mirror of
https://github.com/yakhyo/uniface.git
synced 2025-12-30 00:52:25 +00:00
Merge pull request #18 from yakhyo/feat-20251115
ref: Add comprehensive test suite and enhance model functionality
This commit is contained in:
30
MODELS.md
30
MODELS.md
@@ -113,13 +113,15 @@ embedding = recognizer.get_normalized_embedding(image, landmarks)
|
||||
|
||||
Lightweight face recognition optimized for mobile devices.
|
||||
|
||||
| Model Name | Backbone | Params | Size | Use Case |
|
||||
|-----------------|-----------------|--------|------|--------------------|
|
||||
| `MNET_025` | MobileNetV1 0.25| 0.2M | 1MB | Ultra-lightweight |
|
||||
| `MNET_V2` ⭐ | MobileNetV2 | 1.0M | 4MB | **Mobile/Edge** |
|
||||
| `MNET_V3_SMALL` | MobileNetV3-S | 0.8M | 3MB | Mobile optimized |
|
||||
| `MNET_V3_LARGE` | MobileNetV3-L | 2.5M | 10MB | Balanced mobile |
|
||||
| Model Name | Backbone | Params | Size | LFW | CALFW | CPLFW | AgeDB-30 | Use Case |
|
||||
|-----------------|-----------------|--------|------|-------|-------|-------|----------|--------------------|
|
||||
| `MNET_025` | MobileNetV1 0.25| 0.36M | 1MB | 98.76%| 92.02%| 82.37%| 90.02% | Ultra-lightweight |
|
||||
| `MNET_V2` ⭐ | MobileNetV2 | 2.29M | 4MB | 99.55%| 94.87%| 86.89%| 95.16% | **Mobile/Edge** |
|
||||
| `MNET_V3_SMALL` | MobileNetV3-S | 1.25M | 3MB | 99.30%| 93.77%| 85.29%| 92.79% | Mobile optimized |
|
||||
| `MNET_V3_LARGE` | MobileNetV3-L | 3.52M | 10MB | 99.53%| 94.56%| 86.79%| 95.13% | Balanced mobile |
|
||||
|
||||
**Dataset**: Trained on MS1M-V2 (5.8M images, 85K identities)
|
||||
**Accuracy**: Evaluated on LFW, CALFW, CPLFW, and AgeDB-30 benchmarks
|
||||
**Note**: These models are lightweight alternatives to ArcFace for resource-constrained environments
|
||||
|
||||
#### Usage
|
||||
@@ -138,12 +140,14 @@ recognizer = MobileFace(model_name=MobileFaceWeights.MNET_V2)
|
||||
|
||||
Face recognition using angular softmax loss.
|
||||
|
||||
| Model Name | Backbone | Params | Size | Use Case |
|
||||
|-------------|----------|--------|------|----------------------|
|
||||
| `SPHERE20` | Sphere20 | 13.0M | 50MB | Research/Comparison |
|
||||
| `SPHERE36` | Sphere36 | 24.2M | 92MB | Research/Comparison |
|
||||
| Model Name | Backbone | Params | Size | LFW | CALFW | CPLFW | AgeDB-30 | Use Case |
|
||||
|-------------|----------|--------|------|-------|-------|-------|----------|----------------------|
|
||||
| `SPHERE20` | Sphere20 | 24.5M | 50MB | 99.67%| 95.61%| 88.75%| 96.58% | Research/Comparison |
|
||||
| `SPHERE36` | Sphere36 | 34.6M | 92MB | 99.72%| 95.64%| 89.92%| 96.83% | Research/Comparison |
|
||||
|
||||
**Note**: SphereFace uses angular softmax loss, an earlier approach before ArcFace
|
||||
**Dataset**: Trained on MS1M-V2 (5.8M images, 85K identities)
|
||||
**Accuracy**: Evaluated on LFW, CALFW, CPLFW, and AgeDB-30 benchmarks
|
||||
**Note**: SphereFace uses angular softmax loss, an earlier approach before ArcFace. These models provide good accuracy with moderate resource requirements.
|
||||
|
||||
#### Usage
|
||||
|
||||
@@ -264,10 +268,10 @@ emotion, confidence = predictor.predict(image, landmarks)
|
||||
### By Hardware
|
||||
|
||||
#### Apple Silicon (M1/M2/M3/M4)
|
||||
**Recommended**: All models work well with CoreML acceleration
|
||||
**Recommended**: All models work well with ARM64 optimizations (automatically included)
|
||||
|
||||
```bash
|
||||
pip install uniface[silicon]
|
||||
pip install uniface
|
||||
```
|
||||
|
||||
**Recommended models**:
|
||||
|
||||
@@ -7,8 +7,8 @@ Get up and running with UniFace in 5 minutes! This guide covers the most common
|
||||
## Installation
|
||||
|
||||
```bash
|
||||
# macOS (Apple Silicon)
|
||||
pip install uniface[silicon]
|
||||
# macOS (Apple Silicon) - automatically includes ARM64 optimizations
|
||||
pip install uniface
|
||||
|
||||
# Linux/Windows with NVIDIA GPU
|
||||
pip install uniface[gpu]
|
||||
@@ -114,9 +114,9 @@ if faces1 and faces2:
|
||||
|
||||
# Interpret result
|
||||
if similarity > 0.6:
|
||||
print(f"✅ Same person (similarity: {similarity:.3f})")
|
||||
print(f"Same person (similarity: {similarity:.3f})")
|
||||
else:
|
||||
print(f"❌ Different people (similarity: {similarity:.3f})")
|
||||
print(f"Different people (similarity: {similarity:.3f})")
|
||||
else:
|
||||
print("No faces detected")
|
||||
```
|
||||
@@ -264,31 +264,46 @@ print("Done!")
|
||||
|
||||
Choose the right model for your use case:
|
||||
|
||||
### Detection Models
|
||||
|
||||
```python
|
||||
from uniface import create_detector
|
||||
from uniface.detection import RetinaFace, SCRFD
|
||||
from uniface.constants import RetinaFaceWeights, SCRFDWeights
|
||||
|
||||
# Fast detection (mobile/edge devices)
|
||||
detector = create_detector(
|
||||
'retinaface',
|
||||
detector = RetinaFace(
|
||||
model_name=RetinaFaceWeights.MNET_025,
|
||||
conf_thresh=0.7
|
||||
)
|
||||
|
||||
# Balanced (recommended)
|
||||
detector = create_detector(
|
||||
'retinaface',
|
||||
detector = RetinaFace(
|
||||
model_name=RetinaFaceWeights.MNET_V2
|
||||
)
|
||||
|
||||
# High accuracy (server/GPU)
|
||||
detector = create_detector(
|
||||
'scrfd',
|
||||
detector = SCRFD(
|
||||
model_name=SCRFDWeights.SCRFD_10G_KPS,
|
||||
conf_thresh=0.5
|
||||
)
|
||||
```
|
||||
|
||||
### Recognition Models
|
||||
|
||||
```python
|
||||
from uniface import ArcFace, MobileFace, SphereFace
|
||||
from uniface.constants import MobileFaceWeights, SphereFaceWeights
|
||||
|
||||
# ArcFace (recommended for most use cases)
|
||||
recognizer = ArcFace() # Best accuracy
|
||||
|
||||
# MobileFace (lightweight for mobile/edge)
|
||||
recognizer = MobileFace(model_name=MobileFaceWeights.MNET_V2) # Fast, small size
|
||||
|
||||
# SphereFace (angular margin approach)
|
||||
recognizer = SphereFace(model_name=SphereFaceWeights.SPHERE20) # Alternative method
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Common Issues
|
||||
@@ -316,20 +331,22 @@ print("Available providers:", ort.get_available_providers())
|
||||
|
||||
### 3. Slow Performance on Mac
|
||||
|
||||
Make sure you installed with CoreML support:
|
||||
The standard installation includes ARM64 optimizations for Apple Silicon. If performance is slow, verify you're using the ARM64 build of Python:
|
||||
|
||||
```bash
|
||||
pip install uniface[silicon]
|
||||
python -c "import platform; print(platform.machine())"
|
||||
# Should show: arm64 (not x86_64)
|
||||
```
|
||||
|
||||
### 4. Import Errors
|
||||
|
||||
```python
|
||||
# ✅ Correct imports
|
||||
from uniface import RetinaFace, ArcFace, Landmark106
|
||||
from uniface.detection import create_detector
|
||||
# Correct imports
|
||||
from uniface.detection import RetinaFace
|
||||
from uniface.recognition import ArcFace
|
||||
from uniface.landmark import Landmark106
|
||||
|
||||
# ❌ Wrong imports
|
||||
# Wrong imports
|
||||
from uniface import retinaface # Module, not class
|
||||
```
|
||||
|
||||
|
||||
34
README.md
34
README.md
@@ -21,7 +21,7 @@
|
||||
- **Face Recognition**: ArcFace, MobileFace, and SphereFace embeddings
|
||||
- **Attribute Analysis**: Age, gender, and emotion detection
|
||||
- **Face Alignment**: Precise alignment for downstream tasks
|
||||
- **Hardware Acceleration**: CoreML (Apple Silicon), CUDA (NVIDIA), CPU fallback
|
||||
- **Hardware Acceleration**: ARM64 optimizations (Apple Silicon), CUDA (NVIDIA), CPU fallback
|
||||
- **Simple API**: Intuitive factory functions and clean interfaces
|
||||
- **Production-Ready**: Type hints, comprehensive logging, PEP8 compliant
|
||||
|
||||
@@ -39,27 +39,19 @@ pip install uniface
|
||||
|
||||
#### macOS (Apple Silicon - M1/M2/M3/M4)
|
||||
|
||||
For optimal performance with **CoreML acceleration** (3-5x faster):
|
||||
For Apple Silicon Macs, the standard installation automatically includes optimized ARM64 support:
|
||||
|
||||
```bash
|
||||
# Standard installation (CPU only)
|
||||
pip install uniface
|
||||
|
||||
# With CoreML acceleration (recommended for M-series chips)
|
||||
pip install uniface[silicon]
|
||||
```
|
||||
|
||||
**Verify CoreML is available:**
|
||||
```python
|
||||
import onnxruntime as ort
|
||||
print(ort.get_available_providers())
|
||||
# Should show: ['CoreMLExecutionProvider', 'CPUExecutionProvider']
|
||||
```
|
||||
The base `onnxruntime` package (included with uniface) has native Apple Silicon support with ARM64 optimizations built-in since version 1.13+.
|
||||
|
||||
#### Linux/Windows with NVIDIA GPU
|
||||
|
||||
For CUDA acceleration on NVIDIA GPUs:
|
||||
|
||||
```bash
|
||||
# With CUDA acceleration
|
||||
pip install uniface[gpu]
|
||||
```
|
||||
|
||||
@@ -172,28 +164,29 @@ print(f"{gender}, {age} years old")
|
||||
### Factory Functions (Recommended)
|
||||
|
||||
```python
|
||||
from uniface import create_detector, create_recognizer, create_landmarker
|
||||
from uniface.detection import RetinaFace, SCRFD
|
||||
from uniface.recognition import ArcFace
|
||||
from uniface.landmark import Landmark106
|
||||
|
||||
# Create detector with default settings
|
||||
detector = create_detector('retinaface')
|
||||
detector = RetinaFace()
|
||||
|
||||
# Create with custom config
|
||||
detector = create_detector(
|
||||
'scrfd',
|
||||
detector = SCRFD(
|
||||
model_name='scrfd_10g_kps',
|
||||
conf_thresh=0.8,
|
||||
input_size=(640, 640)
|
||||
)
|
||||
|
||||
# Recognition and landmarks
|
||||
recognizer = create_recognizer('arcface')
|
||||
landmarker = create_landmarker('2d106det')
|
||||
recognizer = ArcFace()
|
||||
landmarker = Landmark106()
|
||||
```
|
||||
|
||||
### Direct Model Instantiation
|
||||
|
||||
```python
|
||||
from uniface import RetinaFace, SCRFD, ArcFace, MobileFace
|
||||
from uniface import RetinaFace, SCRFD, ArcFace, MobileFace, SphereFace
|
||||
from uniface.constants import RetinaFaceWeights
|
||||
|
||||
# Detection
|
||||
@@ -206,6 +199,7 @@ detector = RetinaFace(
|
||||
# Recognition
|
||||
recognizer = ArcFace() # Uses default weights
|
||||
recognizer = MobileFace() # Lightweight alternative
|
||||
recognizer = SphereFace() # Angular softmax alternative
|
||||
```
|
||||
|
||||
### High-Level Detection API
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
[project]
|
||||
name = "uniface"
|
||||
version = "1.0.0"
|
||||
version = "1.1.0"
|
||||
description = "UniFace: A Comprehensive Library for Face Detection, Recognition, Landmark Analysis, Age, and Gender Detection"
|
||||
readme = "README.md"
|
||||
license = { text = "MIT" }
|
||||
@@ -21,7 +21,6 @@ requires-python = ">=3.10"
|
||||
[project.optional-dependencies]
|
||||
dev = ["pytest>=7.0.0"]
|
||||
gpu = ["onnxruntime-gpu>=1.16.0"]
|
||||
silicon = ["onnxruntime-silicon>=1.16.0"]
|
||||
|
||||
[project.urls]
|
||||
Homepage = "https://github.com/yakhyo/uniface"
|
||||
|
||||
@@ -1,18 +1,97 @@
|
||||
### `download_model.py`
|
||||
# Scripts
|
||||
|
||||
# Download all models
|
||||
Collection of example scripts demonstrating UniFace functionality.
|
||||
|
||||
## Available Scripts
|
||||
|
||||
- `run_detection.py` - Face detection on images
|
||||
- `run_age_gender.py` - Age and gender prediction
|
||||
- `run_landmarks.py` - Facial landmark detection
|
||||
- `run_recognition.py` - Face recognition and embeddings
|
||||
- `run_face_search.py` - Face search and matching
|
||||
- `run_video_detection.py` - Video processing with face detection
|
||||
- `batch_process.py` - Batch processing of image folders
|
||||
- `download_model.py` - Download and manage models
|
||||
|
||||
## Quick Start
|
||||
|
||||
```bash
|
||||
python scripts/download_model.py
|
||||
# Face detection
|
||||
python scripts/run_detection.py --image assets/test.jpg
|
||||
|
||||
# Age and gender detection
|
||||
python scripts/run_age_gender.py --image assets/test.jpg
|
||||
|
||||
# Webcam demo
|
||||
python scripts/run_age_gender.py --webcam
|
||||
|
||||
# Batch processing
|
||||
python scripts/batch_process.py --input images/ --output results/
|
||||
```
|
||||
|
||||
# Download just RESNET18
|
||||
## Import Examples
|
||||
|
||||
```bash
|
||||
python scripts/download_model.py --model RESNET18
|
||||
The scripts use direct class imports for better developer experience:
|
||||
|
||||
```python
|
||||
# Face Detection
|
||||
from uniface.detection import RetinaFace, SCRFD
|
||||
|
||||
detector = RetinaFace() # or SCRFD()
|
||||
faces = detector.detect(image)
|
||||
|
||||
# Face Recognition
|
||||
from uniface.recognition import ArcFace, MobileFace, SphereFace
|
||||
|
||||
recognizer = ArcFace() # or MobileFace(), SphereFace()
|
||||
embedding = recognizer.get_embedding(image, landmarks)
|
||||
|
||||
# Age & Gender
|
||||
from uniface.attribute import AgeGender
|
||||
|
||||
age_gender = AgeGender()
|
||||
gender, age = age_gender.predict(image, bbox)
|
||||
|
||||
# Landmarks
|
||||
from uniface.landmark import Landmark106
|
||||
|
||||
landmarker = Landmark106()
|
||||
landmarks = landmarker.get_landmarks(image, bbox)
|
||||
```
|
||||
|
||||
### `run_inference.py`
|
||||
## Available Classes
|
||||
|
||||
**Detection:**
|
||||
- `RetinaFace` - High accuracy face detection
|
||||
- `SCRFD` - Fast face detection
|
||||
|
||||
**Recognition:**
|
||||
- `ArcFace` - High accuracy face recognition
|
||||
- `MobileFace` - Lightweight face recognition
|
||||
- `SphereFace` - Alternative face recognition
|
||||
|
||||
**Attributes:**
|
||||
- `AgeGender` - Age and gender prediction
|
||||
|
||||
**Landmarks:**
|
||||
- `Landmark106` - 106-point facial landmarks
|
||||
|
||||
## Common Options
|
||||
|
||||
Most scripts support:
|
||||
- `--help` - Show usage information
|
||||
- `--verbose` - Enable detailed logging
|
||||
- `--detector` - Choose detector (retinaface, scrfd)
|
||||
- `--threshold` - Set confidence threshold
|
||||
|
||||
## Testing
|
||||
|
||||
Run basic functionality test:
|
||||
```bash
|
||||
python scripts/run_inference.py --image assets/test.jpg --model MNET_V2 --iterations 10
|
||||
```
|
||||
python scripts/run_detection.py --image assets/test.jpg
|
||||
```
|
||||
|
||||
For comprehensive testing, see the main project tests:
|
||||
```bash
|
||||
pytest tests/
|
||||
```
|
||||
|
||||
@@ -1,389 +0,0 @@
|
||||
# Testing Scripts Guide
|
||||
|
||||
Complete guide to testing all scripts in the `scripts/` directory.
|
||||
|
||||
---
|
||||
|
||||
## 📁 Available Scripts
|
||||
|
||||
1. **download_model.py** - Download and verify model weights
|
||||
2. **run_detection.py** - Face detection on images
|
||||
3. **run_recognition.py** - Face recognition (extract embeddings)
|
||||
4. **run_face_search.py** - Real-time face matching with webcam
|
||||
5. **sha256_generate.py** - Generate SHA256 checksums for models
|
||||
|
||||
---
|
||||
|
||||
## Testing Each Script
|
||||
|
||||
### 1. Test Model Download
|
||||
|
||||
```bash
|
||||
# Download a specific model
|
||||
python scripts/download_model.py --model MNET_V2
|
||||
|
||||
# Download all RetinaFace models (takes ~5 minutes, ~200MB)
|
||||
python scripts/download_model.py
|
||||
|
||||
# Verify models are cached
|
||||
ls -lh ~/.uniface/models/
|
||||
```
|
||||
|
||||
**Expected Output:**
|
||||
```
|
||||
📥 Downloading model: retinaface_mnet_v2
|
||||
2025-11-08 00:00:00 - INFO - Downloading model 'RetinaFaceWeights.MNET_V2' from https://...
|
||||
Downloading ~/.uniface/models/retinaface_mnet_v2.onnx: 100%|████| 3.5M/3.5M
|
||||
2025-11-08 00:00:05 - INFO - Successfully downloaded 'RetinaFaceWeights.MNET_V2'
|
||||
✅ All requested weights are ready and verified.
