Files
insightface/recognition/idmmd/utils.py
jiankangdeng c23b34a412 add idmmd
2023-03-15 22:39:59 +00:00

151 lines
4.2 KiB
Python

import os
import numpy as np
import torch
import torch.nn.functional as F
def ort_loss(x, y):
loss = torch.abs((x * y).sum(dim=1)).sum()
loss = loss / float(x.size(0))
return loss
def ang_loss(x, y):
loss = (x * y).sum(dim=1).sum()
loss = loss / float(x.size(0))
return loss
def MMD_Loss(fc_nir, fc_vis):
mean_fc_nir = torch.mean(fc_nir, 0)
mean_fc_vis = torch.mean(fc_vis, 0)
loss_mmd = F.mse_loss(mean_fc_nir, mean_fc_vis)
return loss_mmd
def rgb2gray(img):
r, g, b = torch.split(img, 1, dim=1)
return torch.mul(r, 0.299) + torch.mul(g, 0.587) + torch.mul(b, 0.114)
def save_checkpoint(model, epoch, name="", dataset=''):
if not os.path.exists("model/{}/".format(dataset)):
os.makedirs("model/{}/".format(dataset))
model_path = "model/{}/".format(dataset) + name + "_e{}.pth.tar".format(epoch)
state = {"epoch": epoch, "state_dict": model.state_dict()}
torch.save(state, model_path)
print("checkpoint saved to {}".format(model_path))
def load_model(model, pretrained):
weights = torch.load(pretrained)
pretrained_dict = weights["state_dict"]
model_dict = model.state_dict()
# print("to here")
# print(model_dict.keys())
# print('\n')
# print(pretrained_dict.keys())
# import pdb;pdb.set_trace()
if 'LightCNN' in pretrained:
tmp = [k for k in pretrained_dict]
if "module." in tmp[0]:
pretrained_dict = {k.replace('module.',''): v for k, v in pretrained_dict.items() if k.replace('module.','') in model_dict}
else:
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict and k!='module.weight'}
print("len of params to be loaded: ",len(pretrained_dict))
model.load_state_dict(pretrained_dict, strict=False)
return weights['epoch']
def load_model_train_lightcnn(model, pretrained):
weights = torch.load(pretrained)
pretrained_dict = weights["state_dict"]
model_dict = model.state_dict()
# print("to here")
# print(model_dict.keys())
# print('\n')
# print(pretrained_dict.keys())
# import pdb;pdb.set_trace()
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict and 'module.weight' not in k}
print("len of params to be loaded: ",len(pretrained_dict))
model.load_state_dict(pretrained_dict, strict=False)
return weights['epoch']
def set_requires_grad(nets, requires_grad=False):
if not isinstance(nets, list):
nets = [nets]
for net in nets:
if net is not None:
for param in net.parameters():
param.requires_grad = requires_grad
# assign adain_params to AdaIN layers
def assign_adain_params(adain_params, model):
for m in model.modules():
if m.__class__.__name__ == "AdaptiveInstanceNorm2d":
mean = adain_params[:, :m.num_features]
std = adain_params[:, m.num_features:2*m.num_features]
m.bias = mean.contiguous().view(-1)
m.weight = std.contiguous().view(-1)
if adain_params.size(1) > 2*m.num_features:
adain_params = adain_params[:, 2*m.num_features:]
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.unsqueeze(0).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].contiguous().view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def adjust_learning_rate(lr, step, optimizer, epoch):
scale = 0.457305051927326
lr = lr * (scale ** (epoch // step))
print('lr: {}'.format(lr))
if (epoch != 0) & (epoch % step == 0):
print('Change lr')
for param_group in optimizer.param_groups:
param_group['lr'] = param_group['lr'] * scale
class AverageMeter(object):
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count