mirror of
https://github.com/deepinsight/insightface.git
synced 2025-12-30 08:02:27 +00:00
35 lines
909 B
Python
35 lines
909 B
Python
import argparse
|
|
import cv2
|
|
import sys
|
|
import numpy as np
|
|
import insightface
|
|
from insightface.app import FaceAnalysis
|
|
from insightface.data import get_image as ins_get_image
|
|
|
|
assert insightface.__version__>='0.3'
|
|
|
|
parser = argparse.ArgumentParser(description='insightface app test')
|
|
# general
|
|
parser.add_argument('--ctx', default=0, type=int, help='ctx id, <0 means using cpu')
|
|
parser.add_argument('--det-size', default=640, type=int, help='detection size')
|
|
args = parser.parse_args()
|
|
|
|
app = FaceAnalysis()
|
|
app.prepare(ctx_id=args.ctx, det_size=(args.det_size,args.det_size))
|
|
|
|
img = ins_get_image('t1')
|
|
faces = app.get(img)
|
|
assert len(faces)==6
|
|
rimg = app.draw_on(img, faces)
|
|
cv2.imwrite("./t1_output.jpg", rimg)
|
|
|
|
# then print all-to-all face similarity
|
|
feats = []
|
|
for face in faces:
|
|
feats.append(face.normed_embedding)
|
|
feats = np.array(feats, dtype=np.float32)
|
|
sims = np.dot(feats, feats.T)
|
|
print(sims)
|
|
|
|
|