ref: Add comprehensive test suite and enhance model functionality

- Add new test files for age_gender, factory, landmark, recognition, scrfd, and utils
- Add new scripts for age_gender, landmarks, and video detection
- Update documentation in README.md, MODELS.md, QUICKSTART.md
- Improve model constants and face utilities
- Update detection models (retinaface, scrfd) with enhanced functionality
- Update project configuration in pyproject.toml
This commit is contained in:
yakhyo
2025-11-15 21:09:37 +09:00
parent df673c4a3f
commit 2c78f39e5d
28 changed files with 2014 additions and 591 deletions

View File

@@ -113,13 +113,15 @@ embedding = recognizer.get_normalized_embedding(image, landmarks)
Lightweight face recognition optimized for mobile devices.
| Model Name | Backbone | Params | Size | Use Case |
|-----------------|-----------------|--------|------|--------------------|
| `MNET_025` | MobileNetV1 0.25| 0.2M | 1MB | Ultra-lightweight |
| `MNET_V2` ⭐ | MobileNetV2 | 1.0M | 4MB | **Mobile/Edge** |
| `MNET_V3_SMALL` | MobileNetV3-S | 0.8M | 3MB | Mobile optimized |
| `MNET_V3_LARGE` | MobileNetV3-L | 2.5M | 10MB | Balanced mobile |
| Model Name | Backbone | Params | Size | LFW | CALFW | CPLFW | AgeDB-30 | Use Case |
|-----------------|-----------------|--------|------|-------|-------|-------|----------|--------------------|
| `MNET_025` | MobileNetV1 0.25| 0.36M | 1MB | 98.76%| 92.02%| 82.37%| 90.02% | Ultra-lightweight |
| `MNET_V2` ⭐ | MobileNetV2 | 2.29M | 4MB | 99.55%| 94.87%| 86.89%| 95.16% | **Mobile/Edge** |
| `MNET_V3_SMALL` | MobileNetV3-S | 1.25M | 3MB | 99.30%| 93.77%| 85.29%| 92.79% | Mobile optimized |
| `MNET_V3_LARGE` | MobileNetV3-L | 3.52M | 10MB | 99.53%| 94.56%| 86.79%| 95.13% | Balanced mobile |
**Dataset**: Trained on MS1M-V2 (5.8M images, 85K identities)
**Accuracy**: Evaluated on LFW, CALFW, CPLFW, and AgeDB-30 benchmarks
**Note**: These models are lightweight alternatives to ArcFace for resource-constrained environments
#### Usage
@@ -138,12 +140,14 @@ recognizer = MobileFace(model_name=MobileFaceWeights.MNET_V2)
Face recognition using angular softmax loss.
| Model Name | Backbone | Params | Size | Use Case |
|-------------|----------|--------|------|----------------------|
| `SPHERE20` | Sphere20 | 13.0M | 50MB | Research/Comparison |
| `SPHERE36` | Sphere36 | 24.2M | 92MB | Research/Comparison |
| Model Name | Backbone | Params | Size | LFW | CALFW | CPLFW | AgeDB-30 | Use Case |
|-------------|----------|--------|------|-------|-------|-------|----------|----------------------|
| `SPHERE20` | Sphere20 | 24.5M | 50MB | 99.67%| 95.61%| 88.75%| 96.58% | Research/Comparison |
| `SPHERE36` | Sphere36 | 34.6M | 92MB | 99.72%| 95.64%| 89.92%| 96.83% | Research/Comparison |
**Note**: SphereFace uses angular softmax loss, an earlier approach before ArcFace
**Dataset**: Trained on MS1M-V2 (5.8M images, 85K identities)
**Accuracy**: Evaluated on LFW, CALFW, CPLFW, and AgeDB-30 benchmarks
**Note**: SphereFace uses angular softmax loss, an earlier approach before ArcFace. These models provide good accuracy with moderate resource requirements.
#### Usage
@@ -264,10 +268,10 @@ emotion, confidence = predictor.predict(image, landmarks)
### By Hardware
#### Apple Silicon (M1/M2/M3/M4)
**Recommended**: All models work well with CoreML acceleration
**Recommended**: All models work well with ARM64 optimizations (automatically included)
```bash
pip install uniface[silicon]
pip install uniface
```
**Recommended models**:

View File

@@ -7,8 +7,8 @@ Get up and running with UniFace in 5 minutes! This guide covers the most common
## Installation
```bash
# macOS (Apple Silicon)
pip install uniface[silicon]
# macOS (Apple Silicon) - automatically includes ARM64 optimizations
pip install uniface
# Linux/Windows with NVIDIA GPU
pip install uniface[gpu]
@@ -114,9 +114,9 @@ if faces1 and faces2:
# Interpret result
if similarity > 0.6:
print(f"Same person (similarity: {similarity:.3f})")
print(f"Same person (similarity: {similarity:.3f})")
else:
print(f"Different people (similarity: {similarity:.3f})")
print(f"Different people (similarity: {similarity:.3f})")
else:
print("No faces detected")
```
@@ -264,31 +264,46 @@ print("Done!")
Choose the right model for your use case:
### Detection Models
```python
from uniface import create_detector
from uniface.detection import RetinaFace, SCRFD
from uniface.constants import RetinaFaceWeights, SCRFDWeights
# Fast detection (mobile/edge devices)
detector = create_detector(
'retinaface',
detector = RetinaFace(
model_name=RetinaFaceWeights.MNET_025,
conf_thresh=0.7
)
# Balanced (recommended)
detector = create_detector(
'retinaface',
detector = RetinaFace(
model_name=RetinaFaceWeights.MNET_V2
)
# High accuracy (server/GPU)
detector = create_detector(
'scrfd',
detector = SCRFD(
model_name=SCRFDWeights.SCRFD_10G_KPS,
conf_thresh=0.5
)
```
### Recognition Models
```python
from uniface import ArcFace, MobileFace, SphereFace
from uniface.constants import MobileFaceWeights, SphereFaceWeights
# ArcFace (recommended for most use cases)
recognizer = ArcFace() # Best accuracy
# MobileFace (lightweight for mobile/edge)
recognizer = MobileFace(model_name=MobileFaceWeights.MNET_V2) # Fast, small size
# SphereFace (angular margin approach)
recognizer = SphereFace(model_name=SphereFaceWeights.SPHERE20) # Alternative method
```
---
## Common Issues
@@ -316,20 +331,22 @@ print("Available providers:", ort.get_available_providers())
### 3. Slow Performance on Mac
Make sure you installed with CoreML support:
The standard installation includes ARM64 optimizations for Apple Silicon. If performance is slow, verify you're using the ARM64 build of Python:
```bash
pip install uniface[silicon]
python -c "import platform; print(platform.machine())"
# Should show: arm64 (not x86_64)
```
### 4. Import Errors
```python
# Correct imports
from uniface import RetinaFace, ArcFace, Landmark106
from uniface.detection import create_detector
# Correct imports
from uniface.detection import RetinaFace
from uniface.recognition import ArcFace
from uniface.landmark import Landmark106
# Wrong imports
# Wrong imports
from uniface import retinaface # Module, not class
```

View File

@@ -21,7 +21,7 @@
- **Face Recognition**: ArcFace, MobileFace, and SphereFace embeddings
- **Attribute Analysis**: Age, gender, and emotion detection
- **Face Alignment**: Precise alignment for downstream tasks
- **Hardware Acceleration**: CoreML (Apple Silicon), CUDA (NVIDIA), CPU fallback
- **Hardware Acceleration**: ARM64 optimizations (Apple Silicon), CUDA (NVIDIA), CPU fallback
- **Simple API**: Intuitive factory functions and clean interfaces
- **Production-Ready**: Type hints, comprehensive logging, PEP8 compliant
@@ -39,27 +39,19 @@ pip install uniface
#### macOS (Apple Silicon - M1/M2/M3/M4)
For optimal performance with **CoreML acceleration** (3-5x faster):
For Apple Silicon Macs, the standard installation automatically includes optimized ARM64 support:
```bash
# Standard installation (CPU only)
pip install uniface
# With CoreML acceleration (recommended for M-series chips)
pip install uniface[silicon]
```
**Verify CoreML is available:**
```python
import onnxruntime as ort
print(ort.get_available_providers())
# Should show: ['CoreMLExecutionProvider', 'CPUExecutionProvider']
```
The base `onnxruntime` package (included with uniface) has native Apple Silicon support with ARM64 optimizations built-in since version 1.13+.
#### Linux/Windows with NVIDIA GPU
For CUDA acceleration on NVIDIA GPUs:
```bash
# With CUDA acceleration
pip install uniface[gpu]
```
@@ -172,28 +164,29 @@ print(f"{gender}, {age} years old")
### Factory Functions (Recommended)
```python
from uniface import create_detector, create_recognizer, create_landmarker
from uniface.detection import RetinaFace, SCRFD
from uniface.recognition import ArcFace
from uniface.landmark import Landmark106
# Create detector with default settings
detector = create_detector('retinaface')
detector = RetinaFace()
# Create with custom config
detector = create_detector(
'scrfd',
detector = SCRFD(
model_name='scrfd_10g_kps',
conf_thresh=0.8,
input_size=(640, 640)
)
# Recognition and landmarks
recognizer = create_recognizer('arcface')
landmarker = create_landmarker('2d106det')
recognizer = ArcFace()
landmarker = Landmark106()
```
### Direct Model Instantiation
```python
from uniface import RetinaFace, SCRFD, ArcFace, MobileFace
from uniface import RetinaFace, SCRFD, ArcFace, MobileFace, SphereFace
from uniface.constants import RetinaFaceWeights
# Detection
@@ -206,6 +199,7 @@ detector = RetinaFace(
# Recognition
recognizer = ArcFace() # Uses default weights
recognizer = MobileFace() # Lightweight alternative
recognizer = SphereFace() # Angular softmax alternative
```
### High-Level Detection API

View File

@@ -1,6 +1,6 @@
[project]
name = "uniface"
version = "1.0.0"
version = "1.0.1"
description = "UniFace: A Comprehensive Library for Face Detection, Recognition, Landmark Analysis, Age, and Gender Detection"
readme = "README.md"
license = { text = "MIT" }
@@ -21,7 +21,6 @@ requires-python = ">=3.10"
[project.optional-dependencies]
dev = ["pytest>=7.0.0"]
gpu = ["onnxruntime-gpu>=1.16.0"]
silicon = ["onnxruntime-silicon>=1.16.0"]
[project.urls]
Homepage = "https://github.com/yakhyo/uniface"