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
### 2. Test Face Detection
|
||||
|
||||
```bash
|
||||
# Basic detection
|
||||
python scripts/run_detection.py --image assets/test.jpg
|
||||
|
||||
# With custom settings
|
||||
python scripts/run_detection.py \
|
||||
--image assets/test.jpg \
|
||||
--method scrfd \
|
||||
--threshold 0.7 \
|
||||
--save_dir outputs
|
||||
|
||||
# Benchmark mode (100 iterations)
|
||||
python scripts/run_detection.py \
|
||||
--image assets/test.jpg \
|
||||
--iterations 100
|
||||
```
|
||||
|
||||
**Expected Output:**
|
||||
```
|
||||
Initializing detector: retinaface
|
||||
2025-11-08 00:00:00 - INFO - Initializing RetinaFace with model=RetinaFaceWeights.MNET_V2...
|
||||
2025-11-08 00:00:01 - INFO - CoreML acceleration enabled (Apple Silicon)
|
||||
✅ Output saved at: outputs/test_out.jpg
|
||||
[1/1] ⏱️ Inference time: 0.0234 seconds
|
||||
```
|
||||
|
||||
**Verify Output:**
|
||||
```bash
|
||||
# Check output image was created
|
||||
ls -lh outputs/test_out.jpg
|
||||
|
||||
# View the image (macOS)
|
||||
open outputs/test_out.jpg
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
### 3. Test Face Recognition (Embedding Extraction)
|
||||
|
||||
```bash
|
||||
# Extract embeddings from an image
|
||||
python scripts/run_recognition.py --image assets/test.jpg
|
||||
|
||||
# With different models
|
||||
python scripts/run_recognition.py \
|
||||
--image assets/test.jpg \
|
||||
--detector scrfd \
|
||||
--recognizer mobileface
|
||||
```
|
||||
|
||||
**Expected Output:**
|
||||
```
|
||||
Initializing detector: retinaface
|
||||
Initializing recognizer: arcface
|
||||
2025-11-08 00:00:00 - INFO - Successfully initialized face encoder from ~/.uniface/models/w600k_mbf.onnx
|
||||
Detected 1 face(s). Extracting embeddings for the first face...
|
||||
- Embedding shape: (1, 512)
|
||||
- L2 norm of unnormalized embedding: 64.2341
|
||||
- L2 norm of normalized embedding: 1.0000
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
### 4. Test Real-Time Face Search (Webcam)
|
||||
|
||||
**Prerequisites:**
|
||||
- Webcam connected
|
||||
- Reference image with a clear face
|
||||
|
||||
```bash
|
||||
# Basic usage
|
||||
python scripts/run_face_search.py --image assets/test.jpg
|
||||
|
||||
# With custom models
|
||||
python scripts/run_face_search.py \
|
||||
--image assets/test.jpg \
|
||||
--detector scrfd \
|
||||
--recognizer arcface
|
||||
```
|
||||
|
||||
**Expected Behavior:**
|
||||
1. Webcam window opens
|
||||
2. Faces are detected in real-time
|
||||
3. Green box = Match (similarity > 0.4)
|
||||
4. Red box = Unknown (similarity < 0.4)
|
||||
5. Press 'q' to quit
|
||||
|
||||
**Expected Output:**
|
||||
```
|
||||
Initializing models...
|
||||
2025-11-08 00:00:00 - INFO - CoreML acceleration enabled (Apple Silicon)
|
||||
Extracting reference embedding...
|
||||
Webcam started. Press 'q' to quit.
|
||||
```
|
||||
|
||||
**Troubleshooting:**
|
||||
```bash
|
||||
# If webcam doesn't open
|
||||
python -c "import cv2; cap = cv2.VideoCapture(0); print('Webcam OK' if cap.isOpened() else 'Webcam FAIL')"
|
||||
|
||||
# If no faces detected
|
||||
# - Ensure good lighting
|
||||
# - Face should be frontal and clearly visible
|
||||
# - Try lowering threshold: edit script line 29, change 0.4 to 0.3
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
### 5. Test SHA256 Generator (For Developers)
|
||||
|
||||
```bash
|
||||
# Generate checksum for a model file
|
||||
python scripts/sha256_generate.py ~/.uniface/models/retinaface_mnet_v2.onnx
|
||||
|
||||
# Generate for all models
|
||||
for model in ~/.uniface/models/*.onnx; do
|
||||
python scripts/sha256_generate.py "$model"
|
||||
done
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 🔍 Quick Verification Tests
|
||||
|
||||
### Test 1: Imports Work
|
||||
|
||||
```bash
|
||||
python -c "
|
||||
from uniface.detection import create_detector
|
||||
from uniface.recognition import create_recognizer
|
||||
print('✅ Imports successful')
|
||||
"
|
||||
```
|
||||
|
||||
### Test 2: Models Download
|
||||
|
||||
```bash
|
||||
python -c "
|
||||
from uniface import RetinaFace
|
||||
detector = RetinaFace()
|
||||
print('✅ Model downloaded and loaded')
|
||||
"
|
||||
```
|
||||
|
||||
### Test 3: Detection Works
|
||||
|
||||
```bash
|
||||
python -c "
|
||||
import cv2
|
||||
import numpy as np
|
||||
from uniface import RetinaFace
|
||||
|
||||
detector = RetinaFace()
|
||||
image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
|
||||
faces = detector.detect(image)
|
||||
print(f'✅ Detection works, found {len(faces)} faces')
|
||||
"
|
||||
```
|
||||
|
||||
### Test 4: Recognition Works
|
||||
|
||||
```bash
|
||||
python -c "
|
||||
import cv2
|
||||
import numpy as np
|
||||
from uniface import RetinaFace, ArcFace
|
||||
|
||||
detector = RetinaFace()
|
||||
recognizer = ArcFace()
|
||||
image = cv2.imread('assets/test.jpg')
|
||||
faces = detector.detect(image)
|
||||
if faces:
|
||||
landmarks = np.array(faces[0]['landmarks'])
|
||||
embedding = recognizer.get_normalized_embedding(image, landmarks)
|
||||
print(f'✅ Recognition works, embedding shape: {embedding.shape}')
|
||||
else:
|
||||
print('⚠️ No faces detected in test image')
|
||||
"
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## End-to-End Test Workflow
|
||||
|
||||
Run this complete workflow to verify everything works:
|
||||
|
||||
```bash
|
||||
#!/bin/bash
|
||||
# Save as test_all_scripts.sh
|
||||
|
||||
echo "=== Testing UniFace Scripts ==="
|
||||
echo ""
|
||||
|
||||
# Test 1: Download models
|
||||
echo "1️⃣ Testing model download..."
|
||||
python scripts/download_model.py --model MNET_V2
|
||||
if [ $? -eq 0 ]; then
|
||||
echo "✅ Model download: PASS"
|
||||
else
|
||||
echo "❌ Model download: FAIL"
|
||||
exit 1
|
||||
fi
|
||||
echo ""
|
||||
|
||||
# Test 2: Face detection
|
||||
echo "2️⃣ Testing face detection..."
|
||||
python scripts/run_detection.py --image assets/test.jpg --save_dir /tmp/uniface_test
|
||||
if [ $? -eq 0 ] && [ -f /tmp/uniface_test/test_out.jpg ]; then
|
||||
echo "✅ Face detection: PASS"
|
||||
else
|
||||
echo "❌ Face detection: FAIL"
|
||||
exit 1
|
||||
fi
|
||||
echo ""
|
||||
|
||||
# Test 3: Face recognition
|
||||
echo "3️⃣ Testing face recognition..."
|
||||
python scripts/run_recognition.py --image assets/test.jpg > /tmp/uniface_recognition.log
|
||||
if [ $? -eq 0 ] && grep -q "Embedding shape" /tmp/uniface_recognition.log; then
|
||||
echo "✅ Face recognition: PASS"
|
||||
else
|
||||
echo "❌ Face recognition: FAIL"
|
||||
exit 1
|
||||
fi
|
||||
echo ""
|
||||
|
||||
echo "=== All Tests Passed! 🎉 ==="
|
||||
```
|
||||
|
||||
**Run the test suite:**
|
||||
```bash
|
||||
chmod +x test_all_scripts.sh
|
||||
./test_all_scripts.sh
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Performance Benchmarking
|
||||
|
||||
### Benchmark Detection Speed
|
||||
|
||||
```bash
|
||||
# Test different models
|
||||
for model in retinaface scrfd; do
|
||||
echo "Testing $model..."
|
||||
python scripts/run_detection.py \
|
||||
--image assets/test.jpg \
|
||||
--method $model \
|
||||
--iterations 50
|
||||
done
|
||||
```
|
||||
|
||||
### Benchmark Recognition Speed
|
||||
|
||||
```bash
|
||||
# Test different recognizers
|
||||
for recognizer in arcface mobileface; do
|
||||
echo "Testing $recognizer..."
|
||||
time python scripts/run_recognition.py \
|
||||
--image assets/test.jpg \
|
||||
--recognizer $recognizer
|
||||
done
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 🐛 Common Issues
|
||||
|
||||
### Issue: "No module named 'uniface'"
|
||||
|
||||
```bash
|
||||
# Solution: Install in editable mode
|
||||
pip install -e .
|
||||
```
|
||||
|
||||
### Issue: "Failed to load image"
|
||||
|
||||
```bash
|
||||
# Check image exists
|
||||
ls -lh assets/test.jpg
|
||||
|
||||
# Try with absolute path
|
||||
python scripts/run_detection.py --image $(pwd)/assets/test.jpg
|
||||
```
|
||||
|
||||
### Issue: "No faces detected"
|
||||
|
||||
```bash
|
||||
# Lower confidence threshold
|
||||
python scripts/run_detection.py \
|
||||
--image assets/test.jpg \
|
||||
--threshold 0.3
|
||||
```
|
||||
|
||||
### Issue: Models downloading slowly
|
||||
|
||||
```bash
|
||||
# Check internet connection
|
||||
curl -I https://github.com/yakhyo/uniface/releases
|
||||
|
||||
# Or download manually
|
||||
wget https://github.com/yakhyo/uniface/releases/download/v0.1.2/retinaface_mv2.onnx \
|
||||
-O ~/.uniface/models/retinaface_mnet_v2.onnx
|
||||
```
|
||||
|
||||
### Issue: CoreML not available on Mac
|
||||
|
||||
```bash
|
||||
# Install CoreML-enabled ONNX Runtime
|
||||
pip uninstall onnxruntime
|
||||
pip install onnxruntime-silicon
|
||||
|
||||
# Verify
|
||||
python -c "import onnxruntime as ort; print(ort.get_available_providers())"
|
||||
# Should show: ['CoreMLExecutionProvider', 'CPUExecutionProvider']
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## ✅ Script Status Summary
|
||||
|
||||
| Script | Status | API Updated | Tested |
|
||||
|-----------------------|--------|-------------|--------|
|
||||
| download_model.py | ✅ | ✅ | ✅ |
|
||||
| run_detection.py | ✅ | ✅ | ✅ |
|
||||
| run_recognition.py | ✅ | ✅ | ✅ |
|
||||
| run_face_search.py | ✅ | ✅ | ✅ |
|
||||
| sha256_generate.py | ✅ | N/A | ✅ |
|
||||
|
||||
All scripts are updated and working with the new dict-based API! 🎉
|
||||
|
||||
---
|
||||
|
||||
## 📝 Notes
|
||||
|
||||
- All scripts now use the factory functions (`create_detector`, `create_recognizer`)
|
||||
- Scripts work with the new dict-based detection API
|
||||
- Model download bug is fixed (enum vs string issue)
|
||||
- CoreML acceleration is automatically detected on Apple Silicon
|
||||
- All scripts include proper error handling
|
||||
|
||||
---
|
||||
|
||||
Need help with a specific script? Check the main [README.md](../README.md) or [QUICKSTART.md](../QUICKSTART.md)!
|
||||
|
||||
157
scripts/batch_process.py
Normal file
157
scripts/batch_process.py
Normal file
@@ -0,0 +1,157 @@
|
||||
"""Batch Image Processing Script"""
|
||||
|
||||
import os
|
||||
import cv2
|
||||
import argparse
|
||||
from pathlib import Path
|
||||
from tqdm import tqdm
|
||||
|
||||
from uniface import RetinaFace, SCRFD
|
||||
from uniface.visualization import draw_detections
|
||||
|
||||
|
||||
def get_image_files(input_dir: Path, extensions: tuple) -> list:
|
||||
image_files = []
|
||||
for ext in extensions:
|
||||
image_files.extend(input_dir.glob(f"*.{ext}"))
|
||||
image_files.extend(input_dir.glob(f"*.{ext.upper()}"))
|
||||
|
||||
return sorted(image_files)
|
||||
|
||||
|
||||
def process_single_image(detector, image_path: Path, output_dir: Path,
|
||||
vis_threshold: float, skip_existing: bool) -> dict:
|
||||
output_path = output_dir / f"{image_path.stem}_detected{image_path.suffix}"
|
||||
|
||||
# Skip if already processed
|
||||
if skip_existing and output_path.exists():
|
||||
return {"status": "skipped", "faces": 0}
|
||||
|
||||
# Load image
|
||||
image = cv2.imread(str(image_path))
|
||||
if image is None:
|
||||
return {"status": "error", "error": "Failed to load image"}
|
||||
|
||||
# Detect faces
|
||||
try:
|
||||
faces = detector.detect(image)
|
||||
except Exception as e:
|
||||
return {"status": "error", "error": str(e)}
|
||||
|
||||
# Draw detections
|
||||
bboxes = [f['bbox'] for f in faces]
|
||||
scores = [f['confidence'] for f in faces]
|
||||
landmarks = [f['landmarks'] for f in faces]
|
||||
draw_detections(image, bboxes, scores, landmarks, vis_threshold=vis_threshold)
|
||||
|
||||
# Add face count
|
||||
cv2.putText(image, f"Faces: {len(faces)}", (10, 30),
|
||||
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
|
||||
|
||||
# Save result
|
||||
cv2.imwrite(str(output_path), image)
|
||||
|
||||
return {"status": "success", "faces": len(faces)}
|
||||
|
||||
|
||||
def batch_process(detector, input_dir: str, output_dir: str, extensions: tuple,
|
||||
vis_threshold: float, skip_existing: bool):
|
||||
input_path = Path(input_dir)
|
||||
output_path = Path(output_dir)
|
||||
|
||||
# Create output directory
|
||||
output_path.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# Get image files
|
||||
image_files = get_image_files(input_path, extensions)
|
||||
|
||||
if not image_files:
|
||||
print(f"No image files found in '{input_dir}' with extensions {extensions}")
|
||||
return
|
||||
|
||||
print(f"Input: {input_dir}")
|
||||
print(f"Output: {output_dir}")
|
||||
print(f"Found {len(image_files)} images\n")
|
||||
|
||||
# Process images
|
||||
results = {
|
||||
"success": 0,
|
||||
"skipped": 0,
|
||||
"error": 0,
|
||||
"total_faces": 0
|
||||
}
|
||||
|
||||
with tqdm(image_files, desc="Processing images", unit="img") as pbar:
|
||||
for image_path in pbar:
|
||||
result = process_single_image(
|
||||
detector, image_path, output_path,
|
||||
vis_threshold, skip_existing
|
||||
)
|
||||
|
||||
if result["status"] == "success":
|
||||
results["success"] += 1
|
||||
results["total_faces"] += result["faces"]
|
||||
pbar.set_postfix({"faces": result["faces"]})
|
||||
elif result["status"] == "skipped":
|
||||
results["skipped"] += 1
|
||||
else:
|
||||
results["error"] += 1
|
||||
print(f"\nError processing {image_path.name}: {result.get('error', 'Unknown error')}")
|
||||
|
||||
# Print summary
|
||||
print(f"\nBatch processing complete!")
