Files
uniface/tests/test_types.py

283 lines
9.2 KiB
Python
Raw Normal View History

# Copyright 2025 Yakhyokhuja Valikhujaev
# Author: Yakhyokhuja Valikhujaev
# GitHub: https://github.com/yakhyo
"""Tests for UniFace type definitions (dataclasses)."""
from __future__ import annotations
import numpy as np
import pytest
from uniface.types import AttributeResult, EmotionResult, Face, GazeResult, SpoofingResult
class TestGazeResult:
"""Tests for GazeResult dataclass."""
def test_creation(self):
result = GazeResult(pitch=0.1, yaw=-0.2)
assert result.pitch == 0.1
assert result.yaw == -0.2
def test_immutability(self):
result = GazeResult(pitch=0.1, yaw=-0.2)
with pytest.raises(AttributeError):
result.pitch = 0.5 # type: ignore
def test_repr(self):
result = GazeResult(pitch=0.1234, yaw=-0.5678)
repr_str = repr(result)
assert 'GazeResult' in repr_str
assert '0.1234' in repr_str
assert '-0.5678' in repr_str
def test_equality(self):
result1 = GazeResult(pitch=0.1, yaw=-0.2)
result2 = GazeResult(pitch=0.1, yaw=-0.2)
assert result1 == result2
def test_hashable(self):
"""Frozen dataclasses should be hashable."""
result = GazeResult(pitch=0.1, yaw=-0.2)
# Should not raise
hash(result)
# Can be used in sets/dicts
result_set = {result}
assert result in result_set
class TestSpoofingResult:
"""Tests for SpoofingResult dataclass."""
def test_creation_real(self):
result = SpoofingResult(is_real=True, confidence=0.95)
assert result.is_real is True
assert result.confidence == 0.95
def test_creation_fake(self):
result = SpoofingResult(is_real=False, confidence=0.87)
assert result.is_real is False
assert result.confidence == 0.87
def test_immutability(self):
result = SpoofingResult(is_real=True, confidence=0.95)
with pytest.raises(AttributeError):
result.is_real = False # type: ignore
def test_repr_real(self):
result = SpoofingResult(is_real=True, confidence=0.9512)
repr_str = repr(result)
assert 'SpoofingResult' in repr_str
assert 'Real' in repr_str
assert '0.9512' in repr_str
def test_repr_fake(self):
result = SpoofingResult(is_real=False, confidence=0.8765)
repr_str = repr(result)
assert 'Fake' in repr_str
def test_hashable(self):
result = SpoofingResult(is_real=True, confidence=0.95)
hash(result)
class TestEmotionResult:
"""Tests for EmotionResult dataclass."""
def test_creation(self):
result = EmotionResult(emotion='Happy', confidence=0.92)
assert result.emotion == 'Happy'
assert result.confidence == 0.92
def test_immutability(self):
result = EmotionResult(emotion='Sad', confidence=0.75)
with pytest.raises(AttributeError):
result.emotion = 'Happy' # type: ignore
def test_repr(self):
result = EmotionResult(emotion='Angry', confidence=0.8123)
repr_str = repr(result)
assert 'EmotionResult' in repr_str
assert 'Angry' in repr_str
assert '0.8123' in repr_str
def test_various_emotions(self):
emotions = ['Neutral', 'Happy', 'Sad', 'Surprise', 'Fear', 'Disgust', 'Angry']
for emotion in emotions:
result = EmotionResult(emotion=emotion, confidence=0.5)
assert result.emotion == emotion
def test_hashable(self):
result = EmotionResult(emotion='Happy', confidence=0.92)
hash(result)
class TestAttributeResult:
"""Tests for AttributeResult dataclass."""
def test_age_gender_result(self):
result = AttributeResult(gender=1, age=25)
assert result.gender == 1
assert result.age == 25
assert result.age_group is None
assert result.race is None
assert result.sex == 'Male'
def test_fairface_result(self):
result = AttributeResult(gender=0, age_group='20-29', race='East Asian')
assert result.gender == 0
assert result.age is None
assert result.age_group == '20-29'
assert result.race == 'East Asian'
assert result.sex == 'Female'
def test_sex_property_female(self):
result = AttributeResult(gender=0)
assert result.sex == 'Female'
def test_sex_property_male(self):
result = AttributeResult(gender=1)
assert result.sex == 'Male'
def test_immutability(self):
result = AttributeResult(gender=1, age=30)
with pytest.raises(AttributeError):
result.age = 31 # type: ignore
def test_repr_age_gender(self):
result = AttributeResult(gender=1, age=25)
repr_str = repr(result)
assert 'AttributeResult' in repr_str
assert 'Male' in repr_str
assert 'age=25' in repr_str
def test_repr_fairface(self):
result = AttributeResult(gender=0, age_group='30-39', race='White')
repr_str = repr(result)
assert 'Female' in repr_str
assert 'age_group=30-39' in repr_str
assert 'race=White' in repr_str
def test_hashable(self):
result = AttributeResult(gender=1, age=25)
hash(result)
class TestFace:
"""Tests for Face dataclass."""