View File

@@ -1,18 +1,97 @@
### `download_model.py`
# Scripts
# Download all models
Collection of example scripts demonstrating UniFace functionality.
## Available Scripts
- `run_detection.py` - Face detection on images
- `run_age_gender.py` - Age and gender prediction
- `run_landmarks.py` - Facial landmark detection
- `run_recognition.py` - Face recognition and embeddings
- `run_face_search.py` - Face search and matching
- `run_video_detection.py` - Video processing with face detection
- `batch_process.py` - Batch processing of image folders
- `download_model.py` - Download and manage models
## Quick Start
```bash
python scripts/download_model.py
# Face detection
python scripts/run_detection.py --image assets/test.jpg
# Age and gender detection
python scripts/run_age_gender.py --image assets/test.jpg
# Webcam demo
python scripts/run_age_gender.py --webcam
# Batch processing
python scripts/batch_process.py --input images/ --output results/
```
# Download just RESNET18
## Import Examples
```bash
python scripts/download_model.py --model RESNET18
The scripts use direct class imports for better developer experience:
```python
# Face Detection
from uniface.detection import RetinaFace, SCRFD
detector = RetinaFace() # or SCRFD()
faces = detector.detect(image)
# Face Recognition
from uniface.recognition import ArcFace, MobileFace, SphereFace
recognizer = ArcFace() # or MobileFace(), SphereFace()
embedding = recognizer.get_embedding(image, landmarks)
# Age & Gender
from uniface.attribute import AgeGender
age_gender = AgeGender()
gender, age = age_gender.predict(image, bbox)
# Landmarks
from uniface.landmark import Landmark106
landmarker = Landmark106()
landmarks = landmarker.get_landmarks(image, bbox)
```
### `run_inference.py`
## Available Classes
**Detection:**
- `RetinaFace` - High accuracy face detection
- `SCRFD` - Fast face detection
**Recognition:**
- `ArcFace` - High accuracy face recognition
- `MobileFace` - Lightweight face recognition
- `SphereFace` - Alternative face recognition
**Attributes:**
- `AgeGender` - Age and gender prediction
**Landmarks:**
- `Landmark106` - 106-point facial landmarks
## Common Options
Most scripts support:
- `--help` - Show usage information
- `--verbose` - Enable detailed logging
- `--detector` - Choose detector (retinaface, scrfd)
- `--threshold` - Set confidence threshold
## Testing
Run basic functionality test:
```bash
python scripts/run_inference.py --image assets/test.jpg --model MNET_V2 --iterations 10
```
python scripts/run_detection.py --image assets/test.jpg
```
For comprehensive testing, see the main project tests:
```bash
pytest tests/
```

View File

@@ -1,389 +0,0 @@
# Testing Scripts Guide
Complete guide to testing all scripts in the `scripts/` directory.
---
## 📁 Available Scripts
1. **download_model.py** - Download and verify model weights
2. **run_detection.py** - Face detection on images
3. **run_recognition.py** - Face recognition (extract embeddings)
4. **run_face_search.py** - Real-time face matching with webcam
5. **sha256_generate.py** - Generate SHA256 checksums for models
---
## Testing Each Script
### 1. Test Model Download
```bash
# Download a specific model
python scripts/download_model.py --model MNET_V2
# Download all RetinaFace models (takes ~5 minutes, ~200MB)
python scripts/download_model.py
# Verify models are cached
ls -lh ~/.uniface/models/
```
**Expected Output:**
```
📥 Downloading model: retinaface_mnet_v2
2025-11-08 00:00:00 - INFO - Downloading model 'RetinaFaceWeights.MNET_V2' from https://...
Downloading ~/.uniface/models/retinaface_mnet_v2.onnx: 100%|████| 3.5M/3.5M
2025-11-08 00:00:05 - INFO - Successfully downloaded 'RetinaFaceWeights.MNET_V2'
✅ All requested weights are ready and verified.
```
---
### 2. Test Face Detection
```bash
# Basic detection
python scripts/run_detection.py --image assets/test.jpg
# With custom settings
python scripts/run_detection.py \
--image assets/test.jpg \
--method scrfd \
--threshold 0.7 \
--save_dir outputs
# Benchmark mode (100 iterations)
python scripts/run_detection.py \
--image assets/test.jpg \
--iterations 100
```
**Expected Output:**
```
Initializing detector: retinaface
2025-11-08 00:00:00 - INFO - Initializing RetinaFace with model=RetinaFaceWeights.MNET_V2...
2025-11-08 00:00:01 - INFO - CoreML acceleration enabled (Apple Silicon)
✅ Output saved at: outputs/test_out.jpg
[1/1] ⏱️ Inference time: 0.0234 seconds
```
**Verify Output:**
```bash
# Check output image was created
ls -lh outputs/test_out.jpg
# View the image (macOS)
open outputs/test_out.jpg
```
---
### 3. Test Face Recognition (Embedding Extraction)
```bash
# Extract embeddings from an image
python scripts/run_recognition.py --image assets/test.jpg
# With different models
python scripts/run_recognition.py \
--image assets/test.jpg \
--detector scrfd \
--recognizer mobileface
```
**Expected Output:**
```
Initializing detector: retinaface
Initializing recognizer: arcface
2025-11-08 00:00:00 - INFO - Successfully initialized face encoder from ~/.uniface/models/w600k_mbf.onnx
Detected 1 face(s). Extracting embeddings for the first face...
- Embedding shape: (1, 512)
- L2 norm of unnormalized embedding: 64.2341
- L2 norm of normalized embedding: 1.0000
```
---
### 4. Test Real-Time Face Search (Webcam)
**Prerequisites:**
- Webcam connected
- Reference image with a clear face
```bash
# Basic usage
python scripts/run_face_search.py --image assets/test.jpg
# With custom models
python scripts/run_face_search.py \
--image assets/test.jpg \
--detector scrfd \
--recognizer arcface
```
**Expected Behavior:**
1. Webcam window opens
2. Faces are detected in real-time
3. Green box = Match (similarity > 0.4)
4. Red box = Unknown (similarity < 0.4)
5. Press 'q' to quit
**Expected Output:**
```
Initializing models...
2025-11-08 00:00:00 - INFO - CoreML acceleration enabled (Apple Silicon)
Extracting reference embedding...
Webcam started. Press 'q' to quit.
```
**Troubleshooting:**
```bash
# If webcam doesn't open
python -c "import cv2; cap = cv2.VideoCapture(0); print('Webcam OK' if cap.isOpened() else 'Webcam FAIL')"
# If no faces detected
# - Ensure good lighting
# - Face should be frontal and clearly visible
# - Try lowering threshold: edit script line 29, change 0.4 to 0.3
```
---
### 5. Test SHA256 Generator (For Developers)
```bash
# Generate checksum for a model file
python scripts/sha256_generate.py ~/.uniface/models/retinaface_mnet_v2.onnx
# Generate for all models
for model in ~/.uniface/models/*.onnx; do
python scripts/sha256_generate.py "$model"
done
```
---
## 🔍 Quick Verification Tests
### Test 1: Imports Work
```bash
python -c "
from uniface.detection import create_detector
from uniface.recognition import create_recognizer
print('✅ Imports successful')
"
```
### Test 2: Models Download
```bash
python -c "
from uniface import RetinaFace
detector = RetinaFace()
print('✅ Model downloaded and loaded')
"
```
### Test 3: Detection Works
```bash
python -c "
import cv2
import numpy as np
from uniface import RetinaFace
detector = RetinaFace()
image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
faces = detector.detect(image)
print(f'✅ Detection works, found {len(faces)} faces')
"
```
### Test 4: Recognition Works
```bash
python -c "
import cv2
import numpy as np
from uniface import RetinaFace, ArcFace
detector = RetinaFace()
recognizer = ArcFace()
image = cv2.imread('assets/test.jpg')
faces = detector.detect(image)
if faces:
landmarks = np.array(faces[0]['landmarks'])
embedding = recognizer.get_normalized_embedding(image, landmarks)
print(f'✅ Recognition works, embedding shape: {embedding.shape}')
else:
print('⚠️ No faces detected in test image')
"
```
---
## End-to-End Test Workflow
Run this complete workflow to verify everything works:
```bash
#!/bin/bash
# Save as test_all_scripts.sh
echo "=== Testing UniFace Scripts ==="
echo ""
# Test 1: Download models
echo "1⃣ Testing model download..."
python scripts/download_model.py --model MNET_V2
if [ $? -eq 0 ]; then
echo "✅ Model download: PASS"
else
echo "❌ Model download: FAIL"
exit 1
fi
echo ""
# Test 2: Face detection
echo "2⃣ Testing face detection..."
python scripts/run_detection.py --image assets/test.jpg --save_dir /tmp/uniface_test
if [ $? -eq 0 ] && [ -f /tmp/uniface_test/test_out.jpg ]; then
echo "✅ Face detection: PASS"
else
echo "❌ Face detection: FAIL"
exit 1
fi
echo ""
# Test 3: Face recognition
echo "3⃣ Testing face recognition..."
python scripts/run_recognition.py --image assets/test.jpg > /tmp/uniface_recognition.log
if [ $? -eq 0 ] && grep -q "Embedding shape" /tmp/uniface_recognition.log; then
echo "✅ Face recognition: PASS"
else
echo "❌ Face recognition: FAIL"
exit 1
fi
echo ""
echo "=== All Tests Passed! 🎉 ==="
```
**Run the test suite:**
```bash
chmod +x test_all_scripts.sh
./test_all_scripts.sh
```
---
## Performance Benchmarking
### Benchmark Detection Speed
```bash
# Test different models
for model in retinaface scrfd; do
echo "Testing $model..."
python scripts/run_detection.py \
--image assets/test.jpg \
--method $model \
--iterations 50
done
```
### Benchmark Recognition Speed
```bash
# Test different recognizers
for recognizer in arcface mobileface; do
echo "Testing $recognizer..."
time python scripts/run_recognition.py \
--image assets/test.jpg \
--recognizer $recognizer
done
```
---
## 🐛 Common Issues
### Issue: "No module named 'uniface'"
```bash
# Solution: Install in editable mode
pip install -e .
```
### Issue: "Failed to load image"
```bash
# Check image exists
ls -lh assets/test.jpg
# Try with absolute path
python scripts/run_detection.py --image $(pwd)/assets/test.jpg
```
### Issue: "No faces detected"
```bash
# Lower confidence threshold
python scripts/run_detection.py \
--image assets/test.jpg \
--threshold 0.3
```
### Issue: Models downloading slowly
```bash
# Check internet connection
curl -I https://github.com/yakhyo/uniface/releases
# Or download manually
wget https://github.com/yakhyo/uniface/releases/download/v0.1.2/retinaface_mv2.onnx \
-O ~/.uniface/models/retinaface_mnet_v2.onnx
```
### Issue: CoreML not available on Mac
```bash
# Install CoreML-enabled ONNX Runtime
pip uninstall onnxruntime
pip install onnxruntime-silicon
# Verify
python -c "import onnxruntime as ort; print(ort.get_available_providers())"
# Should show: ['CoreMLExecutionProvider', 'CPUExecutionProvider']
```
---
## ✅ Script Status Summary
| Script | Status | API Updated | Tested |
|-----------------------|--------|-------------|--------|
| download_model.py | ✅ | ✅ | ✅ |
| run_detection.py | ✅ | ✅ | ✅ |
| run_recognition.py | ✅ | ✅ | ✅ |
| run_face_search.py | ✅ | ✅ | ✅ |
| sha256_generate.py | ✅ | N/A | ✅ |
All scripts are updated and working with the new dict-based API! 🎉
---
## 📝 Notes
- All scripts now use the factory functions (`create_detector`, `create_recognizer`)
- Scripts work with the new dict-based detection API
- Model download bug is fixed (enum vs string issue)
- CoreML acceleration is automatically detected on Apple Silicon
- All scripts include proper error handling
---
Need help with a specific script? Check the main [README.md](../README.md) or [QUICKSTART.md](../QUICKSTART.md)!