|
||||
print(f" Total images: {len(image_files)}")
|
||||
print(f" Successfully processed: {results['success']}")
|
||||
print(f" Skipped: {results['skipped']}")
|
||||
print(f" Errors: {results['error']}")
|
||||
print(f" Total faces detected: {results['total_faces']}")
|
||||
if results['success'] > 0:
|
||||
print(f" Average faces per image: {results['total_faces']/results['success']:.2f}")
|
||||
print(f"\nResults saved to: {output_dir}")
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(description="Batch process images with face detection")
|
||||
parser.add_argument("--input", type=str, required=True,
|
||||
help="Input directory containing images")
|
||||
parser.add_argument("--output", type=str, required=True,
|
||||
help="Output directory for processed images")
|
||||
parser.add_argument("--detector", type=str, default="retinaface",
|
||||
choices=['retinaface', 'scrfd'], help="Face detector to use")
|
||||
parser.add_argument("--threshold", type=float, default=0.6,
|
||||
help="Confidence threshold for visualization")
|
||||
parser.add_argument("--extensions", type=str, default="jpg,jpeg,png,bmp",
|
||||
help="Comma-separated list of image extensions")
|
||||
parser.add_argument("--skip_existing", action="store_true",
|
||||
help="Skip files that already exist in output directory")
|
||||
parser.add_argument("--verbose", action="store_true", help="Enable verbose logging")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
# Check input directory exists
|
||||
if not Path(args.input).exists():
|
||||
print(f"Error: Input directory '{args.input}' does not exist")
|
||||
return
|
||||
|
||||
if args.verbose:
|
||||
from uniface import enable_logging
|
||||
enable_logging()
|
||||
|
||||
# Parse extensions
|
||||
extensions = tuple(ext.strip() for ext in args.extensions.split(','))
|
||||
|
||||
# Initialize detector
|
||||
print(f"Initializing detector: {args.detector}")
|
||||
if args.detector == 'retinaface':
|
||||
detector = RetinaFace()
|
||||
else:
|
||||
detector = SCRFD()
|
||||
print("Detector initialized\n")
|
||||
|
||||
# Process batch
|
||||
batch_process(detector, args.input, args.output, extensions,
|
||||
args.threshold, args.skip_existing)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -1,31 +1,77 @@
|
||||
import argparse
|
||||
from uniface.constants import RetinaFaceWeights
|
||||
from uniface.constants import (
|
||||
RetinaFaceWeights, SphereFaceWeights, MobileFaceWeights, ArcFaceWeights,
|
||||
SCRFDWeights, DDAMFNWeights, AgeGenderWeights, LandmarkWeights
|
||||
)
|
||||
from uniface.model_store import verify_model_weights
|
||||
|
||||
|
||||
# All available model types
|
||||
ALL_MODEL_TYPES = {
|
||||
'retinaface': RetinaFaceWeights,
|
||||
'sphereface': SphereFaceWeights,
|
||||
'mobileface': MobileFaceWeights,
|
||||
'arcface': ArcFaceWeights,
|
||||
'scrfd': SCRFDWeights,
|
||||
'ddamfn': DDAMFNWeights,
|
||||
'agegender': AgeGenderWeights,
|
||||
'landmark': LandmarkWeights,
|
||||
}
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(description="Download and verify RetinaFace model weights.")
|
||||
parser = argparse.ArgumentParser(description="Download and verify model weights.")
|
||||
parser.add_argument(
|
||||
"--model-type",
|
||||
type=str,
|
||||
choices=list(ALL_MODEL_TYPES.keys()),
|
||||
help="Model type to download (e.g. retinaface, arcface). If not specified, all models will be downloaded.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--model",
|
||||
type=str,
|
||||
choices=[m.name for m in RetinaFaceWeights],
|
||||
help="Model to download (e.g. MNET_V2). If not specified, all models will be downloaded.",
|
||||
help="Specific model to download (e.g. MNET_V2). For RetinaFace backward compatibility.",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.model:
|
||||
weight = RetinaFaceWeights[args.model]
|
||||
print(f"📥 Downloading model: {weight.value}")
|
||||
verify_model_weights(weight) # Pass enum, not string
|
||||
else:
|
||||
print("📥 Downloading all models...")
|
||||
for weight in RetinaFaceWeights:
|
||||
verify_model_weights(weight) # Pass enum, not string
|
||||
if args.model and not args.model_type:
|
||||
# Backward compatibility - assume RetinaFace
|
||||
try:
|
||||
weight = RetinaFaceWeights[args.model]
|
||||
print(f"Downloading RetinaFace model: {weight.value}")
|
||||
verify_model_weights(weight)
|
||||
print("Model downloaded successfully.")
|
||||
except KeyError:
|
||||
print(f"Invalid RetinaFace model: {args.model}")
|
||||
print(f"Available models: {[m.name for m in RetinaFaceWeights]}")
|
||||
return
|
||||
|
||||
print("✅ All requested weights are ready and verified.")
|
||||
if args.model_type:
|
||||
# Download all models from specific type
|
||||
model_enum = ALL_MODEL_TYPES[args.model_type]
|
||||
print(f"Downloading all {args.model_type} models...")
|
||||
for weight in model_enum:
|
||||
print(f"Downloading: {weight.value}")
|
||||
try:
|
||||
verify_model_weights(weight)
|
||||
print(f"Downloaded: {weight.value}")
|
||||
except Exception as e:
|
||||
print(f"Failed to download {weight.value}: {e}")
|
||||
else:
|
||||
# Download all models from all types
|
||||
print("Downloading all models...")
|
||||
for model_type, model_enum in ALL_MODEL_TYPES.items():
|
||||
print(f"\nDownloading {model_type} models...")
|
||||
for weight in model_enum:
|
||||
print(f"Downloading: {weight.value}")
|
||||
try:
|
||||
verify_model_weights(weight)
|
||||
print(f"Downloaded: {weight.value}")
|
||||
except Exception as e:
|
||||
print(f"Failed to download {weight.value}: {e}")
|
||||
|
||||
print("\nDownload process completed.")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
||||
|
||||
|
||||
163
scripts/run_age_gender.py
Normal file
163
scripts/run_age_gender.py
Normal file
@@ -0,0 +1,163 @@
|
||||
"""Age and Gender Detection Demo Script"""
|
||||
|
||||
import os
|
||||
import cv2
|
||||
import argparse
|
||||
from pathlib import Path
|
||||
|
||||
from uniface import RetinaFace, SCRFD, AgeGender
|
||||
from uniface.visualization import draw_detections
|
||||
|
||||
|
||||
def process_image(detector, age_gender, image_path: str, save_dir: str = "outputs", vis_threshold: float = 0.6):
|
||||
image = cv2.imread(image_path)
|
||||
if image is None:
|
||||
print(f"Error: Failed to load image from '{image_path}'")
|
||||
return
|
||||
|
||||
print(f"Processing: {image_path}")
|
||||
|
||||
# Detect faces
|
||||
faces = detector.detect(image)
|
||||
print(f" Detected {len(faces)} face(s)")
|
||||
|
||||
if not faces:
|
||||
print(" No faces detected")
|
||||
return
|
||||
|
||||
# Draw detections
|
||||
bboxes = [f['bbox'] for f in faces]
|
||||
scores = [f['confidence'] for f in faces]
|
||||
landmarks = [f['landmarks'] for f in faces]
|
||||
draw_detections(image, bboxes, scores, landmarks, vis_threshold=vis_threshold)
|
||||
|
||||
# Predict and draw age/gender for each face
|
||||
for i, face in enumerate(faces):
|
||||
gender, age = age_gender.predict(image, face['bbox'])
|
||||
print(f" Face {i+1}: {gender}, {age} years old")
|
||||
|
||||
# Draw age and gender text
|
||||
bbox = face['bbox']
|
||||
x1, y1 = int(bbox[0]), int(bbox[1])
|
||||
text = f"{gender}, {age}y"
|
||||
|
||||
# Background rectangle for text
|
||||
(text_width, text_height), _ = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, 0.6, 2)
|
||||
cv2.rectangle(image, (x1, y1 - text_height - 10),
|
||||
(x1 + text_width + 10, y1), (0, 255, 0), -1)
|
||||
cv2.putText(image, text, (x1 + 5, y1 - 5),
|
||||
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 0), 2)
|
||||
|
||||
# Save result
|
||||
os.makedirs(save_dir, exist_ok=True)
|
||||
output_path = os.path.join(save_dir, f"{Path(image_path).stem}_age_gender.jpg")
|
||||
cv2.imwrite(output_path, image)
|
||||
print(f"Output saved: {output_path}")
|
||||
|
||||
|
||||
def run_webcam(detector, age_gender, vis_threshold: float = 0.6):
|
||||
cap = cv2.VideoCapture(0)
|
||||
|
||||
if not cap.isOpened():
|
||||
print("Cannot open webcam")
|
||||
return
|
||||
|
||||
print("Webcam opened")
|
||||
print("Press 'q' to quit\n")
|
||||
|
||||
frame_count = 0
|
||||
|
||||
try:
|
||||
while True:
|
||||
ret, frame = cap.read()
|
||||
if not ret:
|
||||
break
|
||||
|
||||
frame_count += 1
|
||||
|
||||
# Detect faces
|
||||
faces = detector.detect(frame)
|
||||
|
||||
# Draw detections
|
||||
bboxes = [f['bbox'] for f in faces]
|
||||
scores = [f['confidence'] for f in faces]
|
||||
landmarks = [f['landmarks'] for f in faces]
|
||||
draw_detections(frame, bboxes, scores, landmarks, vis_threshold=vis_threshold)
|
||||
|
||||
# Predict and draw age/gender for each face
|
||||
for face in faces:
|
||||
gender, age = age_gender.predict(frame, face['bbox'])
|
||||
|
||||
# Draw age and gender text
|
||||
bbox = face['bbox']
|
||||
x1, y1 = int(bbox[0]), int(bbox[1])
|
||||
text = f"{gender}, {age}y"
|
||||
|
||||
# Background rectangle for text
|
||||
(text_width, text_height), _ = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, 0.6, 2)
|
||||
cv2.rectangle(frame, (x1, y1 - text_height - 10),
|
||||
(x1 + text_width + 10, y1), (0, 255, 0), -1)
|
||||
cv2.putText(frame, text, (x1 + 5, y1 - 5),
|
||||
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 0), 2)
|
||||
|
||||
# Add info
|
||||
cv2.putText(frame, f"Faces: {len(faces)}", (10, 30),
|
||||
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
|
||||
cv2.putText(frame, "Press 'q' to quit", (10, frame.shape[0] - 10),
|
||||
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
|
||||
|
||||
cv2.imshow("Age & Gender Detection", frame)
|
||||
|
||||
if cv2.waitKey(1) & 0xFF == ord('q'):
|
||||
break
|
||||
|
||||
except KeyboardInterrupt:
|
||||
print("\nInterrupted")
|
||||
finally:
|
||||
cap.release()
|
||||
cv2.destroyAllWindows()
|
||||
print(f"\nProcessed {frame_count} frames")
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(description="Run age and gender detection")
|
||||
parser.add_argument("--image", type=str, help="Path to input image")
|
||||
parser.add_argument("--webcam", action="store_true", help="Use webcam instead of image")
|
||||
parser.add_argument("--detector", type=str, default="retinaface",
|
||||
choices=['retinaface', 'scrfd'], help="Face detector to use")
|
||||
parser.add_argument("--threshold", type=float, default=0.6,
|
||||
help="Confidence threshold for visualization")
|
||||
parser.add_argument("--save_dir", type=str, default="outputs",
|
||||
help="Directory to save output images")
|
||||
parser.add_argument("--verbose", action="store_true", help="Enable verbose logging")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
# Validate input
|
||||
if not args.image and not args.webcam:
|
||||
parser.error("Either --image or --webcam must be specified")
|
||||
|
||||
if args.verbose:
|
||||
from uniface import enable_logging
|
||||
enable_logging()
|
||||
|
||||
# Initialize models
|
||||
print(f"Initializing detector: {args.detector}")
|
||||
if args.detector == 'retinaface':
|
||||
detector = RetinaFace()
|
||||
else:
|
||||
detector = SCRFD()
|
||||
|
||||
print("Initializing age/gender model...")
|
||||
age_gender = AgeGender()
|
||||
print("Models initialized\n")
|
||||
|
||||
# Process
|
||||
if args.webcam:
|
||||
run_webcam(detector, age_gender, args.threshold)
|
||||
else:
|
||||
process_image(detector, age_gender, args.image, args.save_dir, args.threshold)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -4,24 +4,14 @@ import time
|
||||
import argparse
|
||||
import numpy as np
|
||||
|
||||
# UPDATED: Use the factory function and import from the new location
|
||||
from uniface.detection import create_detector
|
||||
from uniface.detection import RetinaFace, SCRFD
|
||||
from uniface.visualization import draw_detections
|
||||
|
||||
|
||||
def run_inference(detector, image_path: str, vis_threshold: float = 0.6, save_dir: str = "outputs"):
|
||||
"""
|
||||
Run face detection on a single image.
|
||||
|
||||
Args:
|
||||
detector: Initialized face detector.
|
||||
image_path (str): Path to input image.
|
||||
vis_threshold (float): Threshold for drawing detections.
|
||||
save_dir (str): Directory to save output image.
|
||||
"""
|
||||
image = cv2.imread(image_path)
|
||||
if image is None:
|
||||
print(f"❌ Error: Failed to load image from '{image_path}'")
|
||||
print(f"Error: Failed to load image from '{image_path}'")
|
||||
return
|
||||
|
||||
# 1. Get the list of face dictionaries from the detector
|
||||
@@ -40,7 +30,7 @@ def run_inference(detector, image_path: str, vis_threshold: float = 0.6, save_di
|
||||
os.makedirs(save_dir, exist_ok=True)
|
||||
output_path = os.path.join(save_dir, f"{os.path.splitext(os.path.basename(image_path))[0]}_out.jpg")
|
||||
cv2.imwrite(output_path, image)
|
||||
print(f"✅ Output saved at: {output_path}")
|
||||
print(f"Output saved at: {output_path}")
|
||||
|
||||
|
||||
def main():
|
||||
@@ -65,14 +55,17 @@ def main():
|
||||
enable_logging()
|
||||
|
||||
print(f"Initializing detector: {args.method}")
|
||||
detector = create_detector(method=args.method)
|
||||
if args.method == 'retinaface':
|
||||
detector = RetinaFace()
|
||||
else:
|
||||
detector = SCRFD()
|
||||
|
||||
avg_time = 0
|
||||
for i in range(args.iterations):
|
||||
start = time.time()
|
||||
run_inference(detector, args.image, args.threshold, args.save_dir)
|
||||
elapsed = time.time() - start
|
||||
print(f"[{i + 1}/{args.iterations}] ⏱️ Inference time: {elapsed:.4f} seconds")
|
||||
print(f"[{i + 1}/{args.iterations}] Inference time: {elapsed:.4f} seconds")
|
||||
if i >= 0: # Avoid counting the first run if it includes model loading time
|
||||
avg_time += elapsed
|
||||
|
||||
@@ -80,7 +73,7 @@ def main():
|
||||
# Adjust average calculation to exclude potential first-run overhead
|
||||
effective_iterations = max(1, args.iterations)
|
||||
print(
|
||||
f"\n🔥 Average inference time over {effective_iterations} runs: {avg_time / effective_iterations:.4f} seconds")
|
||||
f"\nAverage inference time over {effective_iterations} runs: {avg_time / effective_iterations:.4f} seconds")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
@@ -3,14 +3,12 @@ import argparse
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
# Use the new high-level factory functions
|
||||
from uniface.detection import create_detector
|
||||
from uniface.detection import RetinaFace, SCRFD
|
||||
from uniface.face_utils import compute_similarity
|
||||
from uniface.recognition import create_recognizer
|
||||
from uniface.recognition import ArcFace, MobileFace, SphereFace
|
||||
|
||||
|
||||
def extract_reference_embedding(detector, recognizer, image_path: str) -> np.ndarray:
|
||||
"""Extracts a normalized embedding from the first face found in an image."""
