mirror of
https://github.com/deepinsight/insightface.git
synced 2025-12-30 08:02:27 +00:00
276 lines
9.9 KiB
Python
276 lines
9.9 KiB
Python
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import datetime
|
|
import os
|
|
import pickle
|
|
from io import BytesIO
|
|
from PIL import Image
|
|
import cv2
|
|
import numpy as np
|
|
import sklearn
|
|
import paddle
|
|
from scipy import interpolate
|
|
from sklearn.decomposition import PCA
|
|
from sklearn.model_selection import KFold
|
|
|
|
|
|
class LFold:
|
|
def __init__(self, n_splits=2, shuffle=False):
|
|
self.n_splits = n_splits
|
|
if self.n_splits > 1:
|
|
self.k_fold = KFold(n_splits=n_splits, shuffle=shuffle)
|
|
|
|
def split(self, indices):
|
|
if self.n_splits > 1:
|
|
return self.k_fold.split(indices)
|
|
else:
|
|
return [(indices, indices)]
|
|
|
|
|
|
def calculate_roc(thresholds,
|
|
embeddings1,
|
|
embeddings2,
|
|
actual_issame,
|
|
nrof_folds=10,
|
|
pca=0):
|
|
assert (embeddings1.shape[0] == embeddings2.shape[0])
|
|
assert (embeddings1.shape[1] == embeddings2.shape[1])
|
|
nrof_pairs = min(len(actual_issame), embeddings1.shape[0])
|
|
nrof_thresholds = len(thresholds)
|
|
k_fold = LFold(n_splits=nrof_folds, shuffle=False)
|
|
|
|
tprs = np.zeros((nrof_folds, nrof_thresholds))
|
|
fprs = np.zeros((nrof_folds, nrof_thresholds))
|
|
accuracy = np.zeros((nrof_folds))
|
|
indices = np.arange(nrof_pairs)
|
|
|
|
if pca == 0:
|
|
diff = np.subtract(embeddings1, embeddings2)
|
|
dist = np.sum(np.square(diff), 1)
|
|
|
|
for fold_idx, (train_set, test_set) in enumerate(k_fold.split(indices)):
|
|
if pca > 0:
|
|
print('doing pca on', fold_idx)
|
|
embed1_train = embeddings1[train_set]
|
|
embed2_train = embeddings2[train_set]
|
|
_embed_train = np.concatenate((embed1_train, embed2_train), axis=0)
|
|
pca_model = PCA(n_components=pca)
|
|
pca_model.fit(_embed_train)
|
|
embed1 = pca_model.transform(embeddings1)
|
|
embed2 = pca_model.transform(embeddings2)
|
|
embed1 = sklearn.preprocessing.normalize(embed1)
|
|
embed2 = sklearn.preprocessing.normalize(embed2)
|
|
diff = np.subtract(embed1, embed2)
|
|
dist = np.sum(np.square(diff), 1)
|
|
|
|
# Find the best threshold for the fold
|
|
acc_train = np.zeros((nrof_thresholds))
|
|
for threshold_idx, threshold in enumerate(thresholds):
|
|
_, _, acc_train[threshold_idx] = calculate_accuracy(
|
|
threshold, dist[train_set], actual_issame[train_set])
|
|
best_threshold_index = np.argmax(acc_train)
|
|
for threshold_idx, threshold in enumerate(thresholds):
|
|
tprs[fold_idx, threshold_idx], fprs[
|
|
fold_idx, threshold_idx], _ = calculate_accuracy(
|
|
threshold, dist[test_set], actual_issame[test_set])
|
|
_, _, accuracy[fold_idx] = calculate_accuracy(
|
|
thresholds[best_threshold_index], dist[test_set],
|
|
actual_issame[test_set])
|
|
|
|
tpr = np.mean(tprs, 0)
|
|
fpr = np.mean(fprs, 0)
|
|
return tpr, fpr, accuracy
|
|
|
|
|
|
def calculate_accuracy(threshold, dist, actual_issame):