157
scripts/batch_process.py Normal file
View File

@@ -0,0 +1,157 @@
"""Batch Image Processing Script"""
import os
import cv2
import argparse
from pathlib import Path
from tqdm import tqdm
from uniface import RetinaFace, SCRFD
from uniface.visualization import draw_detections
def get_image_files(input_dir: Path, extensions: tuple) -> list:
image_files = []
for ext in extensions:
image_files.extend(input_dir.glob(f"*.{ext}"))
image_files.extend(input_dir.glob(f"*.{ext.upper()}"))
return sorted(image_files)
def process_single_image(detector, image_path: Path, output_dir: Path,
vis_threshold: float, skip_existing: bool) -> dict:
output_path = output_dir / f"{image_path.stem}_detected{image_path.suffix}"
# Skip if already processed
if skip_existing and output_path.exists():
return {"status": "skipped", "faces": 0}
# Load image
image = cv2.imread(str(image_path))
if image is None:
return {"status": "error", "error": "Failed to load image"}
# Detect faces
try:
faces = detector.detect(image)
except Exception as e:
return {"status": "error", "error": str(e)}
# Draw detections
bboxes = [f['bbox'] for f in faces]
scores = [f['confidence'] for f in faces]
landmarks = [f['landmarks'] for f in faces]
draw_detections(image, bboxes, scores, landmarks, vis_threshold=vis_threshold)
# Add face count
cv2.putText(image, f"Faces: {len(faces)}", (10, 30),
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
# Save result
cv2.imwrite(str(output_path), image)
return {"status": "success", "faces": len(faces)}
def batch_process(detector, input_dir: str, output_dir: str, extensions: tuple,
vis_threshold: float, skip_existing: bool):
input_path = Path(input_dir)
output_path = Path(output_dir)
# Create output directory
output_path.mkdir(parents=True, exist_ok=True)
# Get image files
image_files = get_image_files(input_path, extensions)
if not image_files:
print(f"No image files found in '{input_dir}' with extensions {extensions}")
return
print(f"Input: {input_dir}")
print(f"Output: {output_dir}")
print(f"Found {len(image_files)} images\n")
# Process images
results = {
"success": 0,
"skipped": 0,
"error": 0,
"total_faces": 0
}
with tqdm(image_files, desc="Processing images", unit="img") as pbar:
for image_path in pbar:
result = process_single_image(
detector, image_path, output_path,
vis_threshold, skip_existing
)
if result["status"] == "success":
results["success"] += 1
results["total_faces"] += result["faces"]
pbar.set_postfix({"faces": result["faces"]})
elif result["status"] == "skipped":
results["skipped"] += 1
else:
results["error"] += 1
print(f"\nError processing {image_path.name}: {result.get('error', 'Unknown error')}")
# Print summary
print(f"\nBatch processing complete!")
print(f" Total images: {len(image_files)}")
print(f" Successfully processed: {results['success']}")
print(f" Skipped: {results['skipped']}")
print(f" Errors: {results['error']}")
print(f" Total faces detected: {results['total_faces']}")
if results['success'] > 0:
print(f" Average faces per image: {results['total_faces']/results['success']:.2f}")
print(f"\nResults saved to: {output_dir}")
def main():
parser = argparse.ArgumentParser(description="Batch process images with face detection")
parser.add_argument("--input", type=str, required=True,
help="Input directory containing images")
parser.add_argument("--output", type=str, required=True,
help="Output directory for processed images")
parser.add_argument("--detector", type=str, default="retinaface",
choices=['retinaface', 'scrfd'], help="Face detector to use")
parser.add_argument("--threshold", type=float, default=0.6,
help="Confidence threshold for visualization")
parser.add_argument("--extensions", type=str, default="jpg,jpeg,png,bmp",
help="Comma-separated list of image extensions")
parser.add_argument("--skip_existing", action="store_true",
help="Skip files that already exist in output directory")
parser.add_argument("--verbose", action="store_true", help="Enable verbose logging")
args = parser.parse_args()
# Check input directory exists
if not Path(args.input).exists():
print(f"Error: Input directory '{args.input}' does not exist")
return
if args.verbose:
from uniface import enable_logging
enable_logging()
# Parse extensions
extensions = tuple(ext.strip() for ext in args.extensions.split(','))
# Initialize detector
print(f"Initializing detector: {args.detector}")
if args.detector == 'retinaface':
detector = RetinaFace()
else:
detector = SCRFD()
print("Detector initialized\n")
# Process batch
batch_process(detector, args.input, args.output, extensions,
args.threshold, args.skip_existing)
if __name__ == "__main__":
main()

View File

@@ -1,31 +1,77 @@
import argparse
from uniface.constants import RetinaFaceWeights
from uniface.constants import (
RetinaFaceWeights, SphereFaceWeights, MobileFaceWeights, ArcFaceWeights,
SCRFDWeights, DDAMFNWeights, AgeGenderWeights, LandmarkWeights
)
from uniface.model_store import verify_model_weights
# All available model types
ALL_MODEL_TYPES = {
'retinaface': RetinaFaceWeights,
'sphereface': SphereFaceWeights,
'mobileface': MobileFaceWeights,
'arcface': ArcFaceWeights,
'scrfd': SCRFDWeights,
'ddamfn': DDAMFNWeights,
'agegender': AgeGenderWeights,
'landmark': LandmarkWeights,
}
def main():
parser = argparse.ArgumentParser(description="Download and verify RetinaFace model weights.")
parser = argparse.ArgumentParser(description="Download and verify model weights.")
parser.add_argument(
"--model-type",
type=str,
choices=list(ALL_MODEL_TYPES.keys()),
help="Model type to download (e.g. retinaface, arcface). If not specified, all models will be downloaded.",
)
parser.add_argument(
"--model",
type=str,
choices=[m.name for m in RetinaFaceWeights],
help="Model to download (e.g. MNET_V2). If not specified, all models will be downloaded.",
help="Specific model to download (e.g. MNET_V2). For RetinaFace backward compatibility.",
)
args = parser.parse_args()
if args.model:
weight = RetinaFaceWeights[args.model]
print(f"📥 Downloading model: {weight.value}")
verify_model_weights(weight) # Pass enum, not string
else:
print("📥 Downloading all models...")
for weight in RetinaFaceWeights:
verify_model_weights(weight) # Pass enum, not string
if args.model and not args.model_type:
# Backward compatibility - assume RetinaFace
try:
weight = RetinaFaceWeights[args.model]
print(f"Downloading RetinaFace model: {weight.value}")
verify_model_weights(weight)
print("Model downloaded successfully.")
except KeyError:
print(f"Invalid RetinaFace model: {args.model}")
print(f"Available models: {[m.name for m in RetinaFaceWeights]}")
return
print("✅ All requested weights are ready and verified.")
if args.model_type:
# Download all models from specific type
model_enum = ALL_MODEL_TYPES[args.model_type]
print(f"Downloading all {args.model_type} models...")
for weight in model_enum:
print(f"Downloading: {weight.value}")
try:
verify_model_weights(weight)
print(f"Downloaded: {weight.value}")
except Exception as e:
print(f"Failed to download {weight.value}: {e}")
else:
# Download all models from all types
print("Downloading all models...")
for model_type, model_enum in ALL_MODEL_TYPES.items():
print(f"\nDownloading {model_type} models...")
for weight in model_enum:
print(f"Downloading: {weight.value}")
try:
verify_model_weights(weight)
print(f"Downloaded: {weight.value}")
except Exception as e:
print(f"Failed to download {weight.value}: {e}")
print("\nDownload process completed.")
if __name__ == "__main__":
main()