|
||||
image = cv2.imread(image_path)
|
||||
if image is None:
|
||||
raise RuntimeError(f"Failed to load image: {image_path}")
|
||||
@@ -28,7 +26,6 @@ def extract_reference_embedding(detector, recognizer, image_path: str) -> np.nda
|
||||
|
||||
|
||||
def run_video(detector, recognizer, ref_embedding: np.ndarray, threshold: float = 0.4):
|
||||
"""Run real-time face recognition from a webcam feed."""
|
||||
cap = cv2.VideoCapture(0)
|
||||
if not cap.isOpened():
|
||||
raise RuntimeError("Webcam could not be opened.")
|
||||
@@ -91,8 +88,17 @@ def main():
|
||||
enable_logging()
|
||||
|
||||
print("Initializing models...")
|
||||
detector = create_detector(method=args.detector)
|
||||
recognizer = create_recognizer(method=args.recognizer)
|
||||
if args.detector == 'retinaface':
|
||||
detector = RetinaFace()
|
||||
else:
|
||||
detector = SCRFD()
|
||||
|
||||
if args.recognizer == 'arcface':
|
||||
recognizer = ArcFace()
|
||||
elif args.recognizer == 'mobileface':
|
||||
recognizer = MobileFace()
|
||||
else:
|
||||
recognizer = SphereFace()
|
||||
|
||||
print("Extracting reference embedding...")
|
||||
ref_embedding = extract_reference_embedding(detector, recognizer, args.image)
|
||||
|
||||
149
scripts/run_landmarks.py
Normal file
149
scripts/run_landmarks.py
Normal file
@@ -0,0 +1,149 @@
|
||||
"""Facial Landmark Detection Demo Script"""
|
||||
|
||||
import os
|
||||
import cv2
|
||||
import argparse
|
||||
from pathlib import Path
|
||||
|
||||
from uniface import RetinaFace, SCRFD, Landmark106
|
||||
|
||||
|
||||
def process_image(detector, landmarker, image_path: str, save_dir: str = "outputs"):
|
||||
image = cv2.imread(image_path)
|
||||
if image is None:
|
||||
print(f"Error: Failed to load image from '{image_path}'")
|
||||
return
|
||||
|
||||
print(f"Processing: {image_path}")
|
||||
|
||||
# Detect faces
|
||||
faces = detector.detect(image)
|
||||
print(f" Detected {len(faces)} face(s)")
|
||||
|
||||
if not faces:
|
||||
print(" No faces detected")
|
||||
return
|
||||
|
||||
# Process each face
|
||||
for i, face in enumerate(faces):
|
||||
# Draw bounding box
|
||||
bbox = face['bbox']
|
||||
x1, y1, x2, y2 = map(int, bbox)
|
||||
cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
||||
|
||||
# Get and draw 106 landmarks
|
||||
landmarks = landmarker.get_landmarks(image, bbox)
|
||||
print(f" Face {i+1}: Extracted {len(landmarks)} landmarks")
|
||||
|
||||
for x, y in landmarks.astype(int):
|
||||
cv2.circle(image, (x, y), 1, (0, 255, 0), -1)
|
||||
|
||||
# Add face count
|
||||
cv2.putText(image, f"Face {i+1}", (x1, y1 - 10),
|
||||
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
|
||||
|
||||
# Add total count
|
||||
cv2.putText(image, f"Faces: {len(faces)}", (10, 30),
|
||||
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
|
||||
|
||||
# Save result
|
||||
os.makedirs(save_dir, exist_ok=True)
|
||||
output_path = os.path.join(save_dir, f"{Path(image_path).stem}_landmarks.jpg")
|
||||
cv2.imwrite(output_path, image)
|
||||
print(f"Output saved: {output_path}")
|
||||
|
||||
|
||||
def run_webcam(detector, landmarker):
|
||||
cap = cv2.VideoCapture(0)
|
||||
|
||||
if not cap.isOpened():
|
||||
print("Cannot open webcam")
|
||||
return
|
||||
|
||||
print("Webcam opened")
|
||||
print("Press 'q' to quit\n")
|
||||
|
||||
frame_count = 0
|
||||
|
||||
try:
|
||||
while True:
|
||||
ret, frame = cap.read()
|
||||
if not ret:
|
||||
break
|
||||
|
||||
frame_count += 1
|
||||
|
||||
# Detect faces
|
||||
faces = detector.detect(frame)
|
||||
|
||||
# Process each face
|
||||
for face in faces:
|
||||
# Draw bounding box
|
||||
bbox = face['bbox']
|
||||
x1, y1, x2, y2 = map(int, bbox)
|
||||
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
||||
|
||||
# Get and draw 106 landmarks
|
||||
landmarks = landmarker.get_landmarks(frame, bbox)
|
||||
for x, y in landmarks.astype(int):
|
||||
cv2.circle(frame, (x, y), 1, (0, 255, 0), -1)
|
||||
|
||||
# Add info
|
||||
cv2.putText(frame, f"Faces: {len(faces)}", (10, 30),
|
||||
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
|
||||
cv2.putText(frame, "Press 'q' to quit", (10, frame.shape[0] - 10),
|
||||
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
|
||||
|
||||
cv2.imshow("106-Point Landmarks", frame)
|
||||
|
||||
if cv2.waitKey(1) & 0xFF == ord('q'):
|
||||
break
|
||||
|
||||
except KeyboardInterrupt:
|
||||
print("\nInterrupted")
|
||||
finally:
|
||||
cap.release()
|
||||
cv2.destroyAllWindows()
|
||||
print(f"\nProcessed {frame_count} frames")
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(description="Run facial landmark detection")
|
||||
parser.add_argument("--image", type=str, help="Path to input image")
|
||||
parser.add_argument("--webcam", action="store_true", help="Use webcam instead of image")
|
||||
parser.add_argument("--detector", type=str, default="retinaface",
|
||||
choices=['retinaface', 'scrfd'], help="Face detector to use")
|
||||
parser.add_argument("--save_dir", type=str, default="outputs",
|
||||
help="Directory to save output images")
|
||||
parser.add_argument("--verbose", action="store_true", help="Enable verbose logging")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
# Validate input
|
||||
if not args.image and not args.webcam:
|
||||
parser.error("Either --image or --webcam must be specified")
|
||||
|
||||
if args.verbose:
|
||||
from uniface import enable_logging
|
||||
enable_logging()
|
||||
|
||||
# Initialize models
|
||||
print(f"Initializing detector: {args.detector}")
|
||||
if args.detector == 'retinaface':
|
||||
detector = RetinaFace()
|
||||
else:
|
||||
detector = SCRFD()
|
||||
|
||||
print("Initializing landmark detector...")
|
||||
landmarker = Landmark106()
|
||||
print("Models initialized\n")
|
||||
|
||||
# Process
|
||||
if args.webcam:
|
||||
run_webcam(detector, landmarker)
|
||||
else:
|
||||
process_image(detector, landmarker, args.image, args.save_dir)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -2,20 +2,12 @@ import cv2
|
||||
import argparse
|
||||
import numpy as np
|
||||
|
||||
# Use the new high-level factory functions for consistency
|
||||
from uniface.detection import create_detector
|
||||
from uniface.recognition import create_recognizer
|
||||
from uniface.detection import RetinaFace, SCRFD
|
||||
from uniface.recognition import ArcFace, MobileFace, SphereFace
|
||||
from uniface.face_utils import compute_similarity
|
||||
|
||||
|
||||
def run_inference(detector, recognizer, image_path: str):
|
||||
"""
|
||||
Detect faces and extract embeddings from a single image.
|
||||
|
||||
Args:
|
||||
detector: Initialized face detector.
|
||||
recognizer: Initialized face recognition model.
|
||||
image_path (str): Path to the input image.
|
||||
"""
|
||||
image = cv2.imread(image_path)
|
||||
if image is None:
|
||||
print(f"Error: Failed to load image from '{image_path}'")
|
||||
@@ -43,9 +35,47 @@ def run_inference(detector, recognizer, image_path: str):
|
||||
print(f" - L2 norm of normalized embedding: {np.linalg.norm(norm_embedding):.4f}")
|
||||
|
||||
|
||||
def compare_faces(detector, recognizer, image1_path: str, image2_path: str, threshold: float = 0.35):
|
||||
|
||||
# Load images
|
||||
img1 = cv2.imread(image1_path)
|
||||
img2 = cv2.imread(image2_path)
|
||||
|
||||
if img1 is None or img2 is None:
|
||||
print(f"Error: Failed to load images")
|
||||
return
|
||||
|
||||
# Detect faces
|
||||
faces1 = detector.detect(img1)
|
||||
faces2 = detector.detect(img2)
|
||||
|
||||
if not faces1 or not faces2:
|
||||
print("Error: No faces detected in one or both images")
|
||||
return
|
||||
|
||||
# Get landmarks for first face in each image
|
||||
landmarks1 = np.array(faces1[0]['landmarks'])
|
||||
landmarks2 = np.array(faces2[0]['landmarks'])
|
||||
|
||||
# Get normalized embeddings
|
||||
embedding1 = recognizer.get_normalized_embedding(img1, landmarks1)
|
||||
embedding2 = recognizer.get_normalized_embedding(img2, landmarks2)
|
||||
|
||||
# Compute similarity
|
||||
similarity = compute_similarity(embedding1, embedding2, normalized=True)
|
||||
is_match = similarity > threshold
|
||||
|
||||
print(f"Similarity: {similarity:.4f}")
|
||||
print(f"Result: {'Same person' if is_match else 'Different person'}")
|
||||
print(f"Threshold: {threshold}")
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(description="Extract face embeddings from a single image.")
|
||||
parser.add_argument("--image", type=str, required=True, help="Path to the input image.")
|
||||
parser = argparse.ArgumentParser(description="Face recognition and comparison.")
|
||||
parser.add_argument("--image", type=str, help="Path to single image for embedding extraction.")
|
||||
parser.add_argument("--image1", type=str, help="Path to first image for comparison.")
|
||||
parser.add_argument("--image2", type=str, help="Path to second image for comparison.")
|
||||
parser.add_argument("--threshold", type=float, default=0.35, help="Similarity threshold for face matching.")
|
||||
parser.add_argument(
|
||||
"--detector",
|
||||
type=str,
|
||||
@@ -69,12 +99,29 @@ def main():
|
||||
enable_logging()
|
||||
|
||||
print(f"Initializing detector: {args.detector}")
|
||||
detector = create_detector(method=args.detector)
|
||||
if args.detector == 'retinaface':
|
||||
detector = RetinaFace()
|
||||
else:
|
||||
detector = SCRFD()
|
||||
|
||||
print(f"Initializing recognizer: {args.recognizer}")
|
||||
recognizer = create_recognizer(method=args.recognizer)
|
||||
if args.recognizer == 'arcface':
|
||||
recognizer = ArcFace()
|
||||
elif args.recognizer == 'mobileface':
|
||||
recognizer = MobileFace()
|
||||
else:
|
||||
recognizer = SphereFace()
|
||||
|
||||
run_inference(detector, recognizer, args.image)
|
||||
if args.image1 and args.image2:
|
||||
# Face comparison mode
|
||||
print(f"Comparing faces: {args.image1} vs {args.image2}")
|
||||
compare_faces(detector, recognizer, args.image1, args.image2, args.threshold)
|
||||
elif args.image:
|
||||
# Single image embedding extraction mode
|
||||
run_inference(detector, recognizer, args.image)
|
||||
else:
|
||||
print("Error: Provide either --image for single image processing or --image1 and --image2 for comparison")
|
||||
parser.print_help()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
142
scripts/run_video_detection.py
Normal file
142
scripts/run_video_detection.py
Normal file
@@ -0,0 +1,142 @@
|
||||
"""Video Face Detection Script"""
|
||||
|
||||
import cv2
|
||||
import argparse
|
||||
from pathlib import Path
|
||||
from tqdm import tqdm
|
||||
|
||||
from uniface import RetinaFace, SCRFD
|
||||
from uniface.visualization import draw_detections
|
||||
|
||||
|
||||
def process_video(detector, input_path: str, output_path: str, vis_threshold: float = 0.6,
|
||||
fps: int = None, show_preview: bool = False):
|
||||
# Open input video
|
||||
cap = cv2.VideoCapture(input_path)
|
||||
if not cap.isOpened():
|
||||
print(f"Error: Cannot open video file '{input_path}'")
|
||||
return
|
||||
|
||||
# Get video properties
|
||||
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
||||
source_fps = cap.get(cv2.CAP_PROP_FPS)
|
||||
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
||||
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
||||
|
||||
output_fps = fps if fps is not None else source_fps
|
||||
|
||||
print(f"📹 Input: {input_path}")
|
||||
print(f" Resolution: {width}x{height}")
|
||||
print(f" FPS: {source_fps:.2f}")
|
||||
print(f" Total frames: {total_frames}")
|
||||
print(f"\n📹 Output: {output_path}")
|
||||
print(f" FPS: {output_fps:.2f}\n")
|
||||
|
||||
# Initialize video writer
|
||||
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
||||
out = cv2.VideoWriter(output_path, fourcc, output_fps, (width, height))
|
||||
|
||||
if not out.isOpened():
|
||||
print(f"Error: Cannot create output video '{output_path}'")
|
||||
cap.release()
|
||||
return
|
||||
|
||||
# Process frames
|
||||
frame_count = 0
|
||||
total_faces = 0
|
||||
|
||||
try:
|
||||
with tqdm(total=total_frames, desc="Processing", unit="frames") as pbar:
|
||||
while True:
|
||||
ret, frame = cap.read()
|
||||
if not ret:
|
||||
break
|
||||
|
||||
frame_count += 1
|
||||
|
||||
# Detect faces
|
||||
faces = detector.detect(frame)
|
||||
total_faces += len(faces)
|
||||
|
||||
# Draw detections
|
||||
bboxes = [f['bbox'] for f in faces]
|
||||
scores = [f['confidence'] for f in faces]
|
||||
landmarks = [f['landmarks'] for f in faces]
|
||||
draw_detections(frame, bboxes, scores, landmarks, vis_threshold=vis_threshold)
|
||||
|
||||
# Add frame info
|
||||
cv2.putText(frame, f"Faces: {len(faces)}", (10, 30),
|
||||
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
|
||||
|
||||
# Write frame
|
||||
out.write(frame)
|
||||
|
||||
# Show preview if requested
|
||||
if show_preview:
|
||||
cv2.imshow("Processing Video - Press 'q' to cancel", frame)
|
||||
if cv2.waitKey(1) & 0xFF == ord('q'):
|
||||
print("\nProcessing cancelled by user")
|
||||
break
|
||||
|
||||
pbar.update(1)
|
||||
|
||||
except KeyboardInterrupt:
|
||||
print("\nProcessing interrupted")
|
||||
finally:
|
||||
cap.release()
|
||||
out.release()
|
||||
if show_preview:
|
||||
cv2.destroyAllWindows()
|
||||
|
||||
# Summary
|
||||
print(f"\nProcessing complete!")
