Files
insightface/alignment/data.py
2019-06-05 16:54:48 +08:00

341 lines
12 KiB
Python

# pylint: skip-file
import mxnet as mx
import numpy as np
import sys, os
import random
import math
import scipy.misc
import cv2
import logging
import sklearn
import datetime
import img_helper
from mxnet.io import DataIter
from mxnet import ndarray as nd
from mxnet import io
from mxnet import recordio
from PIL import Image
from config import config
from skimage import transform as tf
class FaceSegIter(DataIter):
def __init__(self, batch_size,
per_batch_size = 0,
path_imgrec = None,
aug_level = 0,
force_mirror = False,
exf = 1,
use_coherent = 0,
args = None,
data_name = "data",
label_name = "softmax_label"):
self.aug_level = aug_level
self.force_mirror = force_mirror
self.use_coherent = use_coherent
self.exf = exf
self.batch_size = batch_size
self.per_batch_size = per_batch_size
self.data_name = data_name
self.label_name = label_name
assert path_imgrec
logging.info('loading recordio %s...',
path_imgrec)
path_imgidx = path_imgrec[0:-4]+".idx"
self.imgrec = mx.recordio.MXIndexedRecordIO(path_imgidx, path_imgrec, 'r') # pylint: disable=redefined-variable-type
self.oseq = list(self.imgrec.keys)
print('train size', len(self.oseq))
self.cur = 0
self.reset()
self.data_shape = (3, config.input_img_size, config.input_img_size)
self.num_classes = config.num_classes
self.input_img_size = config.input_img_size
#self.label_classes = self.num_classes
if config.losstype=='heatmap':
if aug_level>0:
self.output_label_size = config.output_label_size
self.label_shape = (self.num_classes, self.output_label_size, self.output_label_size)
else:
self.output_label_size = self.input_img_size
#self.label_shape = (self.num_classes, 2)
self.label_shape = (self.num_classes, self.output_label_size, self.output_label_size)
else:
if aug_level>0:
self.output_label_size = config.output_label_size
self.label_shape = (self.num_classes, 2)
else:
self.output_label_size = self.input_img_size
#self.label_shape = (self.num_classes, 2)
self.label_shape = (self.num_classes, 2)
self.provide_data = [(data_name, (batch_size,) + self.data_shape)]
self.provide_label = [(label_name, (batch_size,) + self.label_shape)]
self.img_num = 0
self.invalid_num = 0
self.mode = 1
self.vis = 0
self.stats = [0,0]
self.flip_order = [16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0,
26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 27, 28, 29, 30, 35, 34, 33, 32, 31,
45, 44, 43, 42, 47, 46, 39, 38, 37, 36, 41, 40, 54, 53, 52, 51, 50, 49, 48,
59, 58, 57, 56, 55, 64, 63, 62, 61, 60, 67, 66, 65]
#self.mirror_set = [
# (22,23),
# (21,24),
# (20,25),
# (19,26),
# (18,27),
# (40,43),
# (39,44),
# (38,45),
# (37,46),
# (42,47),
# (41,48),
# (33,35),
# (32,36),
# (51,53),
# (50,54),
# (62,64),
# (61,65),
# (49,55),
# (49,55),
# (68,66),
# (60,56),
# (59,57),
# (1,17),
# (2,16),
# (3,15),
# (4,14),
# (5,13),
# (6,12),
# (7,11),
# (8,10),
# ]
def get_data_shape(self):
return self.data_shape
#def get_label_shape(self):
# return self.label_shape
def get_shape_dict(self):
D = {}
for (k,v) in self.provide_data:
D[k] = v
for (k,v) in self.provide_label:
D[k] = v
return D
def get_label_names(self):
D = []
for (k,v) in self.provide_label:
D.append(k)
return D
def reset(self):
#print('reset')
if self.aug_level==0:
self.seq = self.oseq
else:
self.seq = []
for _ in range(self.exf):
_seq = self.oseq[:]
random.shuffle(_seq)
self.seq += _seq
print('train size after reset', len(self.seq))
self.cur = 0
def next_sample(self):
"""Helper function for reading in next sample."""