163
scripts/run_age_gender.py Normal file
View File

@@ -0,0 +1,163 @@
"""Age and Gender Detection Demo Script"""
import os
import cv2
import argparse
from pathlib import Path
from uniface import RetinaFace, SCRFD, AgeGender
from uniface.visualization import draw_detections
def process_image(detector, age_gender, image_path: str, save_dir: str = "outputs", vis_threshold: float = 0.6):
image = cv2.imread(image_path)
if image is None:
print(f"Error: Failed to load image from '{image_path}'")
return
print(f"Processing: {image_path}")
# Detect faces
faces = detector.detect(image)
print(f" Detected {len(faces)} face(s)")
if not faces:
print(" No faces detected")
return
# Draw detections
bboxes = [f['bbox'] for f in faces]
scores = [f['confidence'] for f in faces]
landmarks = [f['landmarks'] for f in faces]
draw_detections(image, bboxes, scores, landmarks, vis_threshold=vis_threshold)
# Predict and draw age/gender for each face
for i, face in enumerate(faces):
gender, age = age_gender.predict(image, face['bbox'])
print(f" Face {i+1}: {gender}, {age} years old")
# Draw age and gender text
bbox = face['bbox']
x1, y1 = int(bbox[0]), int(bbox[1])
text = f"{gender}, {age}y"
# Background rectangle for text
(text_width, text_height), _ = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, 0.6, 2)
cv2.rectangle(image, (x1, y1 - text_height - 10),
(x1 + text_width + 10, y1), (0, 255, 0), -1)
cv2.putText(image, text, (x1 + 5, y1 - 5),
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 0), 2)
# Save result
os.makedirs(save_dir, exist_ok=True)
output_path = os.path.join(save_dir, f"{Path(image_path).stem}_age_gender.jpg")
cv2.imwrite(output_path, image)
print(f"Output saved: {output_path}")
def run_webcam(detector, age_gender, vis_threshold: float = 0.6):
cap = cv2.VideoCapture(0)
if not cap.isOpened():
print("Cannot open webcam")
return
print("Webcam opened")
print("Press 'q' to quit\n")
frame_count = 0
try:
while True:
ret, frame = cap.read()
if not ret:
break
frame_count += 1
# Detect faces
faces = detector.detect(frame)
# Draw detections
bboxes = [f['bbox'] for f in faces]
scores = [f['confidence'] for f in faces]
landmarks = [f['landmarks'] for f in faces]
draw_detections(frame, bboxes, scores, landmarks, vis_threshold=vis_threshold)
# Predict and draw age/gender for each face
for face in faces:
gender, age = age_gender.predict(frame, face['bbox'])
# Draw age and gender text
bbox = face['bbox']
x1, y1 = int(bbox[0]), int(bbox[1])
text = f"{gender}, {age}y"
# Background rectangle for text
(text_width, text_height), _ = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, 0.6, 2)
cv2.rectangle(frame, (x1, y1 - text_height - 10),
(x1 + text_width + 10, y1), (0, 255, 0), -1)
cv2.putText(frame, text, (x1 + 5, y1 - 5),
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 0), 2)
# Add info
cv2.putText(frame, f"Faces: {len(faces)}", (10, 30),
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
cv2.putText(frame, "Press 'q' to quit", (10, frame.shape[0] - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
cv2.imshow("Age & Gender Detection", frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
except KeyboardInterrupt:
print("\nInterrupted")
finally:
cap.release()
cv2.destroyAllWindows()
print(f"\nProcessed {frame_count} frames")
def main():
parser = argparse.ArgumentParser(description="Run age and gender detection")
parser.add_argument("--image", type=str, help="Path to input image")
parser.add_argument("--webcam", action="store_true", help="Use webcam instead of image")
parser.add_argument("--detector", type=str, default="retinaface",
choices=['retinaface', 'scrfd'], help="Face detector to use")
parser.add_argument("--threshold", type=float, default=0.6,
help="Confidence threshold for visualization")
parser.add_argument("--save_dir", type=str, default="outputs",
help="Directory to save output images")
parser.add_argument("--verbose", action="store_true", help="Enable verbose logging")
args = parser.parse_args()
# Validate input
if not args.image and not args.webcam:
parser.error("Either --image or --webcam must be specified")
if args.verbose:
from uniface import enable_logging
enable_logging()
# Initialize models
print(f"Initializing detector: {args.detector}")
if args.detector == 'retinaface':
detector = RetinaFace()
else:
detector = SCRFD()
print("Initializing age/gender model...")
age_gender = AgeGender()
print("Models initialized\n")
# Process
if args.webcam:
run_webcam(detector, age_gender, args.threshold)
else:
process_image(detector, age_gender, args.image, args.save_dir, args.threshold)
if __name__ == "__main__":
main()

View File

@@ -4,24 +4,14 @@ import time
import argparse
import numpy as np
# UPDATED: Use the factory function and import from the new location
from uniface.detection import create_detector
from uniface.detection import RetinaFace, SCRFD
from uniface.visualization import draw_detections
def run_inference(detector, image_path: str, vis_threshold: float = 0.6, save_dir: str = "outputs"):
"""
Run face detection on a single image.
Args:
detector: Initialized face detector.
image_path (str): Path to input image.
vis_threshold (float): Threshold for drawing detections.
save_dir (str): Directory to save output image.
"""
image = cv2.imread(image_path)
if image is None:
print(f"Error: Failed to load image from '{image_path}'")
print(f"Error: Failed to load image from '{image_path}'")
return
# 1. Get the list of face dictionaries from the detector
@@ -40,7 +30,7 @@ def run_inference(detector, image_path: str, vis_threshold: float = 0.6, save_di
os.makedirs(save_dir, exist_ok=True)
output_path = os.path.join(save_dir, f"{os.path.splitext(os.path.basename(image_path))[0]}_out.jpg")
cv2.imwrite(output_path, image)
print(f"Output saved at: {output_path}")
print(f"Output saved at: {output_path}")
def main():
@@ -65,14 +55,17 @@ def main():
enable_logging()
print(f"Initializing detector: {args.method}")
detector = create_detector(method=args.method)
if args.method == 'retinaface':
detector = RetinaFace()
else:
detector = SCRFD()
avg_time = 0
for i in range(args.iterations):
start = time.time()
run_inference(detector, args.image, args.threshold, args.save_dir)
elapsed = time.time() - start
print(f"[{i + 1}/{args.iterations}] ⏱️ Inference time: {elapsed:.4f} seconds")
print(f"[{i + 1}/{args.iterations}] Inference time: {elapsed:.4f} seconds")
if i >= 0: # Avoid counting the first run if it includes model loading time
avg_time += elapsed
@@ -80,7 +73,7 @@ def main():
# Adjust average calculation to exclude potential first-run overhead
effective_iterations = max(1, args.iterations)
print(
f"\n🔥 Average inference time over {effective_iterations} runs: {avg_time / effective_iterations:.4f} seconds")
f"\nAverage inference time over {effective_iterations} runs: {avg_time / effective_iterations:.4f} seconds")
if __name__ == "__main__":

View File

@@ -3,14 +3,12 @@ import argparse
import cv2
import numpy as np
# Use the new high-level factory functions
from uniface.detection import create_detector
from uniface.detection import RetinaFace, SCRFD
from uniface.face_utils import compute_similarity
from uniface.recognition import create_recognizer
from uniface.recognition import ArcFace, MobileFace, SphereFace
def extract_reference_embedding(detector, recognizer, image_path: str) -> np.ndarray:
"""Extracts a normalized embedding from the first face found in an image."""
image = cv2.imread(image_path)
if image is None:
raise RuntimeError(f"Failed to load image: {image_path}")
@@ -28,7 +26,6 @@ def extract_reference_embedding(detector, recognizer, image_path: str) -> np.nda
def run_video(detector, recognizer, ref_embedding: np.ndarray, threshold: float = 0.4):
"""Run real-time face recognition from a webcam feed."""
cap = cv2.VideoCapture(0)
if not cap.isOpened():
raise RuntimeError("Webcam could not be opened.")
@@ -91,8 +88,17 @@ def main():
enable_logging()
print("Initializing models...")
detector = create_detector(method=args.detector)
recognizer = create_recognizer(method=args.recognizer)
if args.detector == 'retinaface':
detector = RetinaFace()
else:
detector = SCRFD()
if args.recognizer == 'arcface':
recognizer = ArcFace()
elif args.recognizer == 'mobileface':
recognizer = MobileFace()
else:
recognizer = SphereFace()
print("Extracting reference embedding...")
ref_embedding = extract_reference_embedding(detector, recognizer, args.image)

149
scripts/run_landmarks.py Normal file
View File

@@ -0,0 +1,149 @@
"""Facial Landmark Detection Demo Script"""
import os
import cv2
import argparse
from pathlib import Path
from uniface import RetinaFace, SCRFD, Landmark106
def process_image(detector, landmarker, image_path: str, save_dir: str = "outputs"):
image = cv2.imread(image_path)
if image is None:
print(f"Error: Failed to load image from '{image_path}'")
return
print(f"Processing: {image_path}")
# Detect faces
faces = detector.detect(image)
print(f" Detected {len(faces)} face(s)")
if not faces:
print(" No faces detected")
return
# Process each face
for i, face in enumerate(faces):
# Draw bounding box
bbox = face['bbox']
x1, y1, x2, y2 = map(int, bbox)
cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2)
# Get and draw 106 landmarks
landmarks = landmarker.get_landmarks(image, bbox)
print(f" Face {i+1}: Extracted {len(landmarks)} landmarks")
for x, y in landmarks.astype(int):
cv2.circle(image, (x, y), 1, (0, 255, 0), -1)
# Add face count
cv2.putText(image, f"Face {i+1}", (x1, y1 - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
# Add total count
cv2.putText(image, f"Faces: {len(faces)}", (10, 30),
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
# Save result
os.makedirs(save_dir, exist_ok=True)
output_path = os.path.join(save_dir, f"{Path(image_path).stem}_landmarks.jpg")
cv2.imwrite(output_path, image)
print(f"Output saved: {output_path}")
def run_webcam(detector, landmarker):
cap = cv2.VideoCapture(0)
if not cap.isOpened():
print("Cannot open webcam")
return
print("Webcam opened")
print("Press 'q' to quit\n")
frame_count = 0
try:
while True:
ret, frame = cap.read()
if not ret:
break
frame_count += 1
# Detect faces
faces = detector.detect(frame)
# Process each face
for face in faces:
# Draw bounding box
bbox = face['bbox']
x1, y1, x2, y2 = map(int, bbox)
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
# Get and draw 106 landmarks
landmarks = landmarker.get_landmarks(frame, bbox)
for x, y in landmarks.astype(int):
cv2.circle(frame, (x, y), 1, (0, 255, 0), -1)
# Add info
cv2.putText(frame, f"Faces: {len(faces)}", (10, 30),
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
cv2.putText(frame, "Press 'q' to quit", (10, frame.shape[0] - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
cv2.imshow("106-Point Landmarks", frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
except KeyboardInterrupt:
print("\nInterrupted")
finally:
cap.release()
cv2.destroyAllWindows()
print(f"\nProcessed {frame_count} frames")
def main():
parser = argparse.ArgumentParser(description="Run facial landmark detection")
parser.add_argument("--image", type=str, help="Path to input image")
parser.add_argument("--webcam", action="store_true", help="Use webcam instead of image")
parser.add_argument("--detector", type=str, default="retinaface",
choices=['retinaface', 'scrfd'], help="Face detector to use")
parser.add_argument("--save_dir", type=str, default="outputs",
help="Directory to save output images")
parser.add_argument("--verbose", action="store_true", help="Enable verbose logging")
args = parser.parse_args()
# Validate input
if not args.image and not args.webcam:
parser.error("Either --image or --webcam must be specified")
if args.verbose:
from uniface import enable_logging
enable_logging()
# Initialize models
print(f"Initializing detector: {args.detector}")
if args.detector == 'retinaface':
detector = RetinaFace()
else:
detector = SCRFD()
print("Initializing landmark detector...")
landmarker = Landmark106()
print("Models initialized\n")
# Process
if args.webcam:
run_webcam(detector, landmarker)
else:
process_image(detector, landmarker, args.image, args.save_dir)
if __name__ == "__main__":
main()

