrease weights for noise samples (not face).
|
||
# ==========================================================
|
||
# 1. FaceScore (Feature Norm)
|
||
# 2. FaceScore (Detector)
|
||
|
||
if use_flip_test:
|
||
# concat --- F1
|
||
#img_input_feats = img_feats
|
||
# add --- F2
|
||
img_input_feats = img_feats[:, 0:img_feats.shape[1] //
|
||
2] + img_feats[:, img_feats.shape[1] // 2:]
|
||
else:
|
||
img_input_feats = img_feats[:, 0:img_feats.shape[1] // 2]
|
||
|
||
if use_norm_score:
|
||
img_input_feats = img_input_feats
|
||
else:
|
||
# normalise features to remove norm information
|
||
img_input_feats = img_input_feats / np.sqrt(
|
||
np.sum(img_input_feats**2, -1, keepdims=True))
|
||
|
||
if use_detector_score:
|
||
print(img_input_feats.shape, faceness_scores.shape)
|
||
#img_input_feats = img_input_feats * np.matlib.repmat(faceness_scores[:,np.newaxis], 1, img_input_feats.shape[1])
|
||
img_input_feats = img_input_feats * faceness_scores[:, np.newaxis]
|
||
else:
|
||
img_input_feats = img_input_feats
|
||
|
||
template_norm_feats, unique_templates = image2template_feature(
|
||
img_input_feats, templates, medias)
|
||
stop = timeit.default_timer()
|
||
print('Time: %.2f s. ' % (stop - start))
|
||
|
||
# # Step 4: Get Template Similarity Scores
|
||
|
||
# In[ ]:
|
||
|
||
# =============================================================
|
||
# compute verification scores between template pairs.
|
||
# =============================================================
|
||
start = timeit.default_timer()
|
||
score = verification(template_norm_feats, unique_templates, p1, p2)
|
||
stop = timeit.default_timer()
|
||
print('Time: %.2f s. ' % (stop - start))
|
||
|
||
# In[ ]:
|
||
|
||
save_path = './%s_result' % target
|
||
|
||
if not os.path.exists(save_path):
|
||
os.makedirs(save_path)
|
||
|
||
score_save_file = os.path.join(save_path, "%s.npy" % job)
|
||
np.save(score_save_file, score)
|
||
|
||
# # Step 5: Get ROC Curves and TPR@FPR Table
|
||
|
||
# In[ ]:
|
||
|
||
files = [score_save_file]
|
||
methods = []
|
||
scores = []
|
||
for file in files:
|
||
methods.append(Path(file).stem)
|
||
scores.append(np.load(file))
|
||
|
||
methods = np.array(methods)
|
||
scores = dict(zip(methods, scores))
|
||
colours = dict(
|
||
zip(methods, sample_colours_from_colourmap(methods.shape[0], 'Set2')))
|
||
#x_labels = [1/(10**x) for x in np.linspace(6, 0, 6)]
|
||
x_labels = [10**-6, 10**-5, 10**-4, 10**-3, 10**-2, 10**-1]
|
||
tpr_fpr_table = PrettyTable(['Methods'] + [str(x) for x in x_labels])
|
||
fig = plt.figure()
|
||
for method in methods:
|
||
fpr, tpr, _ = roc_curve(label, scores[method])
|
||
roc_auc = auc(fpr, tpr)
|
||
fpr = np.flipud(fpr)
|
||
tpr = np.flipud(tpr) # select largest tpr at same fpr
|
||
plt.plot(fpr,
|
||
tpr,
|
||
color=colours[method],
|
||
lw=1,
|
||
label=('[%s (AUC = %0.4f %%)]' %
|
||
(method.split('-')[-1], roc_auc * 100)))
|
||
tpr_fpr_row = []
|
||
tpr_fpr_row.append("%s-%s" % (method, target))
|
||
for fpr_iter in np.arange(len(x_labels)):
|
||
_, min_index = min(
|
||
list(zip(abs(fpr - x_labels[fpr_iter]), range(len(fpr)))))
|
||
#tpr_fpr_row.append('%.4f' % tpr[min_index])
|
||
tpr_fpr_row.append('%.2f' % (tpr[min_index] * 100))
|
||
tpr_fpr_table.add_row(tpr_fpr_row)
|
||
plt.xlim([10**-6, 0.1])
|
||
plt.ylim([0.3, 1.0])
|
||
plt.grid(linestyle='--', linewidth=1)
|
||
plt.xticks(x_labels)
|
||
plt.yticks(np.linspace(0.3, 1.0, 8, endpoint=True))
|
||
plt.xscale('log')
|
||
plt.xlabel('False Positive Rate')
|
||
plt.ylabel('True Positive Rate')
|
||
plt.title('ROC on IJB')
|
||
plt.legend(loc="lower right")
|
||
#plt.show()
|
||
fig.savefig(os.path.join(save_path, '%s.pdf' % job))
|
||
print(tpr_fpr_table)
|