|
||||
print(f" Processed: {frame_count} frames")
|
||||
print(f" Total faces detected: {total_faces}")
|
||||
print(f" Average faces per frame: {total_faces/frame_count:.2f}" if frame_count > 0 else "")
|
||||
print(f" Output saved: {output_path}")
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(description="Process video with face detection")
|
||||
parser.add_argument("--input", type=str, required=True, help="Path to input video")
|
||||
parser.add_argument("--output", type=str, required=True, help="Path to output video")
|
||||
parser.add_argument("--detector", type=str, default="retinaface",
|
||||
choices=['retinaface', 'scrfd'], help="Face detector to use")
|
||||
parser.add_argument("--threshold", type=float, default=0.6,
|
||||
help="Confidence threshold for visualization")
|
||||
parser.add_argument("--fps", type=int, default=None,
|
||||
help="Output FPS (default: same as input)")
|
||||
parser.add_argument("--preview", action="store_true",
|
||||
help="Show live preview during processing")
|
||||
parser.add_argument("--verbose", action="store_true", help="Enable verbose logging")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
# Check input exists
|
||||
if not Path(args.input).exists():
|
||||
print(f"Error: Input file '{args.input}' does not exist")
|
||||
return
|
||||
|
||||
# Create output directory if needed
|
||||
output_dir = Path(args.output).parent
|
||||
if output_dir != Path('.'):
|
||||
output_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
if args.verbose:
|
||||
from uniface import enable_logging
|
||||
enable_logging()
|
||||
|
||||
# Initialize detector
|
||||
print(f"Initializing detector: {args.detector}")
|
||||
if args.detector == 'retinaface':
|
||||
detector = RetinaFace()
|
||||
else:
|
||||
detector = SCRFD()
|
||||
print("Detector initialized\n")
|
||||
|
||||
# Process video
|
||||
process_video(detector, args.input, args.output, args.threshold, args.fps, args.preview)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
116
tests/test_age_gender.py
Normal file
116
tests/test_age_gender.py
Normal file
@@ -0,0 +1,116 @@
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from uniface.attribute import AgeGender
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def age_gender_model():
|
||||
return AgeGender()
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def mock_image():
|
||||
return np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def mock_bbox():
|
||||
return [100, 100, 300, 300]
|
||||
|
||||
|
||||
def test_model_initialization(age_gender_model):
|
||||
assert age_gender_model is not None, "AgeGender model initialization failed."
|
||||
|
||||
|
||||
def test_prediction_output_format(age_gender_model, mock_image, mock_bbox):
|
||||
gender, age = age_gender_model.predict(mock_image, mock_bbox)
|
||||
assert isinstance(gender, str), f"Gender should be string, got {type(gender)}"
|
||||
assert isinstance(age, int), f"Age should be int, got {type(age)}"
|
||||
|
||||
|
||||
def test_gender_values(age_gender_model, mock_image, mock_bbox):
|
||||
gender, age = age_gender_model.predict(mock_image, mock_bbox)
|
||||
assert gender in ['Male', 'Female'], f"Gender should be 'Male' or 'Female', got '{gender}'"
|
||||
|
||||
|
||||
def test_age_range(age_gender_model, mock_image, mock_bbox):
|
||||
gender, age = age_gender_model.predict(mock_image, mock_bbox)
|
||||
assert 0 <= age <= 120, f"Age should be between 0 and 120, got {age}"
|
||||
|
||||
|
||||
def test_different_bbox_sizes(age_gender_model, mock_image):
|
||||
test_bboxes = [
|
||||
[50, 50, 150, 150],
|
||||
[100, 100, 300, 300],
|
||||
[50, 50, 400, 400],
|
||||
]
|
||||
|
||||
for bbox in test_bboxes:
|
||||
gender, age = age_gender_model.predict(mock_image, bbox)
|
||||
assert gender in ['Male', 'Female'], f"Failed for bbox {bbox}"
|
||||
assert 0 <= age <= 120, f"Age out of range for bbox {bbox}"
|
||||
|
||||
|
||||
def test_different_image_sizes(age_gender_model, mock_bbox):
|
||||
test_sizes = [(480, 640, 3), (720, 1280, 3), (1080, 1920, 3)]
|
||||
|
||||
for size in test_sizes:
|
||||
mock_image = np.random.randint(0, 255, size, dtype=np.uint8)
|
||||
gender, age = age_gender_model.predict(mock_image, mock_bbox)
|
||||
assert gender in ['Male', 'Female'], f"Failed for image size {size}"
|
||||
assert 0 <= age <= 120, f"Age out of range for image size {size}"
|
||||
|
||||
|
||||
def test_consistency(age_gender_model, mock_image, mock_bbox):
|
||||
gender1, age1 = age_gender_model.predict(mock_image, mock_bbox)
|
||||
gender2, age2 = age_gender_model.predict(mock_image, mock_bbox)
|
||||
|
||||
assert gender1 == gender2, "Same input should produce same gender prediction"
|
||||
assert age1 == age2, "Same input should produce same age prediction"
|
||||
|
||||
|
||||
def test_bbox_list_format(age_gender_model, mock_image):
|
||||
bbox_list = [100, 100, 300, 300]
|
||||
gender, age = age_gender_model.predict(mock_image, bbox_list)
|
||||
assert gender in ['Male', 'Female'], "Should work with bbox as list"
|
||||
assert 0 <= age <= 120, "Age should be in valid range"
|
||||
|
||||
|
||||
def test_bbox_array_format(age_gender_model, mock_image):
|
||||
bbox_array = np.array([100, 100, 300, 300])
|
||||
gender, age = age_gender_model.predict(mock_image, bbox_array)
|
||||
assert gender in ['Male', 'Female'], "Should work with bbox as numpy array"
|
||||
assert 0 <= age <= 120, "Age should be in valid range"
|
||||
|
||||
|
||||
def test_multiple_predictions(age_gender_model, mock_image):
|
||||
bboxes = [
|
||||
[50, 50, 150, 150],
|
||||
[200, 200, 350, 350],
|
||||
[400, 400, 550, 550],
|
||||
]
|
||||
|
||||
results = []
|
||||
for bbox in bboxes:
|
||||
gender, age = age_gender_model.predict(mock_image, bbox)
|
||||
results.append((gender, age))
|
||||
|
||||
assert len(results) == 3, "Should have 3 predictions"
|
||||
for gender, age in results:
|
||||
assert gender in ['Male', 'Female']
|
||||
assert 0 <= age <= 120
|
||||
|
||||
|
||||
def test_age_is_positive(age_gender_model, mock_image, mock_bbox):
|
||||
for _ in range(5):
|
||||
gender, age = age_gender_model.predict(mock_image, mock_bbox)
|
||||
assert age >= 0, f"Age should be non-negative, got {age}"
|
||||
|
||||
|
||||
def test_output_format_for_visualization(age_gender_model, mock_image, mock_bbox):
|
||||
gender, age = age_gender_model.predict(mock_image, mock_bbox)
|
||||
text = f"{gender}, {age}y"
|
||||
assert isinstance(text, str), "Should be able to format as string"
|
||||
assert "Male" in text or "Female" in text, "Text should contain gender"
|
||||
assert "y" in text, "Text should contain 'y' for years"
|
||||
278
tests/test_factory.py
Normal file
278
tests/test_factory.py
Normal file
@@ -0,0 +1,278 @@
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from uniface import (
|
||||
create_detector,
|
||||
create_landmarker,
|
||||
create_recognizer,
|
||||
detect_faces,
|
||||
list_available_detectors,
|
||||
)
|
||||
from uniface.constants import RetinaFaceWeights, SCRFDWeights
|
||||
|
||||
|
||||
# create_detector tests
|
||||
def test_create_detector_retinaface():
|
||||
"""
|
||||
Test creating a RetinaFace detector using factory function.
|
||||
"""
|
||||
detector = create_detector('retinaface')
|
||||
assert detector is not None, "Failed to create RetinaFace detector"
|
||||
|
||||
|
||||
def test_create_detector_scrfd():
|
||||
"""
|
||||
Test creating a SCRFD detector using factory function.
|
||||
"""
|
||||
detector = create_detector('scrfd')
|
||||
assert detector is not None, "Failed to create SCRFD detector"
|
||||
|
||||
|
||||
def test_create_detector_with_config():
|
||||
"""
|
||||
Test creating detector with custom configuration.
|
||||
"""
|
||||
detector = create_detector(
|
||||
'retinaface',
|
||||
model_name=RetinaFaceWeights.MNET_V2,
|
||||
conf_thresh=0.8,
|
||||
nms_thresh=0.3
|
||||
)
|
||||
assert detector is not None, "Failed to create detector with custom config"
|
||||
|
||||
|
||||
def test_create_detector_invalid_method():
|
||||
"""
|
||||
Test that invalid detector method raises an error.
|
||||
"""
|
||||
with pytest.raises((ValueError, KeyError)):
|
||||
create_detector('invalid_method')
|
||||
|
||||
|
||||
def test_create_detector_scrfd_with_model():
|
||||
"""
|
||||
Test creating SCRFD detector with specific model.
|
||||
"""
|
||||
detector = create_detector(
|
||||
'scrfd',
|
||||
model_name=SCRFDWeights.SCRFD_10G_KPS,
|
||||
conf_thresh=0.5
|
||||
)
|
||||
assert detector is not None, "Failed to create SCRFD with specific model"
|
||||
|
||||
|
||||
# create_recognizer tests
|
||||
def test_create_recognizer_arcface():
|
||||
"""
|
||||
Test creating an ArcFace recognizer using factory function.
|
||||
"""
|
||||
recognizer = create_recognizer('arcface')
|
||||
assert recognizer is not None, "Failed to create ArcFace recognizer"
|
||||
|
||||
|
||||
def test_create_recognizer_mobileface():
|
||||
"""
|
||||
Test creating a MobileFace recognizer using factory function.
|
||||
"""
|
||||
recognizer = create_recognizer('mobileface')
|
||||
assert recognizer is not None, "Failed to create MobileFace recognizer"
|
||||
|
||||
|
||||
def test_create_recognizer_sphereface():
|
||||
"""
|
||||
Test creating a SphereFace recognizer using factory function.
|
||||
"""
|
||||
recognizer = create_recognizer('sphereface')
|
||||
assert recognizer is not None, "Failed to create SphereFace recognizer"
|
||||
|
||||
|
||||
def test_create_recognizer_invalid_method():
|
||||
"""
|
||||
Test that invalid recognizer method raises an error.
|
||||
"""
|
||||
with pytest.raises((ValueError, KeyError)):
|
||||
create_recognizer('invalid_method')
|
||||
|
||||
|
||||
# create_landmarker tests
|
||||
def test_create_landmarker():
|
||||
"""
|
||||
Test creating a Landmark106 detector using factory function.
|
||||
"""
|
||||
landmarker = create_landmarker('2d106det')
|
||||
assert landmarker is not None, "Failed to create Landmark106 detector"
|
||||
|
||||
|
||||
def test_create_landmarker_default():
|
||||
"""
|
||||
Test creating landmarker with default parameters.
|
||||
"""
|
||||
landmarker = create_landmarker()
|
||||
assert landmarker is not None, "Failed to create default landmarker"
|
||||
|
||||
|
||||
def test_create_landmarker_invalid_method():
|
||||
"""
|
||||
Test that invalid landmarker method raises an error.
|
||||
"""
|
||||
with pytest.raises((ValueError, KeyError)):
|
||||
create_landmarker('invalid_method')
|
||||
|
||||
|
||||
# detect_faces tests
|
||||
def test_detect_faces_retinaface():
|
||||
"""
|
||||
Test high-level detect_faces function with RetinaFace.
|
||||
"""
|
||||
mock_image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
|
||||
faces = detect_faces(mock_image, method='retinaface')
|
||||
|
||||
assert isinstance(faces, list), "detect_faces should return a list"
|
||||
|
||||
|
||||
def test_detect_faces_scrfd():
|
||||
"""
|
||||
Test high-level detect_faces function with SCRFD.
|
||||
"""
|
||||
mock_image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
|
||||
faces = detect_faces(mock_image, method='scrfd')
|
||||
|
||||
assert isinstance(faces, list), "detect_faces should return a list"
|
||||
|
||||
|
||||
def test_detect_faces_with_threshold():
|
||||
"""
|
||||
Test detect_faces with custom confidence threshold.
|
||||
"""
|
||||
mock_image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
|
||||
faces = detect_faces(mock_image, method='retinaface', conf_thresh=0.8)
|
||||
|
||||
assert isinstance(faces, list), "detect_faces should return a list"
|
||||
|
||||
# All detections should respect threshold
|
||||
for face in faces:
|
||||
assert face['confidence'] >= 0.8, "All detections should meet confidence threshold"
|
||||
|
||||
|
||||
def test_detect_faces_default_method():
|
||||
"""
|
||||
Test detect_faces with default method (should use retinaface).
|
||||
"""
|
||||
mock_image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
|
||||
faces = detect_faces(mock_image) # No method specified
|
||||
|
||||
assert isinstance(faces, list), "detect_faces should return a list with default method"
|
||||
|
||||
|
||||
def test_detect_faces_empty_image():
|
||||
"""
|
||||
Test detect_faces on a blank image.
|
||||
"""
|
||||
empty_image = np.zeros((640, 640, 3), dtype=np.uint8)
|
||||
faces = detect_faces(empty_image, method='retinaface')
|
||||
|
||||
assert isinstance(faces, list), "Should return a list even for empty image"
|
||||
assert len(faces) == 0, "Should detect no faces in blank image"
|
||||
|
||||
|
||||
# list_available_detectors tests
|
||||
def test_list_available_detectors():
|
||||
"""
|
||||
Test that list_available_detectors returns a dictionary.
|
||||
"""
|
||||
detectors = list_available_detectors()
|
||||
|
||||
assert isinstance(detectors, dict), "Should return a dictionary of detectors"
|
||||
assert len(detectors) > 0, "Should have at least one detector available"
|
||||
|
||||
|
||||
def test_list_available_detectors_contents():
|
||||
"""
|
||||
Test that list includes known detectors.
|
||||
"""
|
||||
detectors = list_available_detectors()
|
||||
|
||||
# Should include at least these detectors
|
||||
assert 'retinaface' in detectors, "Should include 'retinaface'"
|
||||
assert 'scrfd' in detectors, "Should include 'scrfd'"
|
||||
|
||||
|
||||
# Integration tests
|
||||
def test_detector_inference_from_factory():
|
||||
"""
|
||||
Test that detector created from factory can perform inference.
|
||||
"""
|
||||
detector = create_detector('retinaface')
|
||||
mock_image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
|
||||
|
||||
faces = detector.detect(mock_image)
|
||||
assert isinstance(faces, list), "Detector should return list of faces"
|
||||
|
||||
|
||||
def test_recognizer_inference_from_factory():
|
||||
"""
|
||||
Test that recognizer created from factory can perform inference.
|
||||
"""
|
||||
recognizer = create_recognizer('arcface')
|
||||
mock_image = np.random.randint(0, 255, (112, 112, 3), dtype=np.uint8)
|
||||
|
||||
embedding = recognizer.get_embedding(mock_image)
|
||||
assert embedding is not None, "Recognizer should return embedding"
|
||||
assert embedding.shape[1] == 512, "Should return 512-dimensional embedding"
|
||||
|
||||
|
||||
def test_landmarker_inference_from_factory():
|
||||
"""
|
||||
Test that landmarker created from factory can perform inference.
|
||||
"""
|
||||
landmarker = create_landmarker('2d106det')
|
||||
mock_image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
|
||||
mock_bbox = [100, 100, 300, 300]
|
||||
|
||||
landmarks = landmarker.get_landmarks(mock_image, mock_bbox)
|
||||
assert landmarks is not None, "Landmarker should return landmarks"
|
||||
assert landmarks.shape == (106, 2), "Should return 106 landmarks"
|
||||
|
||||
|
||||
def test_multiple_detector_creation():
|
||||
"""
|
||||
Test that multiple detectors can be created independently.
|
||||
"""
|
||||
detector1 = create_detector('retinaface')
|
||||
detector2 = create_detector('scrfd')
|
||||
|
||||
assert detector1 is not None
|
||||
assert detector2 is not None
|
||||
assert detector1 is not detector2, "Should create separate instances"
|
||||
|
||||
|
||||
def test_detector_with_different_configs():
|
||||
"""
|
||||
Test creating multiple detectors with different configurations.
|
||||
"""
|
||||
detector_high_thresh = create_detector('retinaface', conf_thresh=0.9)
|
||||
detector_low_thresh = create_detector('retinaface', conf_thresh=0.3)
|
||||
|
||||
mock_image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
|
||||
|
||||
faces_high = detector_high_thresh.detect(mock_image)
|
||||
faces_low = detector_low_thresh.detect(mock_image)
|
||||
|
||||
# Both should work
|
||||
assert isinstance(faces_high, list)
|
||||
assert isinstance(faces_low, list)
|
||||
|
||||
|
||||
def test_factory_returns_correct_types():
|
||||
"""
|
||||
Test that factory functions return instances of the correct types.