View File

@@ -2,20 +2,12 @@ import cv2
import argparse
import numpy as np
# Use the new high-level factory functions for consistency
from uniface.detection import create_detector
from uniface.recognition import create_recognizer
from uniface.detection import RetinaFace, SCRFD
from uniface.recognition import ArcFace, MobileFace, SphereFace
from uniface.face_utils import compute_similarity
def run_inference(detector, recognizer, image_path: str):
"""
Detect faces and extract embeddings from a single image.
Args:
detector: Initialized face detector.
recognizer: Initialized face recognition model.
image_path (str): Path to the input image.
"""
image = cv2.imread(image_path)
if image is None:
print(f"Error: Failed to load image from '{image_path}'")
@@ -43,9 +35,47 @@ def run_inference(detector, recognizer, image_path: str):
print(f" - L2 norm of normalized embedding: {np.linalg.norm(norm_embedding):.4f}")
def compare_faces(detector, recognizer, image1_path: str, image2_path: str, threshold: float = 0.35):
# Load images
img1 = cv2.imread(image1_path)
img2 = cv2.imread(image2_path)
if img1 is None or img2 is None:
print(f"Error: Failed to load images")
return
# Detect faces
faces1 = detector.detect(img1)
faces2 = detector.detect(img2)
if not faces1 or not faces2:
print("Error: No faces detected in one or both images")
return
# Get landmarks for first face in each image
landmarks1 = np.array(faces1[0]['landmarks'])
landmarks2 = np.array(faces2[0]['landmarks'])
# Get normalized embeddings
embedding1 = recognizer.get_normalized_embedding(img1, landmarks1)
embedding2 = recognizer.get_normalized_embedding(img2, landmarks2)
# Compute similarity
similarity = compute_similarity(embedding1, embedding2, normalized=True)
is_match = similarity > threshold
print(f"Similarity: {similarity:.4f}")
print(f"Result: {'Same person' if is_match else 'Different person'}")
print(f"Threshold: {threshold}")
def main():
parser = argparse.ArgumentParser(description="Extract face embeddings from a single image.")
parser.add_argument("--image", type=str, required=True, help="Path to the input image.")
parser = argparse.ArgumentParser(description="Face recognition and comparison.")
parser.add_argument("--image", type=str, help="Path to single image for embedding extraction.")
parser.add_argument("--image1", type=str, help="Path to first image for comparison.")
parser.add_argument("--image2", type=str, help="Path to second image for comparison.")
parser.add_argument("--threshold", type=float, default=0.35, help="Similarity threshold for face matching.")
parser.add_argument(
"--detector",
type=str,
@@ -69,12 +99,29 @@ def main():
enable_logging()
print(f"Initializing detector: {args.detector}")
detector = create_detector(method=args.detector)
if args.detector == 'retinaface':
detector = RetinaFace()
else:
detector = SCRFD()
print(f"Initializing recognizer: {args.recognizer}")
recognizer = create_recognizer(method=args.recognizer)
if args.recognizer == 'arcface':
recognizer = ArcFace()
elif args.recognizer == 'mobileface':
recognizer = MobileFace()
else:
recognizer = SphereFace()
run_inference(detector, recognizer, args.image)
if args.image1 and args.image2:
# Face comparison mode
print(f"Comparing faces: {args.image1} vs {args.image2}")
compare_faces(detector, recognizer, args.image1, args.image2, args.threshold)
elif args.image:
# Single image embedding extraction mode
run_inference(detector, recognizer, args.image)
else:
print("Error: Provide either --image for single image processing or --image1 and --image2 for comparison")
parser.print_help()
if __name__ == "__main__":

View File

@@ -0,0 +1,142 @@
"""Video Face Detection Script"""
import cv2
import argparse
from pathlib import Path
from tqdm import tqdm
from uniface import RetinaFace, SCRFD
from uniface.visualization import draw_detections
def process_video(detector, input_path: str, output_path: str, vis_threshold: float = 0.6,
fps: int = None, show_preview: bool = False):
# Open input video
cap = cv2.VideoCapture(input_path)
if not cap.isOpened():
print(f"Error: Cannot open video file '{input_path}'")
return
# Get video properties
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
source_fps = cap.get(cv2.CAP_PROP_FPS)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
output_fps = fps if fps is not None else source_fps
print(f"📹 Input: {input_path}")
print(f" Resolution: {width}x{height}")
print(f" FPS: {source_fps:.2f}")
print(f" Total frames: {total_frames}")
print(f"\n📹 Output: {output_path}")
print(f" FPS: {output_fps:.2f}\n")
# Initialize video writer
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(output_path, fourcc, output_fps, (width, height))
if not out.isOpened():
print(f"Error: Cannot create output video '{output_path}'")
cap.release()
return
# Process frames
frame_count = 0
total_faces = 0
try:
with tqdm(total=total_frames, desc="Processing", unit="frames") as pbar:
while True:
ret, frame = cap.read()
if not ret:
break
frame_count += 1
# Detect faces
faces = detector.detect(frame)
total_faces += len(faces)
# Draw detections
bboxes = [f['bbox'] for f in faces]
scores = [f['confidence'] for f in faces]
landmarks = [f['landmarks'] for f in faces]
draw_detections(frame, bboxes, scores, landmarks, vis_threshold=vis_threshold)
# Add frame info
cv2.putText(frame, f"Faces: {len(faces)}", (10, 30),
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
# Write frame
out.write(frame)
# Show preview if requested
if show_preview:
cv2.imshow("Processing Video - Press 'q' to cancel", frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
print("\nProcessing cancelled by user")
break
pbar.update(1)
except KeyboardInterrupt:
print("\nProcessing interrupted")
finally:
cap.release()
out.release()
if show_preview:
cv2.destroyAllWindows()
# Summary
print(f"\nProcessing complete!")
print(f" Processed: {frame_count} frames")
print(f" Total faces detected: {total_faces}")
print(f" Average faces per frame: {total_faces/frame_count:.2f}" if frame_count > 0 else "")
print(f" Output saved: {output_path}")
def main():
parser = argparse.ArgumentParser(description="Process video with face detection")
parser.add_argument("--input", type=str, required=True, help="Path to input video")
parser.add_argument("--output", type=str, required=True, help="Path to output video")
parser.add_argument("--detector", type=str, default="retinaface",
choices=['retinaface', 'scrfd'], help="Face detector to use")
parser.add_argument("--threshold", type=float, default=0.6,
help="Confidence threshold for visualization")
parser.add_argument("--fps", type=int, default=None,
help="Output FPS (default: same as input)")
parser.add_argument("--preview", action="store_true",
help="Show live preview during processing")
parser.add_argument("--verbose", action="store_true", help="Enable verbose logging")
args = parser.parse_args()
# Check input exists
if not Path(args.input).exists():
print(f"Error: Input file '{args.input}' does not exist")
return
# Create output directory if needed
output_dir = Path(args.output).parent
if output_dir != Path('.'):
output_dir.mkdir(parents=True, exist_ok=True)
if args.verbose:
from uniface import enable_logging
enable_logging()
# Initialize detector
print(f"Initializing detector: {args.detector}")
if args.detector == 'retinaface':
detector = RetinaFace()
else:
detector = SCRFD()
print("Detector initialized\n")
# Process video
process_video(detector, args.input, args.output, args.threshold, args.fps, args.preview)
if __name__ == "__main__":
main()

116
tests/test_age_gender.py Normal file
View File

@@ -0,0 +1,116 @@
import numpy as np
import pytest
from uniface.attribute import AgeGender
@pytest.fixture
def age_gender_model():
return AgeGender()
@pytest.fixture
def mock_image():
return np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
@pytest.fixture
def mock_bbox():
return [100, 100, 300, 300]
def test_model_initialization(age_gender_model):
assert age_gender_model is not None, "AgeGender model initialization failed."
def test_prediction_output_format(age_gender_model, mock_image, mock_bbox):
gender, age = age_gender_model.predict(mock_image, mock_bbox)
assert isinstance(gender, str), f"Gender should be string, got {type(gender)}"
assert isinstance(age, int), f"Age should be int, got {type(age)}"
def test_gender_values(age_gender_model, mock_image, mock_bbox):
gender, age = age_gender_model.predict(mock_image, mock_bbox)
assert gender in ['Male', 'Female'], f"Gender should be 'Male' or 'Female', got '{gender}'"
def test_age_range(age_gender_model, mock_image, mock_bbox):
gender, age = age_gender_model.predict(mock_image, mock_bbox)
assert 0 <= age <= 120, f"Age should be between 0 and 120, got {age}"
def test_different_bbox_sizes(age_gender_model, mock_image):
test_bboxes = [
[50, 50, 150, 150],
[100, 100, 300, 300],
[50, 50, 400, 400],
]
for bbox in test_bboxes:
gender, age = age_gender_model.predict(mock_image, bbox)
assert gender in ['Male', 'Female'], f"Failed for bbox {bbox}"
assert 0 <= age <= 120, f"Age out of range for bbox {bbox}"
def test_different_image_sizes(age_gender_model, mock_bbox):
test_sizes = [(480, 640, 3), (720, 1280, 3), (1080, 1920, 3)]
for size in test_sizes:
mock_image = np.random.randint(0, 255, size, dtype=np.uint8)
gender, age = age_gender_model.predict(mock_image, mock_bbox)
assert gender in ['Male', 'Female'], f"Failed for image size {size}"
assert 0 <= age <= 120, f"Age out of range for image size {size}"
def test_consistency(age_gender_model, mock_image, mock_bbox):
gender1, age1 = age_gender_model.predict(mock_image, mock_bbox)
gender2, age2 = age_gender_model.predict(mock_image, mock_bbox)
assert gender1 == gender2, "Same input should produce same gender prediction"
assert age1 == age2, "Same input should produce same age prediction"
def test_bbox_list_format(age_gender_model, mock_image):
bbox_list = [100, 100, 300, 300]
gender, age = age_gender_model.predict(mock_image, bbox_list)
assert gender in ['Male', 'Female'], "Should work with bbox as list"
assert 0 <= age <= 120, "Age should be in valid range"
def test_bbox_array_format(age_gender_model, mock_image):
bbox_array = np.array([100, 100, 300, 300])
gender, age = age_gender_model.predict(mock_image, bbox_array)
assert gender in ['Male', 'Female'], "Should work with bbox as numpy array"
assert 0 <= age <= 120, "Age should be in valid range"
def test_multiple_predictions(age_gender_model, mock_image):
bboxes = [
[50, 50, 150, 150],
[200, 200, 350, 350],
[400, 400, 550, 550],
]
results = []
for bbox in bboxes:
gender, age = age_gender_model.predict(mock_image, bbox)
results.append((gender, age))
assert len(results) == 3, "Should have 3 predictions"
for gender, age in results:
assert gender in ['Male', 'Female']
assert 0 <= age <= 120
def test_age_is_positive(age_gender_model, mock_image, mock_bbox):
for _ in range(5):
gender, age = age_gender_model.predict(mock_image, mock_bbox)
assert age >= 0, f"Age should be non-negative, got {age}"
def test_output_format_for_visualization(age_gender_model, mock_image, mock_bbox):
gender, age = age_gender_model.predict(mock_image, mock_bbox)
text = f"{gender}, {age}y"
assert isinstance(text, str), "Should be able to format as string"
assert "Male" in text or "Female" in text, "Text should contain gender"
assert "y" in text, "Text should contain 'y' for years"

