Files
uniface/scripts/run_face_search.py

111 lines
3.4 KiB
Python
Raw Normal View History

import argparse
import cv2
import numpy as np
from uniface.detection import RetinaFace, SCRFD
from uniface.face_utils import compute_similarity
from uniface.recognition import ArcFace, MobileFace, SphereFace
def extract_reference_embedding(detector, recognizer, image_path: str) -> np.ndarray:
image = cv2.imread(image_path)
if image is None:
raise RuntimeError(f"Failed to load image: {image_path}")
faces = detector.detect(image)
if not faces:
raise RuntimeError("No faces found in reference image.")
# Get landmarks from the first detected face dictionary
landmarks = np.array(faces[0]["landmarks"])
# Use normalized embedding for more reliable similarity comparison
embedding = recognizer.get_normalized_embedding(image, landmarks)
return embedding
def run_video(detector, recognizer, ref_embedding: np.ndarray, threshold: float = 0.4):
cap = cv2.VideoCapture(0)
if not cap.isOpened():
raise RuntimeError("Webcam could not be opened.")
print("Webcam started. Press 'q' to quit.")
while True:
ret, frame = cap.read()
if not ret:
break
faces = detector.detect(frame)
# Loop through each detected face
for face in faces:
# Extract bbox and landmarks from the dictionary
bbox = face["bbox"]
landmarks = np.array(face["landmarks"])
x1, y1, x2, y2 = map(int, bbox)
# Get the normalized embedding for the current face
embedding = recognizer.get_normalized_embedding(frame, landmarks)
# Compare with the reference embedding
sim = compute_similarity(ref_embedding, embedding)
# Draw results
label = f"Match ({sim:.2f})" if sim > threshold else f"Unknown ({sim:.2f})"
color = (0, 255, 0) if sim > threshold else (0, 0, 255)
cv2.rectangle(frame, (x1, y1), (x2, y2), color, 2)
cv2.putText(frame, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 2)
cv2.imshow("Face Recognition", frame)
if cv2.waitKey(1) & 0xFF == ord("q"):
break
cap.release()
cv2.destroyAllWindows()
def main():
parser = argparse.ArgumentParser(description="Face recognition using a reference image.")
parser.add_argument("--image", type=str, required=True, help="Path to the reference face image.")
parser.add_argument(
"--detector", type=str, default="scrfd", choices=["retinaface", "scrfd"], help="Face detection method."
)
parser.add_argument(
"--recognizer",
type=str,
default="arcface",
choices=["arcface", "mobileface", "sphereface"],
help="Face recognition method.",
)
parser.add_argument("--verbose", action="store_true", help="Enable verbose logging")
args = parser.parse_args()
if args.verbose:
from uniface import enable_logging
enable_logging()
print("Initializing models...")
if args.detector == 'retinaface':
detector = RetinaFace()
else:
detector = SCRFD()
if args.recognizer == 'arcface':
recognizer = ArcFace()
elif args.recognizer == 'mobileface':
recognizer = MobileFace()
else:
recognizer = SphereFace()
print("Extracting reference embedding...")
ref_embedding = extract_reference_embedding(detector, recognizer, args.image)
run_video(detector, recognizer, ref_embedding)
if __name__ == "__main__":
main()