Files
uniface/scripts/batch_process.py

99 lines
3.0 KiB
Python
Raw Normal View History

# Batch face detection on a folder of images
# Usage: python batch_process.py --input images/ --output results/
import argparse
from pathlib import Path
import cv2
from tqdm import tqdm
from uniface import SCRFD, RetinaFace
from uniface.visualization import draw_detections
def get_image_files(input_dir: Path, extensions: tuple) -> list:
files = []
for ext in extensions:
files.extend(input_dir.glob(f'*.{ext}'))
files.extend(input_dir.glob(f'*.{ext.upper()}'))
return sorted(files)
def process_image(detector, image_path: Path, output_path: Path, threshold: float) -> int:
"""Process single image. Returns face count or -1 on error."""
image = cv2.imread(str(image_path))
if image is None:
return -1
faces = detector.detect(image)
# unpack face data for visualization
bboxes = [f.bbox for f in faces]
scores = [f.confidence for f in faces]
landmarks = [f.landmarks for f in faces]
draw_detections(
image=image, bboxes=bboxes, scores=scores, landmarks=landmarks, vis_threshold=threshold, fancy_bbox=True
)
2025-11-26 00:05:24 +09:00
cv2.putText(
image,
f'Faces: {len(faces)}',
2025-11-26 00:05:24 +09:00
(10, 30),
cv2.FONT_HERSHEY_SIMPLEX,
1,
(0, 255, 0),
2,
)
cv2.imwrite(str(output_path), image)
return len(faces)
def main():
parser = argparse.ArgumentParser(description='Batch process images with face detection')
parser.add_argument('--input', type=str, required=True, help='Input directory')
parser.add_argument('--output', type=str, required=True, help='Output directory')
parser.add_argument('--detector', type=str, default='retinaface', choices=['retinaface', 'scrfd'])
parser.add_argument('--threshold', type=float, default=0.6, help='Visualization threshold')
parser.add_argument('--extensions', type=str, default='jpg,jpeg,png,bmp', help='Image extensions')
args = parser.parse_args()
input_path = Path(args.input)
output_path = Path(args.output)
if not input_path.exists():
print(f"Error: Input directory '{args.input}' does not exist")
return
output_path.mkdir(parents=True, exist_ok=True)
extensions = tuple(ext.strip() for ext in args.extensions.split(','))
image_files = get_image_files(input_path, extensions)
if not image_files:
print(f'No images found with extensions {extensions}')
return
print(f'Found {len(image_files)} images')
detector = RetinaFace() if args.detector == 'retinaface' else SCRFD()
success, errors, total_faces = 0, 0, 0
for img_path in tqdm(image_files, desc='Processing', unit='img'):
out_path = output_path / f'{img_path.stem}_detected{img_path.suffix}'
result = process_image(detector, img_path, out_path, args.threshold)
if result >= 0:
success += 1
total_faces += result
else:
errors += 1
print(f'\nFailed: {img_path.name}')
print(f'\nDone! {success} processed, {errors} errors, {total_faces} faces total')
if __name__ == '__main__':
main()