278
tests/test_factory.py Normal file
View File

@@ -0,0 +1,278 @@
import numpy as np
import pytest
from uniface import (
create_detector,
create_landmarker,
create_recognizer,
detect_faces,
list_available_detectors,
)
from uniface.constants import RetinaFaceWeights, SCRFDWeights
# create_detector tests
def test_create_detector_retinaface():
"""
Test creating a RetinaFace detector using factory function.
"""
detector = create_detector('retinaface')
assert detector is not None, "Failed to create RetinaFace detector"
def test_create_detector_scrfd():
"""
Test creating a SCRFD detector using factory function.
"""
detector = create_detector('scrfd')
assert detector is not None, "Failed to create SCRFD detector"
def test_create_detector_with_config():
"""
Test creating detector with custom configuration.
"""
detector = create_detector(
'retinaface',
model_name=RetinaFaceWeights.MNET_V2,
conf_thresh=0.8,
nms_thresh=0.3
)
assert detector is not None, "Failed to create detector with custom config"
def test_create_detector_invalid_method():
"""
Test that invalid detector method raises an error.
"""
with pytest.raises((ValueError, KeyError)):
create_detector('invalid_method')
def test_create_detector_scrfd_with_model():
"""
Test creating SCRFD detector with specific model.
"""
detector = create_detector(
'scrfd',
model_name=SCRFDWeights.SCRFD_10G_KPS,
conf_thresh=0.5
)
assert detector is not None, "Failed to create SCRFD with specific model"
# create_recognizer tests
def test_create_recognizer_arcface():
"""
Test creating an ArcFace recognizer using factory function.
"""
recognizer = create_recognizer('arcface')
assert recognizer is not None, "Failed to create ArcFace recognizer"
def test_create_recognizer_mobileface():
"""
Test creating a MobileFace recognizer using factory function.
"""
recognizer = create_recognizer('mobileface')
assert recognizer is not None, "Failed to create MobileFace recognizer"
def test_create_recognizer_sphereface():
"""
Test creating a SphereFace recognizer using factory function.
"""
recognizer = create_recognizer('sphereface')
assert recognizer is not None, "Failed to create SphereFace recognizer"
def test_create_recognizer_invalid_method():
"""
Test that invalid recognizer method raises an error.
"""
with pytest.raises((ValueError, KeyError)):
create_recognizer('invalid_method')
# create_landmarker tests
def test_create_landmarker():
"""
Test creating a Landmark106 detector using factory function.
"""
landmarker = create_landmarker('2d106det')
assert landmarker is not None, "Failed to create Landmark106 detector"
def test_create_landmarker_default():
"""
Test creating landmarker with default parameters.
"""
landmarker = create_landmarker()
assert landmarker is not None, "Failed to create default landmarker"
def test_create_landmarker_invalid_method():
"""
Test that invalid landmarker method raises an error.
"""
with pytest.raises((ValueError, KeyError)):
create_landmarker('invalid_method')
# detect_faces tests
def test_detect_faces_retinaface():
"""
Test high-level detect_faces function with RetinaFace.
"""
mock_image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
faces = detect_faces(mock_image, method='retinaface')
assert isinstance(faces, list), "detect_faces should return a list"
def test_detect_faces_scrfd():
"""
Test high-level detect_faces function with SCRFD.
"""
mock_image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
faces = detect_faces(mock_image, method='scrfd')
assert isinstance(faces, list), "detect_faces should return a list"
def test_detect_faces_with_threshold():
"""
Test detect_faces with custom confidence threshold.
"""
mock_image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
faces = detect_faces(mock_image, method='retinaface', conf_thresh=0.8)
assert isinstance(faces, list), "detect_faces should return a list"
# All detections should respect threshold
for face in faces:
assert face['confidence'] >= 0.8, "All detections should meet confidence threshold"
def test_detect_faces_default_method():
"""
Test detect_faces with default method (should use retinaface).
"""
mock_image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
faces = detect_faces(mock_image) # No method specified
assert isinstance(faces, list), "detect_faces should return a list with default method"
def test_detect_faces_empty_image():
"""
Test detect_faces on a blank image.
"""
empty_image = np.zeros((640, 640, 3), dtype=np.uint8)
faces = detect_faces(empty_image, method='retinaface')
assert isinstance(faces, list), "Should return a list even for empty image"
assert len(faces) == 0, "Should detect no faces in blank image"
# list_available_detectors tests
def test_list_available_detectors():
"""
Test that list_available_detectors returns a dictionary.
"""
detectors = list_available_detectors()
assert isinstance(detectors, dict), "Should return a dictionary of detectors"
assert len(detectors) > 0, "Should have at least one detector available"
def test_list_available_detectors_contents():
"""
Test that list includes known detectors.
"""
detectors = list_available_detectors()
# Should include at least these detectors
assert 'retinaface' in detectors, "Should include 'retinaface'"
assert 'scrfd' in detectors, "Should include 'scrfd'"
# Integration tests
def test_detector_inference_from_factory():
"""
Test that detector created from factory can perform inference.
"""
detector = create_detector('retinaface')
mock_image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
faces = detector.detect(mock_image)
assert isinstance(faces, list), "Detector should return list of faces"
def test_recognizer_inference_from_factory():
"""
Test that recognizer created from factory can perform inference.
"""
recognizer = create_recognizer('arcface')
mock_image = np.random.randint(0, 255, (112, 112, 3), dtype=np.uint8)
embedding = recognizer.get_embedding(mock_image)
assert embedding is not None, "Recognizer should return embedding"
assert embedding.shape[1] == 512, "Should return 512-dimensional embedding"
def test_landmarker_inference_from_factory():
"""
Test that landmarker created from factory can perform inference.
"""
landmarker = create_landmarker('2d106det')
mock_image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
mock_bbox = [100, 100, 300, 300]
landmarks = landmarker.get_landmarks(mock_image, mock_bbox)
assert landmarks is not None, "Landmarker should return landmarks"
assert landmarks.shape == (106, 2), "Should return 106 landmarks"
def test_multiple_detector_creation():
"""
Test that multiple detectors can be created independently.
"""
detector1 = create_detector('retinaface')
detector2 = create_detector('scrfd')
assert detector1 is not None
assert detector2 is not None
assert detector1 is not detector2, "Should create separate instances"
def test_detector_with_different_configs():
"""
Test creating multiple detectors with different configurations.
"""
detector_high_thresh = create_detector('retinaface', conf_thresh=0.9)
detector_low_thresh = create_detector('retinaface', conf_thresh=0.3)
mock_image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
faces_high = detector_high_thresh.detect(mock_image)
faces_low = detector_low_thresh.detect(mock_image)
# Both should work
assert isinstance(faces_high, list)
assert isinstance(faces_low, list)
def test_factory_returns_correct_types():
"""
Test that factory functions return instances of the correct types.
"""
from uniface import RetinaFace, ArcFace, Landmark106
detector = create_detector('retinaface')
recognizer = create_recognizer('arcface')
landmarker = create_landmarker('2d106det')
assert isinstance(detector, RetinaFace), "Should return RetinaFace instance"
assert isinstance(recognizer, ArcFace), "Should return ArcFace instance"
assert isinstance(landmarker, Landmark106), "Should return Landmark106 instance"

107
tests/test_landmark.py Normal file
View File

@@ -0,0 +1,107 @@
import numpy as np
import pytest
from uniface.landmark import Landmark106
@pytest.fixture
def landmark_model():
return Landmark106()
@pytest.fixture
def mock_image():
return np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
@pytest.fixture
def mock_bbox():
return [100, 100, 300, 300]
def test_model_initialization(landmark_model):
assert landmark_model is not None, "Landmark106 model initialization failed."
def test_landmark_detection(landmark_model, mock_image, mock_bbox):
landmarks = landmark_model.get_landmarks(mock_image, mock_bbox)
assert landmarks.shape == (106, 2), f"Expected shape (106, 2), got {landmarks.shape}"
def test_landmark_dtype(landmark_model, mock_image, mock_bbox):
landmarks = landmark_model.get_landmarks(mock_image, mock_bbox)
assert landmarks.dtype == np.float32, f"Expected float32, got {landmarks.dtype}"
def test_landmark_coordinates_within_image(landmark_model, mock_image, mock_bbox):
landmarks = landmark_model.get_landmarks(mock_image, mock_bbox)
x_coords = landmarks[:, 0]
y_coords = landmarks[:, 1]
x1, y1, x2, y2 = mock_bbox
margin = 50
x_in_bounds = np.sum((x_coords >= x1 - margin) & (x_coords <= x2 + margin))
y_in_bounds = np.sum((y_coords >= y1 - margin) & (y_coords <= y2 + margin))
assert x_in_bounds >= 95, f"Only {x_in_bounds}/106 x-coordinates within bounds"
assert y_in_bounds >= 95, f"Only {y_in_bounds}/106 y-coordinates within bounds"
def test_different_bbox_sizes(landmark_model, mock_image):
test_bboxes = [
[50, 50, 150, 150],
[100, 100, 300, 300],
[50, 50, 400, 400],
]
for bbox in test_bboxes:
landmarks = landmark_model.get_landmarks(mock_image, bbox)
assert landmarks.shape == (106, 2), f"Failed for bbox {bbox}"
def test_landmark_array_format(landmark_model, mock_image, mock_bbox):
landmarks = landmark_model.get_landmarks(mock_image, mock_bbox)
landmarks_int = landmarks.astype(int)
assert landmarks_int.shape == (106, 2), "Integer conversion should preserve shape"
assert landmarks_int.dtype in [np.int32, np.int64], "Should convert to integer type"
def test_consistency(landmark_model, mock_image, mock_bbox):
landmarks1 = landmark_model.get_landmarks(mock_image, mock_bbox)
landmarks2 = landmark_model.get_landmarks(mock_image, mock_bbox)
assert np.allclose(landmarks1, landmarks2), "Same input should produce same landmarks"
def test_different_image_sizes(landmark_model, mock_bbox):
test_sizes = [(480, 640, 3), (720, 1280, 3), (1080, 1920, 3)]
for size in test_sizes:
mock_image = np.random.randint(0, 255, size, dtype=np.uint8)
landmarks = landmark_model.get_landmarks(mock_image, mock_bbox)
assert landmarks.shape == (106, 2), f"Failed for image size {size}"
def test_bbox_list_format(landmark_model, mock_image):
bbox_list = [100, 100, 300, 300]
landmarks = landmark_model.get_landmarks(mock_image, mock_bbox)
assert landmarks.shape == (106, 2), "Should work with bbox as list"
def test_bbox_array_format(landmark_model, mock_image):
bbox_array = np.array([100, 100, 300, 300])
landmarks = landmark_model.get_landmarks(mock_image, bbox_array)
assert landmarks.shape == (106, 2), "Should work with bbox as numpy array"
def test_landmark_distribution(landmark_model, mock_image, mock_bbox):
landmarks = landmark_model.get_landmarks(mock_image, mock_bbox)
x_variance = np.var(landmarks[:, 0])
y_variance = np.var(landmarks[:, 1])
assert x_variance > 0, "Landmarks should have variation in x-coordinates"
assert y_variance > 0, "Landmarks should have variation in y-coordinates"