|
|
predict_issame = np.less(dist, threshold)
|
|
tp = np.sum(np.logical_and(predict_issame, actual_issame))
|
|
fp = np.sum(np.logical_and(predict_issame, np.logical_not(actual_issame)))
|
|
tn = np.sum(
|
|
np.logical_and(
|
|
np.logical_not(predict_issame), np.logical_not(actual_issame)))
|
|
fn = np.sum(np.logical_and(np.logical_not(predict_issame), actual_issame))
|
|
|
|
tpr = 0 if (tp + fn == 0) else float(tp) / float(tp + fn)
|
|
fpr = 0 if (fp + tn == 0) else float(fp) / float(fp + tn)
|
|
acc = float(tp + tn) / dist.size
|
|
return tpr, fpr, acc
|
|
|
|
|
|
def calculate_val(thresholds,
|
|
embeddings1,
|
|
embeddings2,
|
|
actual_issame,
|
|
far_target,
|
|
nrof_folds=10):
|
|
assert (embeddings1.shape[0] == embeddings2.shape[0])
|
|
assert (embeddings1.shape[1] == embeddings2.shape[1])
|
|
nrof_pairs = min(len(actual_issame), embeddings1.shape[0])
|
|
nrof_thresholds = len(thresholds)
|
|
k_fold = LFold(n_splits=nrof_folds, shuffle=False)
|
|
|
|
val = np.zeros(nrof_folds)
|
|
far = np.zeros(nrof_folds)
|
|
|
|
diff = np.subtract(embeddings1, embeddings2)
|
|
dist = np.sum(np.square(diff), 1)
|
|
indices = np.arange(nrof_pairs)
|
|
|
|
for fold_idx, (train_set, test_set) in enumerate(k_fold.split(indices)):
|
|
|
|
# Find the threshold that gives FAR = far_target
|
|
far_train = np.zeros(nrof_thresholds)
|
|
for threshold_idx, threshold in enumerate(thresholds):
|
|
_, far_train[threshold_idx] = calculate_val_far(
|
|
threshold, dist[train_set], actual_issame[train_set])
|
|
if np.max(far_train) >= far_target:
|
|
f = interpolate.interp1d(far_train, thresholds, kind='slinear')
|
|
threshold = f(far_target)
|
|
else:
|
|
threshold = 0.0
|
|
|
|
val[fold_idx], far[fold_idx] = calculate_val_far(
|
|
threshold, dist[test_set], actual_issame[test_set])
|
|
|
|
val_mean = np.mean(val)
|
|
far_mean = np.mean(far)
|
|
val_std = np.std(val)
|
|
return val_mean, val_std, far_mean
|
|
|
|
|
|
def calculate_val_far(threshold, dist, actual_issame):
|
|
predict_issame = np.less(dist, threshold)
|
|
true_accept = np.sum(np.logical_and(predict_issame, actual_issame))
|
|
false_accept = np.sum(
|
|
np.logical_and(predict_issame, np.logical_not(actual_issame)))
|
|
n_same = np.sum(actual_issame)
|
|
n_diff = np.sum(np.logical_not(actual_issame))
|
|
# print(true_accept, false_accept)
|
|
# print(n_same, n_diff)
|
|
val = float(true_accept) / float(n_same)
|
|
far = float(false_accept) / float(n_diff)
|
|
return val, far
|
|
|
|
|
|
def evaluate(embeddings, actual_issame, nrof_folds=10, pca=0):
|
|
# Calculate evaluation metrics
|
|
thresholds = np.arange(0, 4, 0.01)
|
|
embeddings1 = embeddings[0::2]
|
|
embeddings2 = embeddings[1::2]
|
|
tpr, fpr, accuracy = calculate_roc(
|
|
thresholds,
|
|
embeddings1,
|
|
embeddings2,
|
|
np.asarray(actual_issame),
|
|
nrof_folds=nrof_folds,
|
|
pca=pca)
|
|
thresholds = np.arange(0, 4, 0.001)
|
|
val, val_std, far = calculate_val(
