ref: Update some refactoring files for testing

This commit is contained in:
yakhyo
2025-11-25 23:19:45 +09:00
parent 11363fe0a8
commit 189755a1a6
10 changed files with 397 additions and 710 deletions

View File

@@ -1,10 +1,24 @@
import cv2
# Face recognition: extract embeddings or compare two faces
# Usage: python run_recognition.py --image path/to/image.jpg
# python run_recognition.py --image1 face1.jpg --image2 face2.jpg
import argparse
import cv2
import numpy as np
from uniface.detection import RetinaFace, SCRFD
from uniface.recognition import ArcFace, MobileFace, SphereFace
from uniface.detection import SCRFD, RetinaFace
from uniface.face_utils import compute_similarity
from uniface.recognition import ArcFace, MobileFace, SphereFace
def get_recognizer(name: str):
if name == "arcface":
return ArcFace()
elif name == "mobileface":
return MobileFace()
else:
return SphereFace()
def run_inference(detector, recognizer, image_path: str):
@@ -14,38 +28,29 @@ def run_inference(detector, recognizer, image_path: str):
return
faces = detector.detect(image)
if not faces:
print("No faces detected.")
return
print(f"Detected {len(faces)} face(s). Extracting embeddings for the first face...")
print(f"Detected {len(faces)} face(s). Extracting embedding for the first face...")
# Process the first detected face
first_face = faces[0]
landmarks = np.array(first_face['landmarks']) # Convert landmarks to numpy array
# Extract embedding using the landmarks from the face dictionary
landmarks = np.array(faces[0]["landmarks"]) # 5-point landmarks for alignment
embedding = recognizer.get_embedding(image, landmarks)
norm_embedding = recognizer.get_normalized_embedding(image, landmarks)
norm_embedding = recognizer.get_normalized_embedding(image, landmarks) # L2 normalized
# Print some info about the embeddings
print(f" - Embedding shape: {embedding.shape}")
print(f" - L2 norm of unnormalized embedding: {np.linalg.norm(embedding):.4f}")
print(f" - L2 norm of normalized embedding: {np.linalg.norm(norm_embedding):.4f}")
print(f" Embedding shape: {embedding.shape}")
print(f" L2 norm (raw): {np.linalg.norm(embedding):.4f}")
print(f" L2 norm (normalized): {np.linalg.norm(norm_embedding):.4f}")
def compare_faces(detector, recognizer, image1_path: str, image2_path: str, threshold: float = 0.35):
# Load images
img1 = cv2.imread(image1_path)
img2 = cv2.imread(image2_path)
if img1 is None or img2 is None:
print(f"Error: Failed to load images")
print("Error: Failed to load one or both images")
return
# Detect faces
faces1 = detector.detect(img1)
faces2 = detector.detect(img2)
@@ -53,74 +58,39 @@ def compare_faces(detector, recognizer, image1_path: str, image2_path: str, thre
print("Error: No faces detected in one or both images")
return
# Get landmarks for first face in each image
landmarks1 = np.array(faces1[0]['landmarks'])
landmarks2 = np.array(faces2[0]['landmarks'])
landmarks1 = np.array(faces1[0]["landmarks"])
landmarks2 = np.array(faces2[0]["landmarks"])
# Get normalized embeddings
embedding1 = recognizer.get_normalized_embedding(img1, landmarks1)
embedding2 = recognizer.get_normalized_embedding(img2, landmarks2)
# Compute similarity
# cosine similarity for normalized embeddings
similarity = compute_similarity(embedding1, embedding2, normalized=True)
is_match = similarity > threshold
print(f"Similarity: {similarity:.4f}")
print(f"Result: {'Same person' if is_match else 'Different person'}")
print(f"Threshold: {threshold}")
print(f"Result: {'Same person' if is_match else 'Different person'} (threshold: {threshold})")
def main():
parser = argparse.ArgumentParser(description="Face recognition and comparison.")
parser.add_argument("--image", type=str, help="Path to single image for embedding extraction.")
parser.add_argument("--image1", type=str, help="Path to first image for comparison.")
parser.add_argument("--image2", type=str, help="Path to second image for comparison.")
parser.add_argument("--threshold", type=float, default=0.35, help="Similarity threshold for face matching.")
parser.add_argument(
"--detector",
type=str,
default="retinaface",
choices=['retinaface', 'scrfd'],
help="Face detection method to use."
)
parser.add_argument(
"--recognizer",
type=str,
default="arcface",
choices=['arcface', 'mobileface', 'sphereface'],
help="Face recognition method to use."
)
parser.add_argument("--verbose", action="store_true", help="Enable verbose logging")
parser = argparse.ArgumentParser(description="Face recognition and comparison")
parser.add_argument("--image", type=str, help="Single image for embedding extraction")
parser.add_argument("--image1", type=str, help="First image for comparison")
parser.add_argument("--image2", type=str, help="Second image for comparison")
parser.add_argument("--threshold", type=float, default=0.35, help="Similarity threshold")
parser.add_argument("--detector", type=str, default="retinaface", choices=["retinaface", "scrfd"])
parser.add_argument("--recognizer", type=str, default="arcface", choices=["arcface", "mobileface", "sphereface"])
args = parser.parse_args()
if args.verbose:
from uniface import enable_logging
enable_logging()
print(f"Initializing detector: {args.detector}")
if args.detector == 'retinaface':
detector = RetinaFace()
else:
detector = SCRFD()
print(f"Initializing recognizer: {args.recognizer}")
if args.recognizer == 'arcface':
recognizer = ArcFace()
elif args.recognizer == 'mobileface':
recognizer = MobileFace()
else:
recognizer = SphereFace()
detector = RetinaFace() if args.detector == "retinaface" else SCRFD()
recognizer = get_recognizer(args.recognizer)
if args.image1 and args.image2:
# Face comparison mode
print(f"Comparing faces: {args.image1} vs {args.image2}")
compare_faces(detector, recognizer, args.image1, args.image2, args.threshold)
elif args.image:
# Single image embedding extraction mode
run_inference(detector, recognizer, args.image)
else:
print("Error: Provide either --image for single image processing or --image1 and --image2 for comparison")
print("Error: Provide --image or both --image1 and --image2")
parser.print_help()