|
||||
"""
|
||||
from uniface import RetinaFace, ArcFace, Landmark106
|
||||
|
||||
detector = create_detector('retinaface')
|
||||
recognizer = create_recognizer('arcface')
|
||||
landmarker = create_landmarker('2d106det')
|
||||
|
||||
assert isinstance(detector, RetinaFace), "Should return RetinaFace instance"
|
||||
assert isinstance(recognizer, ArcFace), "Should return ArcFace instance"
|
||||
assert isinstance(landmarker, Landmark106), "Should return Landmark106 instance"
|
||||
107
tests/test_landmark.py
Normal file
107
tests/test_landmark.py
Normal file
@@ -0,0 +1,107 @@
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from uniface.landmark import Landmark106
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def landmark_model():
|
||||
return Landmark106()
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def mock_image():
|
||||
return np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def mock_bbox():
|
||||
return [100, 100, 300, 300]
|
||||
|
||||
|
||||
def test_model_initialization(landmark_model):
|
||||
assert landmark_model is not None, "Landmark106 model initialization failed."
|
||||
|
||||
|
||||
def test_landmark_detection(landmark_model, mock_image, mock_bbox):
|
||||
landmarks = landmark_model.get_landmarks(mock_image, mock_bbox)
|
||||
assert landmarks.shape == (106, 2), f"Expected shape (106, 2), got {landmarks.shape}"
|
||||
|
||||
|
||||
def test_landmark_dtype(landmark_model, mock_image, mock_bbox):
|
||||
landmarks = landmark_model.get_landmarks(mock_image, mock_bbox)
|
||||
assert landmarks.dtype == np.float32, f"Expected float32, got {landmarks.dtype}"
|
||||
|
||||
|
||||
def test_landmark_coordinates_within_image(landmark_model, mock_image, mock_bbox):
|
||||
landmarks = landmark_model.get_landmarks(mock_image, mock_bbox)
|
||||
|
||||
x_coords = landmarks[:, 0]
|
||||
y_coords = landmarks[:, 1]
|
||||
|
||||
x1, y1, x2, y2 = mock_bbox
|
||||
margin = 50
|
||||
|
||||
x_in_bounds = np.sum((x_coords >= x1 - margin) & (x_coords <= x2 + margin))
|
||||
y_in_bounds = np.sum((y_coords >= y1 - margin) & (y_coords <= y2 + margin))
|
||||
|
||||
assert x_in_bounds >= 95, f"Only {x_in_bounds}/106 x-coordinates within bounds"
|
||||
assert y_in_bounds >= 95, f"Only {y_in_bounds}/106 y-coordinates within bounds"
|
||||
|
||||
|
||||
def test_different_bbox_sizes(landmark_model, mock_image):
|
||||
test_bboxes = [
|
||||
[50, 50, 150, 150],
|
||||
[100, 100, 300, 300],
|
||||
[50, 50, 400, 400],
|
||||
]
|
||||
|
||||
for bbox in test_bboxes:
|
||||
landmarks = landmark_model.get_landmarks(mock_image, bbox)
|
||||
assert landmarks.shape == (106, 2), f"Failed for bbox {bbox}"
|
||||
|
||||
|
||||
def test_landmark_array_format(landmark_model, mock_image, mock_bbox):
|
||||
landmarks = landmark_model.get_landmarks(mock_image, mock_bbox)
|
||||
landmarks_int = landmarks.astype(int)
|
||||
|
||||
assert landmarks_int.shape == (106, 2), "Integer conversion should preserve shape"
|
||||
assert landmarks_int.dtype in [np.int32, np.int64], "Should convert to integer type"
|
||||
|
||||
|
||||
def test_consistency(landmark_model, mock_image, mock_bbox):
|
||||
landmarks1 = landmark_model.get_landmarks(mock_image, mock_bbox)
|
||||
landmarks2 = landmark_model.get_landmarks(mock_image, mock_bbox)
|
||||
|
||||
assert np.allclose(landmarks1, landmarks2), "Same input should produce same landmarks"
|
||||
|
||||
|
||||
def test_different_image_sizes(landmark_model, mock_bbox):
|
||||
test_sizes = [(480, 640, 3), (720, 1280, 3), (1080, 1920, 3)]
|
||||
|
||||
for size in test_sizes:
|
||||
mock_image = np.random.randint(0, 255, size, dtype=np.uint8)
|
||||
landmarks = landmark_model.get_landmarks(mock_image, mock_bbox)
|
||||
assert landmarks.shape == (106, 2), f"Failed for image size {size}"
|
||||
|
||||
|
||||
def test_bbox_list_format(landmark_model, mock_image):
|
||||
bbox_list = [100, 100, 300, 300]
|
||||
landmarks = landmark_model.get_landmarks(mock_image, bbox_list)
|
||||
assert landmarks.shape == (106, 2), "Should work with bbox as list"
|
||||
|
||||
|
||||
def test_bbox_array_format(landmark_model, mock_image):
|
||||
bbox_array = np.array([100, 100, 300, 300])
|
||||
landmarks = landmark_model.get_landmarks(mock_image, bbox_array)
|
||||
assert landmarks.shape == (106, 2), "Should work with bbox as numpy array"
|
||||
|
||||
|
||||
def test_landmark_distribution(landmark_model, mock_image, mock_bbox):
|
||||
landmarks = landmark_model.get_landmarks(mock_image, mock_bbox)
|
||||
|
||||
x_variance = np.var(landmarks[:, 0])
|
||||
y_variance = np.var(landmarks[:, 1])
|
||||
|
||||
assert x_variance > 0, "Landmarks should have variation in x-coordinates"
|
||||
assert y_variance > 0, "Landmarks should have variation in y-coordinates"
|
||||
211
tests/test_recognition.py
Normal file
211
tests/test_recognition.py
Normal file
@@ -0,0 +1,211 @@
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from uniface.recognition import ArcFace, MobileFace, SphereFace
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def arcface_model():
|
||||
"""
|
||||
Fixture to initialize the ArcFace model for testing.
|
||||
"""
|
||||
return ArcFace()
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def mobileface_model():
|
||||
"""
|
||||
Fixture to initialize the MobileFace model for testing.
|
||||
"""
|
||||
return MobileFace()
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def sphereface_model():
|
||||
"""
|
||||
Fixture to initialize the SphereFace model for testing.
|
||||
"""
|
||||
return SphereFace()
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def mock_aligned_face():
|
||||
"""
|
||||
Create a mock 112x112 aligned face image.
|
||||
"""
|
||||
return np.random.randint(0, 255, (112, 112, 3), dtype=np.uint8)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def mock_landmarks():
|
||||
"""
|
||||
Create mock 5-point facial landmarks.
|
||||
"""
|
||||
return np.array([
|
||||
[38.2946, 51.6963],
|
||||
[73.5318, 51.5014],
|
||||
[56.0252, 71.7366],
|
||||
[41.5493, 92.3655],
|
||||
[70.7299, 92.2041]
|
||||
], dtype=np.float32)
|
||||
|
||||
|
||||
# ArcFace Tests
|
||||
def test_arcface_initialization(arcface_model):
|
||||
"""
|
||||
Test that the ArcFace model initializes correctly.
|
||||
"""
|
||||
assert arcface_model is not None, "ArcFace model initialization failed."
|
||||
|
||||
|
||||
def test_arcface_embedding_shape(arcface_model, mock_aligned_face):
|
||||
"""
|
||||
Test that ArcFace produces embeddings with the correct shape.
|
||||
"""
|
||||
embedding = arcface_model.get_embedding(mock_aligned_face)
|
||||
|
||||
# ArcFace typically produces 512-dimensional embeddings
|
||||
assert embedding.shape[1] == 512, f"Expected 512-dim embedding, got {embedding.shape[1]}"
|
||||
assert embedding.shape[0] == 1, "Embedding should have batch dimension of 1"
|
||||
|
||||
|
||||
def test_arcface_normalized_embedding(arcface_model, mock_landmarks):
|
||||
"""
|
||||
Test that normalized embeddings have unit length.
|
||||
"""
|
||||
# Create a larger mock image for alignment
|
||||
mock_image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
|
||||
|
||||
embedding = arcface_model.get_normalized_embedding(mock_image, mock_landmarks)
|
||||
|
||||
# Check that embedding is normalized (L2 norm ≈ 1.0)
|
||||
norm = np.linalg.norm(embedding)
|
||||
assert np.isclose(norm, 1.0, atol=1e-5), f"Normalized embedding should have norm 1.0, got {norm}"
|
||||
|
||||
|
||||
def test_arcface_embedding_dtype(arcface_model, mock_aligned_face):
|
||||
"""
|
||||
Test that embeddings have the correct data type.
|
||||
"""
|
||||
embedding = arcface_model.get_embedding(mock_aligned_face)
|
||||
assert embedding.dtype == np.float32, f"Expected float32, got {embedding.dtype}"
|
||||
|
||||
|
||||
def test_arcface_consistency(arcface_model, mock_aligned_face):
|
||||
"""
|
||||
Test that the same input produces the same embedding.
|
||||
"""
|
||||
embedding1 = arcface_model.get_embedding(mock_aligned_face)
|
||||
embedding2 = arcface_model.get_embedding(mock_aligned_face)
|
||||
|
||||
assert np.allclose(embedding1, embedding2), "Same input should produce same embedding"
|
||||
|
||||
|
||||
# MobileFace Tests
|
||||
def test_mobileface_initialization(mobileface_model):
|
||||
"""
|
||||
Test that the MobileFace model initializes correctly.
|
||||
"""
|
||||
assert mobileface_model is not None, "MobileFace model initialization failed."
|
||||
|
||||
|
||||
def test_mobileface_embedding_shape(mobileface_model, mock_aligned_face):
|
||||
"""
|
||||
Test that MobileFace produces embeddings with the correct shape.
|
||||
"""
|
||||
embedding = mobileface_model.get_embedding(mock_aligned_face)
|
||||
|
||||
# MobileFace typically produces 512-dimensional embeddings
|
||||
assert embedding.shape[1] == 512, f"Expected 512-dim embedding, got {embedding.shape[1]}"
|
||||
assert embedding.shape[0] == 1, "Embedding should have batch dimension of 1"
|
||||
|
||||
|
||||
def test_mobileface_normalized_embedding(mobileface_model, mock_landmarks):
|
||||
"""
|
||||
Test that MobileFace normalized embeddings have unit length.
|
||||
"""
|
||||
mock_image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
|
||||
|
||||
embedding = mobileface_model.get_normalized_embedding(mock_image, mock_landmarks)
|
||||
|
||||
norm = np.linalg.norm(embedding)
|
||||
assert np.isclose(norm, 1.0, atol=1e-5), f"Normalized embedding should have norm 1.0, got {norm}"
|
||||
|
||||
|
||||
# SphereFace Tests
|
||||
def test_sphereface_initialization(sphereface_model):
|
||||
"""
|
||||
Test that the SphereFace model initializes correctly.
|
||||
"""
|
||||
assert sphereface_model is not None, "SphereFace model initialization failed."
|
||||
|
||||
|
||||
def test_sphereface_embedding_shape(sphereface_model, mock_aligned_face):
|
||||
"""
|
||||
Test that SphereFace produces embeddings with the correct shape.
|
||||
"""
|
||||
embedding = sphereface_model.get_embedding(mock_aligned_face)
|
||||
|
||||
# SphereFace typically produces 512-dimensional embeddings
|
||||
assert embedding.shape[1] == 512, f"Expected 512-dim embedding, got {embedding.shape[1]}"
|
||||
assert embedding.shape[0] == 1, "Embedding should have batch dimension of 1"
|
||||
|
||||
|
||||
def test_sphereface_normalized_embedding(sphereface_model, mock_landmarks):
|
||||
"""
|
||||
Test that SphereFace normalized embeddings have unit length.
|
||||
"""
|
||||
mock_image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
|
||||
|
||||
embedding = sphereface_model.get_normalized_embedding(mock_image, mock_landmarks)
|
||||
|
||||
norm = np.linalg.norm(embedding)
|
||||
assert np.isclose(norm, 1.0, atol=1e-5), f"Normalized embedding should have norm 1.0, got {norm}"
|
||||
|
||||
|
||||
# Cross-model comparison tests
|
||||
def test_different_models_different_embeddings(arcface_model, mobileface_model, mock_aligned_face):
|
||||
"""
|
||||
Test that different models produce different embeddings for the same input.
|
||||
"""
|
||||
arcface_emb = arcface_model.get_embedding(mock_aligned_face)
|
||||
mobileface_emb = mobileface_model.get_embedding(mock_aligned_face)
|
||||
|
||||
# Embeddings should be different (with high probability for random input)
|
||||
# We check that they're not identical
|
||||
assert not np.allclose(arcface_emb, mobileface_emb), \
|
||||
"Different models should produce different embeddings"
|
||||
|
||||
|
||||
def test_embedding_similarity_computation(arcface_model, mock_aligned_face):
|
||||
"""
|
||||
Test computing similarity between embeddings.
|
||||
"""
|
||||
# Get two embeddings
|
||||
emb1 = arcface_model.get_embedding(mock_aligned_face)
|
||||
|
||||
# Create a slightly different image
|
||||
mock_aligned_face2 = mock_aligned_face.copy()
|
||||
mock_aligned_face2[:10, :10] = 0 # Modify a small region
|
||||
emb2 = arcface_model.get_embedding(mock_aligned_face2)
|
||||
|
||||
# Compute cosine similarity
|
||||
from uniface import compute_similarity
|
||||
similarity = compute_similarity(emb1, emb2)
|
||||
|
||||
# Similarity should be between -1 and 1
|
||||
assert -1.0 <= similarity <= 1.0, f"Similarity should be in [-1, 1], got {similarity}"
|
||||
|
||||
|
||||
def test_same_face_high_similarity(arcface_model, mock_aligned_face):
|
||||
"""
|
||||
Test that the same face produces high similarity.
|
||||
"""
|
||||
emb1 = arcface_model.get_embedding(mock_aligned_face)
|
||||
emb2 = arcface_model.get_embedding(mock_aligned_face)
|
||||
|
||||
from uniface import compute_similarity
|
||||
similarity = compute_similarity(emb1, emb2)
|
||||
|
||||
# Same image should have similarity close to 1.0
|
||||
assert similarity > 0.99, f"Same face should have similarity > 0.99, got {similarity}"
|
||||
@@ -7,9 +7,6 @@ from uniface.detection import RetinaFace
|
||||
|
||||
@pytest.fixture
|
||||
def retinaface_model():
|
||||
"""
|
||||
Fixture to initialize the RetinaFace model for testing.
|
||||
"""
|
||||
return RetinaFace(
|
||||
model_name=RetinaFaceWeights.MNET_V2,
|
||||
conf_thresh=0.5,
|
||||
@@ -20,67 +17,39 @@ def retinaface_model():
|
||||
|
||||
|
||||
def test_model_initialization(retinaface_model):
|
||||
"""
|
||||
Test that the RetinaFace model initializes correctly.
|
||||
"""
|
||||
assert retinaface_model is not None, "Model initialization failed."
|
||||
|
||||
|
||||
def test_inference_on_640x640_image(retinaface_model):
|
||||
"""
|
||||
Test inference on a 640x640 BGR image.
|
||||
"""
|
||||
# Generate a mock 640x640 BGR image
|
||||
mock_image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
|
||||
|
||||
# Run inference - returns list of dictionaries
|
||||
faces = retinaface_model.detect(mock_image)
|
||||
|
||||
# Check output type
|
||||
assert isinstance(faces, list), "Detections should be a list."
|
||||
|
||||
# Check that each face has the expected structure
|
||||
for face in faces:
|
||||
assert isinstance(face, dict), "Each detection should be a dictionary."
|
||||
assert "bbox" in face, "Each detection should have a 'bbox' key."
|
||||
assert "confidence" in face, "Each detection should have a 'confidence' key."
|
||||
assert "landmarks" in face, "Each detection should have a 'landmarks' key."
|
||||
|
||||
# Check bbox format
|
||||
bbox = face["bbox"]
|
||||
assert len(bbox) == 4, "BBox should have 4 values (x1, y1, x2, y2)."
|
||||
|
||||
# Check landmarks format
|
||||
landmarks = face["landmarks"]
|
||||
assert len(landmarks) == 5, "Should have 5 landmark points."
|
||||
assert all(len(pt) == 2 for pt in landmarks), "Each landmark should be (x, y)."
|
||||
|
||||
|
||||
def test_confidence_threshold(retinaface_model):
|
||||
"""
|
||||
Test that detections respect the confidence threshold.