|
|
thresholds,
|
|
embeddings1,
|
|
embeddings2,
|
|
np.asarray(actual_issame),
|
|
1e-3,
|
|
nrof_folds=nrof_folds)
|
|
return tpr, fpr, accuracy, val, val_std, far
|
|
|
|
|
|
# 返回为numpy
|
|
@paddle.no_grad()
|
|
def load_bin(path, image_size):
|
|
try:
|
|
with open(path, 'rb') as f:
|
|
bins, issame_list = pickle.load(f) # py2
|
|
except UnicodeDecodeError as e:
|
|
with open(path, 'rb') as f:
|
|
bins, issame_list = pickle.load(f, encoding='bytes') # py3
|
|
data_list = []
|
|
for flip in [0, 1]:
|
|
data = np.empty(
|
|
shape=[len(issame_list) * 2, 3, image_size[0], image_size[1]],
|
|
dtype=np.float32)
|
|
data_list.append(data)
|
|
for idx in range(len(issame_list) * 2):
|
|
_bin = bins[idx]
|
|
img = np.array(Image.open(BytesIO(_bin)), dtype=np.float32)
|
|
if img.shape[1] != image_size[0]:
|
|
img = cv2.resize(img, (image_size[0], image_size[0]))
|
|
img = img.transpose(2, 0, 1)
|
|
for flip in [0, 1]:
|
|
if flip == 1:
|
|
img = np.flip(img, 2)
|
|
data_list[flip][idx][:] = img
|
|
if idx % 1000 == 0:
|
|
print('loading bin', idx)
|
|
print(data_list[0].shape)
|
|
return data_list, issame_list
|
|
|
|
|
|
@paddle.no_grad()
|
|
def test(data_set, backbone, batch_size, nfolds=10):
|
|
print('testing verification..')
|
|
data_list = data_set[0]
|
|
issame_list = data_set[1]
|
|
embeddings_list = []
|
|
time_consumed = 0.0
|
|
for i in range(len(data_list)):
|
|
data = data_list[i]
|
|
embeddings = None
|
|
ba = 0
|
|
while ba < data.shape[0]:
|
|
bb = min(ba + batch_size, data.shape[0])
|
|
count = bb - ba
|
|
_data = data[bb - batch_size:bb]
|
|
time0 = datetime.datetime.now()
|
|
img = ((_data / 255) - 0.5) / 0.5
|
|
# 将numpy转Tensor
|
|
img = paddle.to_tensor(img)
|
|
net_out: paddle.Tensor = backbone(img)
|
|
_embeddings = net_out.detach().cpu().numpy()
|
|
time_now = datetime.datetime.now()
|
|
diff = time_now - time0
|
|
time_consumed += diff.total_seconds()
|
|
if embeddings is None:
|
|
embeddings = np.zeros((data.shape[0], _embeddings.shape[1]))
|
|
embeddings[ba:bb, :] = _embeddings[(batch_size - count):, :]
|
|
ba = bb
|
|
embeddings_list.append(embeddings)
|
|
|
|
_xnorm = 0.0
|
|
_xnorm_cnt = 0
|
|
for embed in embeddings_list:
|
|
for i in range(embed.shape[0]):
|
|
_em = embed[i]
|
|
_norm = np.linalg.norm(_em)
|
|
_xnorm += _norm
|
|
_xnorm_cnt += 1
|
|
_xnorm /= _xnorm_cnt
|
|
|
|
embeddings = embeddings_list[0].copy()
|
|
try:
|
|
embeddings = sklearn.preprocessing.normalize(embeddings)
|
|
except:
|
|
print(embeddings)
|
|
acc1 = 0.0
|
|
std1 = 0.0
|
|
embeddings = embeddings_list[0] + embeddings_list[1]
|
|
embeddings = sklearn.preprocessing.normalize(embeddings)
|
|
print(embeddings.shape)
|
|
print('infer time', time_consumed)
|
|
_, _, accuracy, val, val_std, far = evaluate(
|
|
embeddings, issame_list, nrof_folds=nfolds)
|
|
acc2, std2 = np.mean(accuracy), np.std(accuracy)
|
|
return acc1, std1, acc2, std2, _xnorm, embeddings_list
|