mirror of
https://github.com/deepinsight/insightface.git
synced 2026-01-22 11:20:17 +00:00
82 lines
2.5 KiB
C++
82 lines
2.5 KiB
C++
/**
|
|
* Created by Jingyu Yan
|
|
* @date 2024-10-01
|
|
*/
|
|
|
|
#include <iostream>
|
|
#include "opencv2/opencv.hpp"
|
|
#include "log.h"
|
|
#include "inspireface/feature_hub/simd.h"
|
|
// #include <Eigen/Dense>
|
|
|
|
using namespace inspire;
|
|
|
|
int main() {
|
|
int N = 512;
|
|
int vectorSize = 512; // Vector length
|
|
{
|
|
// Create an Nx512 matrix of type CV_32F and fill it with random numbers
|
|
cv::Mat mat(N, vectorSize, CV_32F);
|
|
cv::randu(mat, cv::Scalar(0), cv::Scalar(1));
|
|
|
|
// Create a 512x1 CV_32F matrix and fill it with random numbers
|
|
cv::Mat one(vectorSize, 1, CV_32F);
|
|
cv::randu(one, cv::Scalar(0), cv::Scalar(1));
|
|
|
|
std::cout << mat.size << std::endl;
|
|
std::cout << one.size << std::endl;
|
|
|
|
auto timeStart = (double)cv::getTickCount();
|
|
|
|
cv::Mat cosineSimilarities;
|
|
cv::gemm(mat, one, 1, cv::Mat(), 0, cosineSimilarities);
|
|
|
|
double cost = ((double)cv::getTickCount() - timeStart) / cv::getTickFrequency() * 1000;
|
|
INSPIRE_LOGD("Matrix COST: %f", cost);
|
|
}
|
|
|
|
{
|
|
std::srand(static_cast<unsigned int>(std::time(nullptr)));
|
|
|
|
std::vector<std::vector<float>> matrix(N, std::vector<float>(vectorSize));
|
|
for (int i = 0; i < N; ++i) {
|
|
for (int j = 0; j < vectorSize; ++j) {
|
|
matrix[i][j] = static_cast<float>(std::rand()) / RAND_MAX;
|
|
}
|
|
}
|
|
|
|
std::vector<float> vectorOne(vectorSize);
|
|
for (int i = 0; i < vectorSize; ++i) {
|
|
vectorOne[i] = static_cast<float>(std::rand()) / RAND_MAX;
|
|
}
|
|
|
|
auto timeStart = (double)cv::getTickCount();
|
|
// dot
|
|
for (const auto &v : matrix) {
|
|
simd_dot(v.data(), vectorOne.data(), vectorSize);
|
|
}
|
|
|
|
double cost = ((double)cv::getTickCount() - timeStart) / cv::getTickFrequency() * 1000;
|
|
INSPIRE_LOGD("Vector COST: %f", cost);
|
|
}
|
|
|
|
// {
|
|
// Eigen::initParallel();
|
|
// Eigen::MatrixXf mat(N, vectorSize);
|
|
// mat = Eigen::MatrixXf::Random(N, vectorSize);
|
|
//
|
|
// std::cout << mat.rows() << " x " << mat.cols() << std::endl;
|
|
//
|
|
//
|
|
// Eigen::VectorXf one(vectorSize);
|
|
// one = Eigen::VectorXf::Random(vectorSize);
|
|
//
|
|
// auto timeStart = (double) cv::getTickCount();
|
|
// Eigen::VectorXf result = mat * one;
|
|
//
|
|
// double cost = ((double) cv::getTickCount() - timeStart) / cv::getTickFrequency() * 1000;
|
|
// LOGD("Eigen COST: %f", cost);
|
|
// }
|
|
|
|
return 0;
|
|
} |