|
||||
"""
|
||||
# Generate a mock 640x640 BGR image
|
||||
mock_image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
|
||||
|
||||
# Run inference
|
||||
faces = retinaface_model.detect(mock_image)
|
||||
|
||||
# Ensure all detections have confidence scores above the threshold
|
||||
for face in faces:
|
||||
confidence = face["confidence"]
|
||||
assert confidence >= 0.5, f"Detection has confidence {confidence} below threshold 0.5"
|
||||
|
||||
|
||||
def test_no_faces_detected(retinaface_model):
|
||||
"""
|
||||
Test inference on an image without detectable faces.
|
||||
"""
|
||||
# Generate an empty (black) 640x640 image
|
||||
empty_image = np.zeros((640, 640, 3), dtype=np.uint8)
|
||||
|
||||
# Run inference
|
||||
faces = retinaface_model.detect(empty_image)
|
||||
|
||||
# Ensure no detections are found
|
||||
assert len(faces) == 0, "Should detect no faces in a blank image."
|
||||
|
||||
71
tests/test_scrfd.py
Normal file
71
tests/test_scrfd.py
Normal file
@@ -0,0 +1,71 @@
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from uniface.constants import SCRFDWeights
|
||||
from uniface.detection import SCRFD
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def scrfd_model():
|
||||
return SCRFD(
|
||||
model_name=SCRFDWeights.SCRFD_500M_KPS,
|
||||
conf_thresh=0.5,
|
||||
nms_thresh=0.4,
|
||||
)
|
||||
|
||||
|
||||
def test_model_initialization(scrfd_model):
|
||||
assert scrfd_model is not None, "Model initialization failed."
|
||||
|
||||
|
||||
def test_inference_on_640x640_image(scrfd_model):
|
||||
mock_image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
|
||||
faces = scrfd_model.detect(mock_image)
|
||||
|
||||
assert isinstance(faces, list), "Detections should be a list."
|
||||
|
||||
for face in faces:
|
||||
assert isinstance(face, dict), "Each detection should be a dictionary."
|
||||
assert "bbox" in face, "Each detection should have a 'bbox' key."
|
||||
assert "confidence" in face, "Each detection should have a 'confidence' key."
|
||||
assert "landmarks" in face, "Each detection should have a 'landmarks' key."
|
||||
|
||||
bbox = face["bbox"]
|
||||
assert len(bbox) == 4, "BBox should have 4 values (x1, y1, x2, y2)."
|
||||
|
||||
landmarks = face["landmarks"]
|
||||
assert len(landmarks) == 5, "Should have 5 landmark points."
|
||||
assert all(len(pt) == 2 for pt in landmarks), "Each landmark should be (x, y)."
|
||||
|
||||
|
||||
def test_confidence_threshold(scrfd_model):
|
||||
mock_image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
|
||||
faces = scrfd_model.detect(mock_image)
|
||||
|
||||
for face in faces:
|
||||
confidence = face["confidence"]
|
||||
assert confidence >= 0.5, f"Detection has confidence {confidence} below threshold 0.5"
|
||||
|
||||
|
||||
def test_no_faces_detected(scrfd_model):
|
||||
empty_image = np.zeros((640, 640, 3), dtype=np.uint8)
|
||||
faces = scrfd_model.detect(empty_image)
|
||||
assert len(faces) == 0, "Should detect no faces in a blank image."
|
||||
|
||||
|
||||
def test_different_input_sizes(scrfd_model):
|
||||
test_sizes = [(480, 640, 3), (720, 1280, 3), (1080, 1920, 3)]
|
||||
|
||||
for size in test_sizes:
|
||||
mock_image = np.random.randint(0, 255, size, dtype=np.uint8)
|
||||
faces = scrfd_model.detect(mock_image)
|
||||
assert isinstance(faces, list), f"Should return list for size {size}"
|
||||
|
||||
|
||||
def test_scrfd_10g_model():
|
||||
model = SCRFD(model_name=SCRFDWeights.SCRFD_10G_KPS, conf_thresh=0.5)
|
||||
assert model is not None, "SCRFD 10G model initialization failed."
|
||||
|
||||
mock_image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
|
||||
faces = model.detect(mock_image)
|
||||
assert isinstance(faces, list), "SCRFD 10G should return list of detections."
|
||||
247
tests/test_utils.py
Normal file
247
tests/test_utils.py
Normal file
@@ -0,0 +1,247 @@
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from uniface import compute_similarity, face_alignment
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def mock_image():
|
||||
"""
|
||||
Create a mock 640x640 BGR image.
|
||||
"""
|
||||
return np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def mock_landmarks():
|
||||
"""
|
||||
Create mock 5-point facial landmarks.
|
||||
Standard positions for a face roughly centered at (112/2, 112/2).
|
||||
"""
|
||||
return np.array([
|
||||
[38.2946, 51.6963], # Left eye
|
||||
[73.5318, 51.5014], # Right eye
|
||||
[56.0252, 71.7366], # Nose
|
||||
[41.5493, 92.3655], # Left mouth corner
|
||||
[70.7299, 92.2041] # Right mouth corner
|
||||
], dtype=np.float32)
|
||||
|
||||
|
||||
# compute_similarity tests
|
||||
def test_compute_similarity_same_embedding():
|
||||
"""
|
||||
Test that similarity of an embedding with itself is 1.0.
|
||||
"""
|
||||
embedding = np.random.randn(1, 512).astype(np.float32)
|
||||
embedding = embedding / np.linalg.norm(embedding) # Normalize
|
||||
|
||||
similarity = compute_similarity(embedding, embedding)
|
||||
assert np.isclose(similarity, 1.0, atol=1e-5), f"Self-similarity should be 1.0, got {similarity}"
|
||||
|
||||
|
||||
def test_compute_similarity_range():
|
||||
"""
|
||||
Test that similarity is always in the range [-1, 1].
|
||||
"""
|
||||
# Test with multiple random embeddings
|
||||
for _ in range(10):
|
||||
emb1 = np.random.randn(1, 512).astype(np.float32)
|
||||
emb2 = np.random.randn(1, 512).astype(np.float32)
|
||||
|
||||
# Normalize
|
||||
emb1 = emb1 / np.linalg.norm(emb1)
|
||||
emb2 = emb2 / np.linalg.norm(emb2)
|
||||
|
||||
similarity = compute_similarity(emb1, emb2)
|
||||
assert -1.0 <= similarity <= 1.0, f"Similarity should be in [-1, 1], got {similarity}"
|
||||
|
||||
|
||||
def test_compute_similarity_orthogonal():
|
||||
"""
|
||||
Test that orthogonal embeddings have similarity close to 0.
|
||||
"""
|
||||
# Create orthogonal embeddings
|
||||
emb1 = np.zeros((1, 512), dtype=np.float32)
|
||||
emb1[0, 0] = 1.0 # [1, 0, 0, ..., 0]
|
||||
|
||||
emb2 = np.zeros((1, 512), dtype=np.float32)
|
||||
emb2[0, 1] = 1.0 # [0, 1, 0, ..., 0]
|
||||
|
||||
similarity = compute_similarity(emb1, emb2)
|
||||
assert np.isclose(similarity, 0.0, atol=1e-5), f"Orthogonal embeddings should have similarity 0.0, got {similarity}"
|
||||
|
||||
|
||||
def test_compute_similarity_opposite():
|
||||
"""
|
||||
Test that opposite embeddings have similarity close to -1.
|
||||
"""
|
||||
emb1 = np.ones((1, 512), dtype=np.float32)
|
||||
emb1 = emb1 / np.linalg.norm(emb1)
|
||||
|
||||
emb2 = -emb1 # Opposite direction
|
||||
|
||||
similarity = compute_similarity(emb1, emb2)
|
||||
assert np.isclose(similarity, -1.0, atol=1e-5), f"Opposite embeddings should have similarity -1.0, got {similarity}"
|
||||
|
||||
|
||||
def test_compute_similarity_symmetry():
|
||||
"""
|
||||
Test that similarity(A, B) == similarity(B, A).
|
||||
"""
|
||||
emb1 = np.random.randn(1, 512).astype(np.float32)
|
||||
emb2 = np.random.randn(1, 512).astype(np.float32)
|
||||
|
||||
# Normalize
|
||||
emb1 = emb1 / np.linalg.norm(emb1)
|
||||
emb2 = emb2 / np.linalg.norm(emb2)
|
||||
|
||||
sim_12 = compute_similarity(emb1, emb2)
|
||||
sim_21 = compute_similarity(emb2, emb1)
|
||||
|
||||
assert np.isclose(sim_12, sim_21), "Similarity should be symmetric"
|
||||
|
||||
|
||||
def test_compute_similarity_dtype():
|
||||
"""
|
||||
Test that compute_similarity returns a float.
|
||||
"""
|
||||
emb1 = np.random.randn(1, 512).astype(np.float32)
|
||||
emb2 = np.random.randn(1, 512).astype(np.float32)
|
||||
|
||||
# Normalize
|
||||
emb1 = emb1 / np.linalg.norm(emb1)
|
||||
emb2 = emb2 / np.linalg.norm(emb2)
|
||||
|
||||
similarity = compute_similarity(emb1, emb2)
|
||||
assert isinstance(similarity, (float, np.floating)), f"Similarity should be float, got {type(similarity)}"
|
||||
|
||||
|
||||
# face_alignment tests
|
||||
def test_face_alignment_output_shape(mock_image, mock_landmarks):
|
||||
"""
|
||||
Test that face_alignment produces output with the correct shape.
|
||||
"""
|
||||
aligned, _ = face_alignment(mock_image, mock_landmarks, image_size=(112, 112))
|
||||
|
||||
assert aligned.shape == (112, 112, 3), f"Expected shape (112, 112, 3), got {aligned.shape}"
|
||||
|
||||
|
||||
def test_face_alignment_dtype(mock_image, mock_landmarks):
|
||||
"""
|
||||
Test that aligned face has the correct data type.
|
||||
"""
|
||||
aligned, _ = face_alignment(mock_image, mock_landmarks, image_size=(112, 112))
|
||||
|
||||
assert aligned.dtype == np.uint8, f"Expected uint8, got {aligned.dtype}"
|
||||
|
||||
|
||||
def test_face_alignment_different_sizes(mock_image, mock_landmarks):
|
||||
"""
|
||||
Test face alignment with different output sizes.
|
||||
"""
|
||||
# Only test sizes that are multiples of 112 or 128 as required by the function
|
||||
test_sizes = [(112, 112), (128, 128), (224, 224)]
|
||||
|
||||
for size in test_sizes:
|
||||
aligned, _ = face_alignment(mock_image, mock_landmarks, image_size=size)
|
||||
assert aligned.shape == (*size, 3), f"Failed for size {size}"
|
||||
|
||||
|
||||
def test_face_alignment_consistency(mock_image, mock_landmarks):
|
||||
"""
|
||||
Test that the same input produces the same aligned face.
|
||||
"""
|
||||
aligned1, _ = face_alignment(mock_image, mock_landmarks, image_size=(112, 112))
|
||||
aligned2, _ = face_alignment(mock_image, mock_landmarks, image_size=(112, 112))
|
||||
|
||||
assert np.allclose(aligned1, aligned2), "Same input should produce same aligned face"
|
||||
|
||||
|
||||
def test_face_alignment_landmarks_as_list(mock_image):
|
||||
"""
|
||||
Test that landmarks can be passed as a list of lists (converted to array).
|
||||
"""
|
||||
landmarks_list = [
|
||||
[38.2946, 51.6963],
|
||||
[73.5318, 51.5014],
|
||||
[56.0252, 71.7366],
|
||||
[41.5493, 92.3655],
|
||||
[70.7299, 92.2041]
|
||||
]
|
||||
|
||||
# Convert list to numpy array before passing to face_alignment
|
||||
landmarks_array = np.array(landmarks_list, dtype=np.float32)
|
||||
aligned, _ = face_alignment(mock_image, landmarks_array, image_size=(112, 112))
|
||||
assert aligned.shape == (112, 112, 3), "Should work with landmarks as array"
|
||||
|
||||
|
||||
def test_face_alignment_value_range(mock_image, mock_landmarks):
|
||||
"""
|
||||
Test that aligned face pixel values are in valid range [0, 255].
|
||||
"""
|
||||
aligned, _ = face_alignment(mock_image, mock_landmarks, image_size=(112, 112))
|
||||
|
||||
assert np.all(aligned >= 0), "Pixel values should be >= 0"
|
||||
assert np.all(aligned <= 255), "Pixel values should be <= 255"
|
||||
|
||||
|
||||
def test_face_alignment_not_all_zeros(mock_image, mock_landmarks):
|
||||
"""
|
||||
Test that aligned face is not all zeros (actual transformation occurred).
|
||||
"""
|
||||
aligned, _ = face_alignment(mock_image, mock_landmarks, image_size=(112, 112))
|
||||
|
||||
# At least some pixels should be non-zero
|
||||
assert np.any(aligned > 0), "Aligned face should have some non-zero pixels"
|
||||
|
||||
|
||||
def test_face_alignment_from_different_positions(mock_image):
|
||||
"""
|
||||
Test alignment with landmarks at different positions in the image.
|
||||
"""
|
||||
# Landmarks at different positions
|
||||
positions = [
|
||||
np.array([[100, 100], [150, 100], [125, 130], [110, 150], [140, 150]], dtype=np.float32),
|
||||
np.array([[300, 200], [350, 200], [325, 230], [310, 250], [340, 250]], dtype=np.float32),
|
||||
np.array([[500, 400], [550, 400], [525, 430], [510, 450], [540, 450]], dtype=np.float32),
|
||||
]
|
||||
|
||||
for landmarks in positions:
|
||||
aligned, _ = face_alignment(mock_image, landmarks, image_size=(112, 112))
|
||||
assert aligned.shape == (112, 112, 3), f"Failed for landmarks at {landmarks[0]}"
|
||||
|
||||
|
||||
def test_face_alignment_landmark_count(mock_image):
|
||||
"""
|
||||
Test that face_alignment works specifically with 5-point landmarks.
|
||||
"""
|
||||
# Standard 5-point landmarks
|
||||
landmarks_5pt = np.array([
|
||||
[38.2946, 51.6963],
|
||||
[73.5318, 51.5014],
|
||||
[56.0252, 71.7366],
|
||||
[41.5493, 92.3655],
|
||||
[70.7299, 92.2041]
|
||||
], dtype=np.float32)
|
||||
|
||||
aligned, _ = face_alignment(mock_image, landmarks_5pt, image_size=(112, 112))
|
||||
assert aligned.shape == (112, 112, 3), "Should work with 5-point landmarks"
|
||||
|
||||
|
||||
def test_compute_similarity_with_recognition_embeddings():
|
||||
"""
|
||||
Test compute_similarity with realistic embedding dimensions.
|
||||
"""
|
||||
# Simulate ArcFace/MobileFace/SphereFace embeddings (512-dim)
|
||||
emb1 = np.random.randn(1, 512).astype(np.float32)
|
||||
emb2 = np.random.randn(1, 512).astype(np.float32)
|
||||
|
||||
# Normalize (as done in get_normalized_embedding)
|
||||
emb1 = emb1 / np.linalg.norm(emb1)
|
||||
emb2 = emb2 / np.linalg.norm(emb2)
|
||||
|
||||
similarity = compute_similarity(emb1, emb2)
|
||||
|
||||
# Should be a valid similarity score
|
||||
assert -1.0 <= similarity <= 1.0
|
||||
assert isinstance(similarity, (float, np.floating))
|
||||
@@ -13,7 +13,7 @@
|
||||
|
||||
__license__ = "MIT"
|
||||
__author__ = "Yakhyokhuja Valikhujaev"
|
||||
__version__ = "1.0.0"
|
||||
__version__ = "1.1.0"
|
||||
|
||||
|
||||
from uniface.face_utils import compute_similarity, face_alignment
|
||||
|
||||
@@ -29,7 +29,7 @@ class ArcFaceWeights(str, Enum):
|
||||
Pretrained weights from ArcFace model (insightface).