211
tests/test_recognition.py Normal file
View File

@@ -0,0 +1,211 @@
import numpy as np
import pytest
from uniface.recognition import ArcFace, MobileFace, SphereFace
@pytest.fixture
def arcface_model():
"""
Fixture to initialize the ArcFace model for testing.
"""
return ArcFace()
@pytest.fixture
def mobileface_model():
"""
Fixture to initialize the MobileFace model for testing.
"""
return MobileFace()
@pytest.fixture
def sphereface_model():
"""
Fixture to initialize the SphereFace model for testing.
"""
return SphereFace()
@pytest.fixture
def mock_aligned_face():
"""
Create a mock 112x112 aligned face image.
"""
return np.random.randint(0, 255, (112, 112, 3), dtype=np.uint8)
@pytest.fixture
def mock_landmarks():
"""
Create mock 5-point facial landmarks.
"""
return np.array([
[38.2946, 51.6963],
[73.5318, 51.5014],
[56.0252, 71.7366],
[41.5493, 92.3655],
[70.7299, 92.2041]
], dtype=np.float32)
# ArcFace Tests
def test_arcface_initialization(arcface_model):
"""
Test that the ArcFace model initializes correctly.
"""
assert arcface_model is not None, "ArcFace model initialization failed."
def test_arcface_embedding_shape(arcface_model, mock_aligned_face):
"""
Test that ArcFace produces embeddings with the correct shape.
"""
embedding = arcface_model.get_embedding(mock_aligned_face)
# ArcFace typically produces 512-dimensional embeddings
assert embedding.shape[1] == 512, f"Expected 512-dim embedding, got {embedding.shape[1]}"
assert embedding.shape[0] == 1, "Embedding should have batch dimension of 1"
def test_arcface_normalized_embedding(arcface_model, mock_landmarks):
"""
Test that normalized embeddings have unit length.
"""
# Create a larger mock image for alignment
mock_image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
embedding = arcface_model.get_normalized_embedding(mock_image, mock_landmarks)
# Check that embedding is normalized (L2 norm ≈ 1.0)
norm = np.linalg.norm(embedding)
assert np.isclose(norm, 1.0, atol=1e-5), f"Normalized embedding should have norm 1.0, got {norm}"
def test_arcface_embedding_dtype(arcface_model, mock_aligned_face):
"""
Test that embeddings have the correct data type.
"""
embedding = arcface_model.get_embedding(mock_aligned_face)
assert embedding.dtype == np.float32, f"Expected float32, got {embedding.dtype}"
def test_arcface_consistency(arcface_model, mock_aligned_face):
"""
Test that the same input produces the same embedding.
"""
embedding1 = arcface_model.get_embedding(mock_aligned_face)
embedding2 = arcface_model.get_embedding(mock_aligned_face)
assert np.allclose(embedding1, embedding2), "Same input should produce same embedding"
# MobileFace Tests
def test_mobileface_initialization(mobileface_model):
"""
Test that the MobileFace model initializes correctly.
"""
assert mobileface_model is not None, "MobileFace model initialization failed."
def test_mobileface_embedding_shape(mobileface_model, mock_aligned_face):
"""
Test that MobileFace produces embeddings with the correct shape.
"""
embedding = mobileface_model.get_embedding(mock_aligned_face)
# MobileFace typically produces 512-dimensional embeddings
assert embedding.shape[1] == 512, f"Expected 512-dim embedding, got {embedding.shape[1]}"
assert embedding.shape[0] == 1, "Embedding should have batch dimension of 1"
def test_mobileface_normalized_embedding(mobileface_model, mock_landmarks):
"""
Test that MobileFace normalized embeddings have unit length.
"""
mock_image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
embedding = mobileface_model.get_normalized_embedding(mock_image, mock_landmarks)
norm = np.linalg.norm(embedding)
assert np.isclose(norm, 1.0, atol=1e-5), f"Normalized embedding should have norm 1.0, got {norm}"
# SphereFace Tests
def test_sphereface_initialization(sphereface_model):
"""
Test that the SphereFace model initializes correctly.
"""
assert sphereface_model is not None, "SphereFace model initialization failed."
def test_sphereface_embedding_shape(sphereface_model, mock_aligned_face):
"""
Test that SphereFace produces embeddings with the correct shape.
"""
embedding = sphereface_model.get_embedding(mock_aligned_face)
# SphereFace typically produces 512-dimensional embeddings
assert embedding.shape[1] == 512, f"Expected 512-dim embedding, got {embedding.shape[1]}"
assert embedding.shape[0] == 1, "Embedding should have batch dimension of 1"
def test_sphereface_normalized_embedding(sphereface_model, mock_landmarks):
"""
Test that SphereFace normalized embeddings have unit length.
"""
mock_image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
embedding = sphereface_model.get_normalized_embedding(mock_image, mock_landmarks)
norm = np.linalg.norm(embedding)
assert np.isclose(norm, 1.0, atol=1e-5), f"Normalized embedding should have norm 1.0, got {norm}"
# Cross-model comparison tests
def test_different_models_different_embeddings(arcface_model, mobileface_model, mock_aligned_face):
"""
Test that different models produce different embeddings for the same input.
"""
arcface_emb = arcface_model.get_embedding(mock_aligned_face)
mobileface_emb = mobileface_model.get_embedding(mock_aligned_face)
# Embeddings should be different (with high probability for random input)
# We check that they're not identical
assert not np.allclose(arcface_emb, mobileface_emb), \
"Different models should produce different embeddings"
def test_embedding_similarity_computation(arcface_model, mock_aligned_face):
"""
Test computing similarity between embeddings.
"""
# Get two embeddings
emb1 = arcface_model.get_embedding(mock_aligned_face)
# Create a slightly different image
mock_aligned_face2 = mock_aligned_face.copy()
mock_aligned_face2[:10, :10] = 0 # Modify a small region
emb2 = arcface_model.get_embedding(mock_aligned_face2)
# Compute cosine similarity
from uniface import compute_similarity
similarity = compute_similarity(emb1, emb2)
# Similarity should be between -1 and 1
assert -1.0 <= similarity <= 1.0, f"Similarity should be in [-1, 1], got {similarity}"
def test_same_face_high_similarity(arcface_model, mock_aligned_face):
"""
Test that the same face produces high similarity.
"""
emb1 = arcface_model.get_embedding(mock_aligned_face)
emb2 = arcface_model.get_embedding(mock_aligned_face)
from uniface import compute_similarity
similarity = compute_similarity(emb1, emb2)
# Same image should have similarity close to 1.0
assert similarity > 0.99, f"Same face should have similarity > 0.99, got {similarity}"

View File

@@ -7,9 +7,6 @@ from uniface.detection import RetinaFace
@pytest.fixture
def retinaface_model():
"""
Fixture to initialize the RetinaFace model for testing.
"""
return RetinaFace(
model_name=RetinaFaceWeights.MNET_V2,
conf_thresh=0.5,
@@ -20,67 +17,39 @@ def retinaface_model():
def test_model_initialization(retinaface_model):
"""
Test that the RetinaFace model initializes correctly.
"""
assert retinaface_model is not None, "Model initialization failed."
def test_inference_on_640x640_image(retinaface_model):
"""
Test inference on a 640x640 BGR image.
"""
# Generate a mock 640x640 BGR image
mock_image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
# Run inference - returns list of dictionaries
faces = retinaface_model.detect(mock_image)
# Check output type
assert isinstance(faces, list), "Detections should be a list."
# Check that each face has the expected structure
for face in faces:
assert isinstance(face, dict), "Each detection should be a dictionary."
assert "bbox" in face, "Each detection should have a 'bbox' key."
assert "confidence" in face, "Each detection should have a 'confidence' key."
assert "landmarks" in face, "Each detection should have a 'landmarks' key."
# Check bbox format
bbox = face["bbox"]
assert len(bbox) == 4, "BBox should have 4 values (x1, y1, x2, y2)."
# Check landmarks format
landmarks = face["landmarks"]
assert len(landmarks) == 5, "Should have 5 landmark points."
assert all(len(pt) == 2 for pt in landmarks), "Each landmark should be (x, y)."
def test_confidence_threshold(retinaface_model):
"""
Test that detections respect the confidence threshold.
"""
# Generate a mock 640x640 BGR image
mock_image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
# Run inference
faces = retinaface_model.detect(mock_image)
# Ensure all detections have confidence scores above the threshold
for face in faces:
confidence = face["confidence"]
assert confidence >= 0.5, f"Detection has confidence {confidence} below threshold 0.5"
def test_no_faces_detected(retinaface_model):
"""
Test inference on an image without detectable faces.
"""
# Generate an empty (black) 640x640 image
empty_image = np.zeros((640, 640, 3), dtype=np.uint8)
# Run inference
faces = retinaface_model.detect(empty_image)
# Ensure no detections are found
assert len(faces) == 0, "Should detect no faces in a blank image."