if self.cur >= len(self.seq):
raise StopIteration
idx = self.seq[self.cur]
self.cur += 1
s = self.imgrec.read_idx(idx)
header, img = recordio.unpack(s)
img = mx.image.imdecode(img).asnumpy()
hlabel = np.array(header.label).reshape( (self.num_classes,2) )
if not config.label_xfirst:
hlabel = hlabel[:,::-1] #convert to X/W first
annot = {'scale': config.base_scale}
#ul = np.array( (50000,50000), dtype=np.int32)
#br = np.array( (0,0), dtype=np.int32)
#for i in range(hlabel.shape[0]):
# h = int(hlabel[i][0])
# w = int(hlabel[i][1])
# key = np.array((h,w))
# ul = np.minimum(key, ul)
# br = np.maximum(key, br)
return img, hlabel, annot
def get_flip(self, data, label):
data_flip = np.zeros_like(data)
label_flip = np.zeros_like(label)
for k in range(data_flip.shape[2]):
data_flip[:,:,k] = np.fliplr(data[:,:,k])
for k in range(label_flip.shape[0]):
label_flip[k,:] = np.fliplr(label[k,:])
#print(label[0,:].shape)
label_flip = label_flip[self.flip_order,:]
return data_flip, label_flip
def get_data(self, data, label, annot):
if self.vis:
self.img_num+=1
#if self.img_num<=self.vis:
# filename = './vis/raw_%d.jpg' % (self.img_num)
# print('save', filename)
# draw = data.copy()
# for i in range(label.shape[0]):
# cv2.circle(draw, (label[i][1], label[i][0]), 1, (0, 0, 255), 2)
# scipy.misc.imsave(filename, draw)
rotate = 0
#scale = 1.0
if 'scale' in annot:
scale = annot['scale']
else:
scale = max(data.shape[0], data.shape[1])
if 'center' in annot:
center = annot['center']
else:
center = np.array( (data.shape[1]/2, data.shape[0]/2) )
max_retry = 3
if self.aug_level==0: #validation mode
max_retry = 6
retry = 0
found = False
base_scale = scale
while retry<max_retry:
retry+=1
succ = True
_scale = base_scale
if self.aug_level>0:
rotate = np.random.randint(-40, 40)
scale_config = 0.2
#rotate = 0
#scale_config = 0.0
scale_ratio = min(1+scale_config, max(1-scale_config, (np.random.randn() * scale_config) + 1))
_scale = int(base_scale * scale_ratio)
#translate = np.random.randint(-5, 5, size=(2,))
#center += translate
data_out, trans = img_helper.transform(data, center, self.input_img_size, _scale, rotate)
#data_out = img_helper.crop2(data, center, _scale, (self.input_img_size, self.input_img_size), rot=rotate)
label_out = np.zeros(self.label_shape, dtype=np.float32)
#print('out shapes', data_out.shape, label_out.shape)
for i in range(label.shape[0]):
pt = label[i].copy()
#pt = pt[::-1]
npt = img_helper.transform_pt(pt, trans)
if npt[0]>=data_out.shape[1] or npt[1]>=data_out.shape[0] or npt[0]<0 or npt[1]<0:
succ = False
#print('err npt', npt)
break
if config.losstype=='heatmap':
pt_scale = float(self.output_label_size)/self.input_img_size
npt *= pt_scale
npt = npt.astype(np.int32)
img_helper.gaussian(label_out[i], npt, config.gaussian)
else:
label_out[i] = (npt/self.input_img_size)
#print('before gaussian', label_out[i].shape, pt.shape)
#trans = img_helper.transform(pt, center, _scale, (self.output_label_size, self.output_label_size), rot=rotate)
#print(trans.shape)
#if not img_helper.gaussian(label_out[i], trans, _g):
# succ = False
# break
if not succ:
if self.aug_level==0:
base_scale+=20
continue
flip_data_out = None
flip_label_out = None
if config.net_coherent:
flip_data_out, flip_label_out = self.get_flip(data_out, label_out)
elif ((self.aug_level>0 and np.random.rand() < 0.5) or self.force_mirror): #flip aug
flip_data_out, flip_label_out = self.get_flip(data_out, label_out)
data_out, label_out = flip_data_out, flip_label_out
found = True
break
#self.stats[0]+=1
if not found:
#self.stats[1]+=1
#print('find aug error', retry)
#print(self.stats)
#print('!!!ERR')
return None
#print('found with scale', _scale, rotate)
if self.vis>0 and self.img_num<=self.vis:
print('crop', data.shape, center, _scale, rotate, data_out.shape)
filename = './vis/cropped_%d.jpg' % (self.img_num)
print('save', filename)
draw = data_out.copy()
alabel = label_out.copy()
for i in range(label.shape[0]):
a = cv2.resize(alabel[i], (self.input_img_size, self.input_img_size))
ind = np.unravel_index(np.argmax(a, axis=None), a.shape)
cv2.circle(draw, (ind[1], ind[0]), 1, (0, 0, 255), 2)
scipy.misc.imsave(filename, draw)
filename = './vis/raw_%d.jpg' % (self.img_num)
scipy.misc.imsave(filename, data)
return data_out, label_out, flip_data_out,flip_label_out
def next(self):
"""Returns the next batch of data."""
#print('next')
batch_size = self.batch_size
batch_data = nd.empty((batch_size,)+self.data_shape)
batch_label = nd.empty((batch_size,)+self.label_shape)
i = 0
#self.cutoff = random.randint(800,1280)
try:
while i < batch_size:
#print('N', i)
data, label, annot = self.next_sample()
R = self.get_data(data, label, annot)
if R is None:
continue
data_out, label_out, flip_data_out, flip_label_out = R
if not self.use_coherent:
data = nd.array(data_out)
data = nd.transpose(data, axes=(2, 0, 1))
label = nd.array(label_out)
#print(data.shape, label.shape)
batch_data[i][:] = data
batch_label[i][:] = label
i += 1
else:
data = nd.array(data_out)
data = nd.transpose(data, axes=(2, 0, 1))
label = nd.array(label_out)
data2 = nd.array(flip_data_out)
data2 = nd.transpose(data2, axes=(2, 0, 1))
label2 = nd.array(flip_label_out)
#M = nd.array(M)
#print(data.shape, label.shape)
batch_data[i][:] = data
batch_label[i][:] = label
#i+=1
j = i+self.per_batch_size//2
batch_data[j][:] = data2
batch_label[j][:] = label2
i += 1
if j%self.per_batch_size==self.per_batch_size-1:
i = j+1
except StopIteration:
if i<batch_size:
raise StopIteration
#return {self.data_name : batch_data,
# self.label_name : batch_label}
#print(batch_data.shape, batch_label.shape)
return mx.io.DataBatch([batch_data], [batch_label], batch_size - i)