@pytest.fixture
def sample_face(self):
return Face(
bbox=np.array([100, 100, 200, 200]),
confidence=0.95,
landmarks=np.array([[120, 130], [180, 130], [150, 160], [130, 180], [170, 180]]),
)
def test_creation(self, sample_face):
assert sample_face.confidence == 0.95
assert sample_face.bbox.shape == (4,)
assert sample_face.landmarks.shape == (5, 2)
def test_optional_attributes_default_none(self, sample_face):
assert sample_face.embedding is None
assert sample_face.gender is None
assert sample_face.age is None
assert sample_face.age_group is None
assert sample_face.race is None
assert sample_face.emotion is None
assert sample_face.emotion_confidence is None
def test_mutability(self, sample_face):
"""Face should be mutable for FaceAnalyzer enrichment."""
sample_face.gender = 1
sample_face.age = 25
sample_face.embedding = np.random.randn(512)
assert sample_face.gender == 1
assert sample_face.age == 25
assert sample_face.embedding.shape == (512,)
def test_sex_property_none(self, sample_face):
assert sample_face.sex is None
def test_sex_property_female(self, sample_face):
sample_face.gender = 0
assert sample_face.sex == 'Female'
def test_sex_property_male(self, sample_face):
sample_face.gender = 1
assert sample_face.sex == 'Male'
def test_bbox_xyxy(self, sample_face):
bbox_xyxy = sample_face.bbox_xyxy
np.testing.assert_array_equal(bbox_xyxy, [100, 100, 200, 200])
def test_bbox_xywh(self, sample_face):
bbox_xywh = sample_face.bbox_xywh
np.testing.assert_array_equal(bbox_xywh, [100, 100, 100, 100])
def test_to_dict(self, sample_face):
result = sample_face.to_dict()
assert isinstance(result, dict)
assert 'bbox' in result
assert 'confidence' in result
assert 'landmarks' in result
def test_repr_minimal(self, sample_face):
repr_str = repr(sample_face)
assert 'Face' in repr_str
assert 'confidence=0.950' in repr_str
def test_repr_with_attributes(self, sample_face):
sample_face.gender = 1
sample_face.age = 30
sample_face.emotion = 'Happy'
repr_str = repr(sample_face)
assert 'age=30' in repr_str
assert 'sex=Male' in repr_str
assert 'emotion=Happy' in repr_str
def test_compute_similarity_no_embeddings(self, sample_face):
other_face = Face(
bbox=np.array([50, 50, 150, 150]),
confidence=0.90,
landmarks=np.random.randn(5, 2),
)
with pytest.raises(ValueError, match='Both faces must have embeddings'):
sample_face.compute_similarity(other_face)
def test_compute_similarity_with_embeddings(self, sample_face):
# Create normalized embeddings
sample_face.embedding = np.random.randn(512)
sample_face.embedding /= np.linalg.norm(sample_face.embedding)
other_face = Face(
bbox=np.array([50, 50, 150, 150]),
confidence=0.90,
landmarks=np.random.randn(5, 2),
)
other_face.embedding = np.random.randn(512)
other_face.embedding /= np.linalg.norm(other_face.embedding)
similarity = sample_face.compute_similarity(other_face)
assert isinstance(similarity, float)
assert -1 <= similarity <= 1
def test_compute_similarity_same_embedding(self, sample_face):
embedding = np.random.randn(512)
embedding /= np.linalg.norm(embedding)
sample_face.embedding = embedding.copy()
other_face = Face(
bbox=np.array([50, 50, 150, 150]),
confidence=0.90,
landmarks=np.random.randn(5, 2),
embedding=embedding.copy(),
)
similarity = sample_face.compute_similarity(other_face)
assert similarity == pytest.approx(1.0, abs=1e-5)