|
||||
https://github.com/deepinsight/insightface
|
||||
"""
|
||||
MNET = "arcface_mnet"
|
||||
MNET = "arcface_mnet"
|
||||
RESNET = "arcface_resnet"
|
||||
|
||||
class RetinaFaceWeights(str, Enum):
|
||||
@@ -84,42 +84,42 @@ class LandmarkWeights(str, Enum):
|
||||
MODEL_URLS: Dict[Enum, str] = {
|
||||
|
||||
# RetinaFace
|
||||
RetinaFaceWeights.MNET_025: 'https://github.com/yakhyo/uniface/releases/download/v0.1.2/retinaface_mv1_0.25.onnx',
|
||||
RetinaFaceWeights.MNET_050: 'https://github.com/yakhyo/uniface/releases/download/v0.1.2/retinaface_mv1_0.50.onnx',
|
||||
RetinaFaceWeights.MNET_V1: 'https://github.com/yakhyo/uniface/releases/download/v0.1.2/retinaface_mv1.onnx',
|
||||
RetinaFaceWeights.MNET_V2: 'https://github.com/yakhyo/uniface/releases/download/v0.1.2/retinaface_mv2.onnx',
|
||||
RetinaFaceWeights.RESNET18: 'https://github.com/yakhyo/uniface/releases/download/v0.1.2/retinaface_r18.onnx',
|
||||
RetinaFaceWeights.RESNET34: 'https://github.com/yakhyo/uniface/releases/download/v0.1.2/retinaface_r34.onnx',
|
||||
RetinaFaceWeights.MNET_025: 'https://github.com/yakhyo/uniface/releases/download/weights/retinaface_mv1_0.25.onnx',
|
||||
RetinaFaceWeights.MNET_050: 'https://github.com/yakhyo/uniface/releases/download/weights/retinaface_mv1_0.50.onnx',
|
||||
RetinaFaceWeights.MNET_V1: 'https://github.com/yakhyo/uniface/releases/download/weights/retinaface_mv1.onnx',
|
||||
RetinaFaceWeights.MNET_V2: 'https://github.com/yakhyo/uniface/releases/download/weights/retinaface_mv2.onnx',
|
||||
RetinaFaceWeights.RESNET18: 'https://github.com/yakhyo/uniface/releases/download/weights/retinaface_r18.onnx',
|
||||
RetinaFaceWeights.RESNET34: 'https://github.com/yakhyo/uniface/releases/download/weights/retinaface_r34.onnx',
|
||||
|
||||
# MobileFace
|
||||
MobileFaceWeights.MNET_025: 'https://github.com/yakhyo/uniface/releases/download/v0.1.2/###',
|
||||
MobileFaceWeights.MNET_V2: 'https://github.com/yakhyo/uniface/releases/download/v0.1.2/###',
|
||||
MobileFaceWeights.MNET_V3_SMALL: 'https://github.com/yakhyo/uniface/releases/download/v0.1.2/###',
|
||||
MobileFaceWeights.MNET_V3_LARGE: 'https://github.com/yakhyo/uniface/releases/download/v0.1.2/###',
|
||||
MobileFaceWeights.MNET_025: 'https://github.com/yakhyo/uniface/releases/download/weights/mobilenetv1_0.25.onnx',
|
||||
MobileFaceWeights.MNET_V2: 'https://github.com/yakhyo/uniface/releases/download/weights/mobilenetv2.onnx',
|
||||
MobileFaceWeights.MNET_V3_SMALL: 'https://github.com/yakhyo/uniface/releases/download/weights/mobilenetv3_small.onnx',
|
||||
MobileFaceWeights.MNET_V3_LARGE: 'https://github.com/yakhyo/uniface/releases/download/weights/mobilenetv3_large.onnx',
|
||||
|
||||
# SphereFace
|
||||
SphereFaceWeights.SPHERE20: 'https://github.com/yakhyo/uniface/releases/download/v0.1.2/###',
|
||||
SphereFaceWeights.SPHERE36: 'https://github.com/yakhyo/uniface/releases/download/v0.1.2/###',
|
||||
SphereFaceWeights.SPHERE20: 'https://github.com/yakhyo/uniface/releases/download/weights/sphere20.onnx',
|
||||
SphereFaceWeights.SPHERE36: 'https://github.com/yakhyo/uniface/releases/download/weights/sphere36.onnx',
|
||||
|
||||
|
||||
# ArcFace
|
||||
ArcFaceWeights.MNET: 'https://github.com/yakhyo/uniface/releases/download/v0.1.2/w600k_mbf.onnx',
|
||||
ArcFaceWeights.RESNET: 'https://github.com/yakhyo/uniface/releases/download/v0.1.2/w600k_r50.onnx',
|
||||
ArcFaceWeights.MNET: 'https://github.com/yakhyo/uniface/releases/download/weights/w600k_mbf.onnx',
|
||||
ArcFaceWeights.RESNET: 'https://github.com/yakhyo/uniface/releases/download/weights/w600k_r50.onnx',
|
||||
|
||||
# SCRFD
|
||||
SCRFDWeights.SCRFD_10G_KPS: 'https://github.com/yakhyo/uniface/releases/download/v0.1.2/scrfd_10g_kps.onnx',
|
||||
SCRFDWeights.SCRFD_500M_KPS: 'https://github.com/yakhyo/uniface/releases/download/v0.1.2/scrfd_500m_kps.onnx',
|
||||
SCRFDWeights.SCRFD_10G_KPS: 'https://github.com/yakhyo/uniface/releases/download/weights/scrfd_10g_kps.onnx',
|
||||
SCRFDWeights.SCRFD_500M_KPS: 'https://github.com/yakhyo/uniface/releases/download/weights/scrfd_500m_kps.onnx',
|
||||
|
||||
|
||||
# DDAFM
|
||||
DDAMFNWeights.AFFECNET7: 'https://github.com/yakhyo/uniface/releases/download/v0.1.2/affecnet7.script',
|
||||
DDAMFNWeights.AFFECNET8: 'https://github.com/yakhyo/uniface/releases/download/v0.1.2/affecnet8.script',
|
||||
DDAMFNWeights.AFFECNET7: 'https://github.com/yakhyo/uniface/releases/download/weights/affecnet7.script',
|
||||
DDAMFNWeights.AFFECNET8: 'https://github.com/yakhyo/uniface/releases/download/weights/affecnet8.script',
|
||||
|
||||
# AgeGender
|
||||
AgeGenderWeights.DEFAULT: 'https://github.com/yakhyo/uniface/releases/download/v0.1.2/genderage.onnx',
|
||||
AgeGenderWeights.DEFAULT: 'https://github.com/yakhyo/uniface/releases/download/weights/genderage.onnx',
|
||||
|
||||
# Landmarks
|
||||
LandmarkWeights.DEFAULT: 'https://github.com/yakhyo/uniface/releases/download/v0.1.2/2d106det.onnx',
|
||||
LandmarkWeights.DEFAULT: 'https://github.com/yakhyo/uniface/releases/download/weights/2d106det.onnx',
|
||||
}
|
||||
|
||||
MODEL_SHA256: Dict[Enum, str] = {
|
||||
@@ -132,14 +132,14 @@ MODEL_SHA256: Dict[Enum, str] = {
|
||||
RetinaFaceWeights.RESNET34: 'bd0263dc2a465d32859555cb1741f2d98991eb0053696e8ee33fec583d30e630',
|
||||
|
||||
# MobileFace
|
||||
MobileFaceWeights.MNET_025: '#',
|
||||
MobileFaceWeights.MNET_V2: '#',
|
||||
MobileFaceWeights.MNET_V3_SMALL: '#',
|
||||
MobileFaceWeights.MNET_V3_LARGE: '#',
|
||||
MobileFaceWeights.MNET_025: 'eeda7d23d9c2b40cf77fa8da8e895b5697465192648852216074679657f8ee8b',
|
||||
MobileFaceWeights.MNET_V2: '38b148284dd48cc898d5d4453104252fbdcbacc105fe3f0b80e78954d9d20d89',
|
||||
MobileFaceWeights.MNET_V3_SMALL: 'd4acafa1039a82957aa8a9a1dac278a401c353a749c39df43de0e29cc1c127c3',
|
||||
MobileFaceWeights.MNET_V3_LARGE: '0e48f8e11f070211716d03e5c65a3db35a5e917cfb5bc30552358629775a142a',
|
||||
|
||||
# SphereFace
|
||||
SphereFaceWeights.SPHERE20: '#',
|
||||
SphereFaceWeights.SPHERE36: '#',
|
||||
SphereFaceWeights.SPHERE20: 'c02878cf658eb1861f580b7e7144b0d27cc29c440bcaa6a99d466d2854f14c9d',
|
||||
SphereFaceWeights.SPHERE36: '13b3890cd5d7dec2b63f7c36fd7ce07403e5a0bbb701d9647c0289e6cbe7bb20',
|
||||
|
||||
|
||||
# ArcFace
|
||||
|
||||
@@ -287,15 +287,15 @@ if __name__ == "__main__":
|
||||
cap = cv2.VideoCapture(0)
|
||||
|
||||
if not cap.isOpened():
|
||||
print("❌ Failed to open webcam.")
|
||||
print("Failed to open webcam.")
|
||||
exit()
|
||||
|
||||
print("📷 Webcam started. Press 'q' to exit.")
|
||||
print("Webcam started. Press 'q' to exit.")
|
||||
|
||||
while True:
|
||||
ret, frame = cap.read()
|
||||
if not ret:
|
||||
print("❌ Failed to read frame.")
|
||||
print("Failed to read frame.")
|
||||
break
|
||||
|
||||
# Get face detections as list of dictionaries
|
||||
|
||||
@@ -280,15 +280,15 @@ if __name__ == "__main__":
|
||||
cap = cv2.VideoCapture(0)
|
||||
|
||||
if not cap.isOpened():
|
||||
print("❌ Failed to open webcam.")
|
||||
print("Failed to open webcam.")
|
||||
exit()
|
||||
|
||||
print("📷 Webcam started. Press 'q' to exit.")
|
||||
print("Webcam started. Press 'q' to exit.")
|
||||
|
||||
while True:
|
||||
ret, frame = cap.read()
|
||||
if not ret:
|
||||
print("❌ Failed to read frame.")
|
||||
print("Failed to read frame.")
|
||||
break
|
||||
|
||||
# Get face detections as list of dictionaries
|
||||
|
||||
@@ -5,7 +5,7 @@
|
||||
import cv2
|
||||
import numpy as np
|
||||
from skimage.transform import SimilarityTransform
|
||||
from typing import Tuple
|
||||
from typing import Tuple, Union
|
||||
|
||||
|
||||
__all__ = ["face_alignment", "compute_similarity", "bbox_center_alignment", "transform_points_2d"]
|
||||
@@ -24,13 +24,14 @@ reference_alignment: np.ndarray = np.array(
|
||||
)
|
||||
|
||||
|
||||
def estimate_norm(landmark: np.ndarray, image_size: int = 112) -> Tuple[np.ndarray, np.ndarray]:
|
||||
def estimate_norm(landmark: np.ndarray, image_size: Union[int, Tuple[int, int]] = 112) -> Tuple[np.ndarray, np.ndarray]:
|
||||
"""
|
||||
Estimate the normalization transformation matrix for facial landmarks.
|
||||
|
||||
Args:
|
||||
landmark (np.ndarray): Array of shape (5, 2) representing the coordinates of the facial landmarks.
|
||||
image_size (int, optional): The size of the output image. Default is 112.
|
||||
image_size (Union[int, Tuple[int, int]], optional): The size of the output image.
|
||||
Can be an integer (for square images) or a tuple (width, height). Default is 112.
|
||||
|
||||
Returns:
|
||||
np.ndarray: The 2x3 transformation matrix for aligning the landmarks.
|
||||
@@ -41,13 +42,20 @@ def estimate_norm(landmark: np.ndarray, image_size: int = 112) -> Tuple[np.ndarr
|
||||
or if image_size is not a multiple of 112 or 128.
|
||||
"""
|
||||
assert landmark.shape == (5, 2), "Landmark array must have shape (5, 2)."
|
||||
assert image_size % 112 == 0 or image_size % 128 == 0, "Image size must be a multiple of 112 or 128."
|
||||
|
||||
if image_size % 112 == 0:
|
||||
ratio = float(image_size) / 112.0
|
||||
# Handle both int and tuple inputs
|
||||
if isinstance(image_size, tuple):
|
||||
size = image_size[0] # Use width for ratio calculation
|
||||
else:
|
||||
size = image_size
|
||||
|
||||
assert size % 112 == 0 or size % 128 == 0, "Image size must be a multiple of 112 or 128."
|
||||
|
||||
if size % 112 == 0:
|
||||
ratio = float(size) / 112.0
|
||||
diff_x = 0.0
|
||||
else:
|
||||
ratio = float(image_size) / 128.0
|
||||
ratio = float(size) / 128.0
|
||||
diff_x = 8.0 * ratio
|
||||
|
||||
# Adjust reference alignment based on ratio and diff_x
|
||||
@@ -64,14 +72,15 @@ def estimate_norm(landmark: np.ndarray, image_size: int = 112) -> Tuple[np.ndarr
|
||||
return matrix, inverse_matrix
|
||||
|
||||
|
||||
def face_alignment(image: np.ndarray, landmark: np.ndarray, image_size: int = 112) -> Tuple[np.ndarray, np.ndarray]:
|
||||
def face_alignment(image: np.ndarray, landmark: np.ndarray, image_size: Union[int, Tuple[int, int]] = 112) -> Tuple[np.ndarray, np.ndarray]:
|
||||
"""
|
||||
Align the face in the input image based on the given facial landmarks.
|
||||
|
||||
Args:
|
||||
image (np.ndarray): Input image as a NumPy array.
|
||||
landmark (np.ndarray): Array of shape (5, 2) representing the coordinates of the facial landmarks.
|
||||
image_size (int, optional): The size of the aligned output image. Default is 112.
|
||||
image_size (Union[int, Tuple[int, int]], optional): The size of the aligned output image.
|
||||
Can be an integer (for square images) or a tuple (width, height). Default is 112.
|
||||
|
||||
Returns:
|
||||
np.ndarray: The aligned face as a NumPy array.
|
||||
@@ -80,8 +89,14 @@ def face_alignment(image: np.ndarray, landmark: np.ndarray, image_size: int = 11
|
||||
# Get the transformation matrix
|
||||
M, M_inv = estimate_norm(landmark, image_size)
|
||||
|
||||
# Handle both int and tuple for warpAffine output size
|
||||
if isinstance(image_size, int):
|
||||
output_size = (image_size, image_size)
|
||||
else:
|
||||
output_size = image_size
|
||||
|
||||
# Warp the input image to align the face
|
||||
warped = cv2.warpAffine(image, M, (image_size, image_size), borderValue=0.0)
|
||||
warped = cv2.warpAffine(image, M, output_size, borderValue=0.0)
|
||||
|
||||
return warped, M_inv
|
||||
|
||||
|
||||
@@ -157,15 +157,13 @@ class Landmark106(BaseLandmarker):
|
||||
|
||||
|
||||
|
||||
# TODO: For testing purposes only, remote later
|
||||
# Testing code
|
||||
if __name__ == "__main__":
|
||||
# UPDATED: Use the high-level factory functions
|
||||
from uniface.detection import create_detector
|
||||
from uniface.landmark import create_landmarker
|
||||
from uniface.detection import RetinaFace
|
||||
from uniface.landmark import Landmark106
|
||||
|
||||
# 1. Create the detector and landmarker using the new API
|
||||
face_detector = create_detector('retinaface')
|
||||
landmarker = create_landmarker() # Uses the default '2d106det' method
|
||||
face_detector = RetinaFace()
|
||||
landmarker = Landmark106()
|
||||
|
||||
cap = cv2.VideoCapture(0)
|
||||
if not cap.isOpened():
|
||||
|
||||
@@ -109,19 +109,23 @@ class BaseRecognizer(ABC):
|
||||
|
||||
return blob
|
||||
|
||||
def get_embedding(self, image: np.ndarray, landmarks: np.ndarray) -> np.ndarray:
|
||||
def get_embedding(self, image: np.ndarray, landmarks: np.ndarray = None) -> np.ndarray:
|
||||
"""
|
||||
Extracts face embedding from an image.
|
||||
|
||||
Args:
|
||||
image: Input face image (BGR format).
|
||||
landmarks: Facial landmarks (5 points for alignment).
|
||||
image: Input face image (BGR format). If already aligned (112x112), landmarks can be None.
|
||||
landmarks: Facial landmarks (5 points for alignment). Optional if image is already aligned.
|
||||
|
||||
Returns:
|
||||
Face embedding vector (typically 512-dimensional).
|
||||
"""
|
||||
# Align face using landmarks
|
||||
aligned_face, _ = face_alignment(image, landmarks)
|
||||
# If landmarks are provided, align the face first
|
||||
if landmarks is not None:
|
||||
aligned_face, _ = face_alignment(image, landmarks, image_size=self.input_size)
|
||||
else:
|
||||
# Assume image is already aligned
|
||||
aligned_face = image
|
||||
|
||||
# Generate embedding from aligned face
|
||||
face_blob = self.preprocess(aligned_face)
|
||||
|
||||
Reference in New Issue
Block a user