mirror of
https://github.com/deepinsight/insightface.git
synced 2025-12-30 08:02:27 +00:00
160 lines
7.0 KiB
Python
160 lines
7.0 KiB
Python
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import time
|
|
import os
|
|
import sys
|
|
import numpy as np
|
|
|
|
import paddle
|
|
from visualdl import LogWriter
|
|
|
|
from utils.logging import AverageMeter, init_logging, CallBackLogging
|
|
from utils import losses
|
|
|
|
from .utils.optimization_pass import gather_optimization_pass, amp_pass
|
|
|
|
from . import classifiers
|
|
from . import backbones
|
|
|
|
|
|
class StaticModel(object):
|
|
def __init__(self,
|
|
main_program,
|
|
startup_program,
|
|
backbone_class_name,
|
|
embedding_size,
|
|
classifier_class_name=None,
|
|
num_classes=None,
|
|
sample_ratio=0.1,
|
|
lr_scheduler=None,
|
|
momentum=0.9,
|
|
weight_decay=2e-4,
|
|
dropout=0.4,
|
|
mode='train',
|
|
fp16=False,
|
|
fp16_configs=None,
|
|
margin_loss_params=None):
|
|
|
|
rank = int(os.getenv("PADDLE_TRAINER_ID", 0))
|
|
world_size = int(os.getenv("PADDLE_TRAINERS_NUM", 1))
|
|
if world_size > 1:
|
|
import paddle.distributed.fleet as fleet
|
|
|
|
self.main_program = main_program
|
|
self.startup_program = startup_program
|
|
self.backbone_class_name = backbone_class_name
|
|
self.embedding_size = embedding_size
|
|
self.classifier_class_name = classifier_class_name
|
|
self.num_classes = num_classes
|
|
self.sample_ratio = sample_ratio
|
|
self.lr_scheduler = lr_scheduler
|
|
self.momentum = momentum
|
|
self.weight_decay = weight_decay
|
|
self.mode = mode
|
|
self.fp16 = fp16
|
|
self.fp16_configs = fp16_configs
|
|
self.margin_loss_params = margin_loss_params
|
|
|
|
if self.mode == 'train':
|
|
assert self.classifier_class_name is not None
|
|
assert self.num_classes is not None
|
|
assert self.lr_scheduler is not None
|
|
assert self.margin_loss_params is not None
|
|
with paddle.static.program_guard(self.main_program,
|
|
self.startup_program):
|
|
with paddle.utils.unique_name.guard():
|
|
self.backbone = eval("backbones.{}".format(
|
|
self.backbone_class_name))(
|
|
num_features=self.embedding_size,
|
|
is_train=True,
|
|
fp16=self.fp16,
|
|
dropout=dropout)
|
|
assert 'label' in self.backbone.input_dict
|
|
assert 'feature' in self.backbone.output_dict
|
|
self.classifier = eval("classifiers.{}".format(
|
|
self.classifier_class_name))(
|
|
feature=self.backbone.output_dict['feature'],
|
|
label=self.backbone.input_dict['label'],
|
|
rank=rank,
|
|
world_size=world_size,
|
|
num_classes=self.num_classes,
|
|
margin1=self.margin_loss_params.margin1,
|
|
margin2=self.margin_loss_params.margin2,
|
|
margin3=self.margin_loss_params.margin3,
|
|
scale=self.margin_loss_params.scale,
|
|
sample_ratio=self.sample_ratio,
|
|
embedding_size=self.embedding_size)
|
|
assert 'loss' in self.classifier.output_dict
|
|
|
|
self.optimizer = paddle.optimizer.Momentum(
|
|
learning_rate=self.lr_scheduler,
|
|
momentum=self.momentum,
|
|
weight_decay=paddle.regularizer.L2Decay(
|
|
self.weight_decay))
|
|
if self.fp16:
|
|
assert self.fp16_configs is not None
|
|
self.optimizer = paddle.static.amp.decorate(
|
|
optimizer=self.optimizer,
|
|
init_loss_scaling=self.fp16_configs[
|
|
'init_loss_scaling'],
|
|
incr_every_n_steps=self.fp16_configs[
|
|
'incr_every_n_steps'],
|
|
decr_every_n_nan_or_inf=self.fp16_configs[
|
|
'decr_every_n_nan_or_inf'],
|
|
incr_ratio=self.fp16_configs['incr_ratio'],
|
|
decr_ratio=self.fp16_configs['decr_ratio'],
|
|
use_dynamic_loss_scaling=self.fp16_configs[
|
|
'use_dynamic_loss_scaling'],
|
|
use_pure_fp16=self.fp16_configs['use_pure_fp16'],
|
|
amp_lists=paddle.static.amp.
|
|
AutoMixedPrecisionLists(
|
|
custom_white_list=self.fp16_configs[
|
|
'custom_white_list'],
|
|
custom_black_list=self.fp16_configs[
|
|
'custom_black_list'], ),
|
|
use_fp16_guard=False)
|
|
|
|
if world_size > 1:
|
|
dist_optimizer = fleet.distributed_optimizer(
|
|
self.optimizer)
|
|
dist_optimizer.minimize(self.classifier.output_dict[
|
|
'loss'])
|
|
else:
|
|
self.optimizer.minimize(self.classifier.output_dict[
|
|
'loss'])
|
|
if self.fp16:
|
|
self.optimizer = self.optimizer._optimizer
|
|
if self.sample_ratio < 1.0:
|
|
gather_optimization_pass(self.main_program,
|
|
'dist@fc@rank')
|
|
if self.fp16:
|
|
amp_pass(self.main_program, 'dist@fc@rank')
|
|
|
|
elif self.mode == 'test':
|
|
with paddle.static.program_guard(self.main_program,
|
|
self.startup_program):
|
|
with paddle.utils.unique_name.guard():
|
|
self.backbone = eval("backbones.{}".format(
|
|
self.backbone_class_name))(
|
|
num_features=self.embedding_size,
|
|
is_train=False,
|
|
fp16=self.fp16,
|
|
dropout=dropout)
|
|
assert 'feature' in self.backbone.output_dict
|
|
|
|
else:
|
|
raise ValueError(
|
|
"mode is error, only support 'train' and 'test' now.")
|