71
tests/test_scrfd.py Normal file
View File

@@ -0,0 +1,71 @@
import numpy as np
import pytest
from uniface.constants import SCRFDWeights
from uniface.detection import SCRFD
@pytest.fixture
def scrfd_model():
return SCRFD(
model_name=SCRFDWeights.SCRFD_500M_KPS,
conf_thresh=0.5,
nms_thresh=0.4,
)
def test_model_initialization(scrfd_model):
assert scrfd_model is not None, "Model initialization failed."
def test_inference_on_640x640_image(scrfd_model):
mock_image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
faces = scrfd_model.detect(mock_image)
assert isinstance(faces, list), "Detections should be a list."
for face in faces:
assert isinstance(face, dict), "Each detection should be a dictionary."
assert "bbox" in face, "Each detection should have a 'bbox' key."
assert "confidence" in face, "Each detection should have a 'confidence' key."
assert "landmarks" in face, "Each detection should have a 'landmarks' key."
bbox = face["bbox"]
assert len(bbox) == 4, "BBox should have 4 values (x1, y1, x2, y2)."
landmarks = face["landmarks"]
assert len(landmarks) == 5, "Should have 5 landmark points."
assert all(len(pt) == 2 for pt in landmarks), "Each landmark should be (x, y)."
def test_confidence_threshold(scrfd_model):
mock_image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
faces = scrfd_model.detect(mock_image)
for face in faces:
confidence = face["confidence"]
assert confidence >= 0.5, f"Detection has confidence {confidence} below threshold 0.5"
def test_no_faces_detected(scrfd_model):
empty_image = np.zeros((640, 640, 3), dtype=np.uint8)
faces = scrfd_model.detect(empty_image)
assert len(faces) == 0, "Should detect no faces in a blank image."
def test_different_input_sizes(scrfd_model):
test_sizes = [(480, 640, 3), (720, 1280, 3), (1080, 1920, 3)]
for size in test_sizes:
mock_image = np.random.randint(0, 255, size, dtype=np.uint8)
faces = scrfd_model.detect(mock_image)
assert isinstance(faces, list), f"Should return list for size {size}"
def test_scrfd_10g_model():
model = SCRFD(model_name=SCRFDWeights.SCRFD_10G_KPS, conf_thresh=0.5)
assert model is not None, "SCRFD 10G model initialization failed."
mock_image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
faces = model.detect(mock_image)
assert isinstance(faces, list), "SCRFD 10G should return list of detections."

247
tests/test_utils.py Normal file
View File

@@ -0,0 +1,247 @@
import numpy as np
import pytest
from uniface import compute_similarity, face_alignment
@pytest.fixture
def mock_image():
"""
Create a mock 640x640 BGR image.
"""
return np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
@pytest.fixture
def mock_landmarks():
"""
Create mock 5-point facial landmarks.
Standard positions for a face roughly centered at (112/2, 112/2).
"""
return np.array([
[38.2946, 51.6963], # Left eye
[73.5318, 51.5014], # Right eye
[56.0252, 71.7366], # Nose
[41.5493, 92.3655], # Left mouth corner
[70.7299, 92.2041] # Right mouth corner
], dtype=np.float32)
# compute_similarity tests
def test_compute_similarity_same_embedding():
"""
Test that similarity of an embedding with itself is 1.0.
"""
embedding = np.random.randn(1, 512).astype(np.float32)
embedding = embedding / np.linalg.norm(embedding) # Normalize
similarity = compute_similarity(embedding, embedding)
assert np.isclose(similarity, 1.0, atol=1e-5), f"Self-similarity should be 1.0, got {similarity}"
def test_compute_similarity_range():
"""
Test that similarity is always in the range [-1, 1].
"""
# Test with multiple random embeddings
for _ in range(10):
emb1 = np.random.randn(1, 512).astype(np.float32)
emb2 = np.random.randn(1, 512).astype(np.float32)
# Normalize
emb1 = emb1 / np.linalg.norm(emb1)
emb2 = emb2 / np.linalg.norm(emb2)
similarity = compute_similarity(emb1, emb2)
assert -1.0 <= similarity <= 1.0, f"Similarity should be in [-1, 1], got {similarity}"
def test_compute_similarity_orthogonal():
"""
Test that orthogonal embeddings have similarity close to 0.
"""
# Create orthogonal embeddings
emb1 = np.zeros((1, 512), dtype=np.float32)
emb1[0, 0] = 1.0 # [1, 0, 0, ..., 0]
emb2 = np.zeros((1, 512), dtype=np.float32)
emb2[0, 1] = 1.0 # [0, 1, 0, ..., 0]
similarity = compute_similarity(emb1, emb2)
assert np.isclose(similarity, 0.0, atol=1e-5), f"Orthogonal embeddings should have similarity 0.0, got {similarity}"
def test_compute_similarity_opposite():
"""
Test that opposite embeddings have similarity close to -1.
"""
emb1 = np.ones((1, 512), dtype=np.float32)
emb1 = emb1 / np.linalg.norm(emb1)
emb2 = -emb1 # Opposite direction
similarity = compute_similarity(emb1, emb2)
assert np.isclose(similarity, -1.0, atol=1e-5), f"Opposite embeddings should have similarity -1.0, got {similarity}"
def test_compute_similarity_symmetry():
"""
Test that similarity(A, B) == similarity(B, A).
"""
emb1 = np.random.randn(1, 512).astype(np.float32)
emb2 = np.random.randn(1, 512).astype(np.float32)
# Normalize
emb1 = emb1 / np.linalg.norm(emb1)
emb2 = emb2 / np.linalg.norm(emb2)
sim_12 = compute_similarity(emb1, emb2)
sim_21 = compute_similarity(emb2, emb1)
assert np.isclose(sim_12, sim_21), "Similarity should be symmetric"
def test_compute_similarity_dtype():
"""
Test that compute_similarity returns a float.
"""
emb1 = np.random.randn(1, 512).astype(np.float32)
emb2 = np.random.randn(1, 512).astype(np.float32)
# Normalize
emb1 = emb1 / np.linalg.norm(emb1)
emb2 = emb2 / np.linalg.norm(emb2)
similarity = compute_similarity(emb1, emb2)
assert isinstance(similarity, (float, np.floating)), f"Similarity should be float, got {type(similarity)}"
# face_alignment tests
def test_face_alignment_output_shape(mock_image, mock_landmarks):
"""
Test that face_alignment produces output with the correct shape.
"""
aligned, _ = face_alignment(mock_image, mock_landmarks, image_size=(112, 112))
assert aligned.shape == (112, 112, 3), f"Expected shape (112, 112, 3), got {aligned.shape}"
def test_face_alignment_dtype(mock_image, mock_landmarks):
"""
Test that aligned face has the correct data type.
"""
aligned, _ = face_alignment(mock_image, mock_landmarks, image_size=(112, 112))
assert aligned.dtype == np.uint8, f"Expected uint8, got {aligned.dtype}"
def test_face_alignment_different_sizes(mock_image, mock_landmarks):
"""
Test face alignment with different output sizes.
"""
# Only test sizes that are multiples of 112 or 128 as required by the function
test_sizes = [(112, 112), (128, 128), (224, 224)]
for size in test_sizes:
aligned, _ = face_alignment(mock_image, mock_landmarks, image_size=size)
assert aligned.shape == (*size, 3), f"Failed for size {size}"
def test_face_alignment_consistency(mock_image, mock_landmarks):
"""
Test that the same input produces the same aligned face.
"""
aligned1, _ = face_alignment(mock_image, mock_landmarks, image_size=(112, 112))
aligned2, _ = face_alignment(mock_image, mock_landmarks, image_size=(112, 112))
assert np.allclose(aligned1, aligned2), "Same input should produce same aligned face"
def test_face_alignment_landmarks_as_list(mock_image):
"""
Test that landmarks can be passed as a list of lists (converted to array).
"""
landmarks_list = [
[38.2946, 51.6963],
[73.5318, 51.5014],
[56.0252, 71.7366],
[41.5493, 92.3655],
[70.7299, 92.2041]
]
# Convert list to numpy array before passing to face_alignment
landmarks_array = np.array(landmarks_list, dtype=np.float32)
aligned, _ = face_alignment(mock_image, landmarks_array, image_size=(112, 112))
assert aligned.shape == (112, 112, 3), "Should work with landmarks as array"
def test_face_alignment_value_range(mock_image, mock_landmarks):
"""
Test that aligned face pixel values are in valid range [0, 255].
"""
aligned, _ = face_alignment(mock_image, mock_landmarks, image_size=(112, 112))
assert np.all(aligned >= 0), "Pixel values should be >= 0"
assert np.all(aligned <= 255), "Pixel values should be <= 255"
def test_face_alignment_not_all_zeros(mock_image, mock_landmarks):
"""
Test that aligned face is not all zeros (actual transformation occurred).
"""
aligned, _ = face_alignment(mock_image, mock_landmarks, image_size=(112, 112))
# At least some pixels should be non-zero
assert np.any(aligned > 0), "Aligned face should have some non-zero pixels"
def test_face_alignment_from_different_positions(mock_image):
"""
Test alignment with landmarks at different positions in the image.
"""
# Landmarks at different positions
positions = [
np.array([[100, 100], [150, 100], [125, 130], [110, 150], [140, 150]], dtype=np.float32),
np.array([[300, 200], [350, 200], [325, 230], [310, 250], [340, 250]], dtype=np.float32),
np.array([[500, 400], [550, 400], [525, 430], [510, 450], [540, 450]], dtype=np.float32),
]
for landmarks in positions:
aligned, _ = face_alignment(mock_image, landmarks, image_size=(112, 112))
assert aligned.shape == (112, 112, 3), f"Failed for landmarks at {landmarks[0]}"
def test_face_alignment_landmark_count(mock_image):
"""
Test that face_alignment works specifically with 5-point landmarks.
"""
# Standard 5-point landmarks
landmarks_5pt = np.array([
[38.2946, 51.6963],
[73.5318, 51.5014],
[56.0252, 71.7366],
[41.5493, 92.3655],
[70.7299, 92.2041]
], dtype=np.float32)
aligned, _ = face_alignment(mock_image, landmarks_5pt, image_size=(112, 112))
assert aligned.shape == (112, 112, 3), "Should work with 5-point landmarks"
def test_compute_similarity_with_recognition_embeddings():
"""
Test compute_similarity with realistic embedding dimensions.
"""
# Simulate ArcFace/MobileFace/SphereFace embeddings (512-dim)
emb1 = np.random.randn(1, 512).astype(np.float32)
emb2 = np.random.randn(1, 512).astype(np.float32)
# Normalize (as done in get_normalized_embedding)
emb1 = emb1 / np.linalg.norm(emb1)
emb2 = emb2 / np.linalg.norm(emb2)
similarity = compute_similarity(emb1, emb2)
# Should be a valid similarity score
assert -1.0 <= similarity <= 1.0
assert isinstance(similarity, (float, np.floating))

View File

@@ -13,7 +13,7 @@
__license__ = "MIT"
__author__ = "Yakhyokhuja Valikhujaev"
__version__ = "1.0.0"
__version__ = "1.0.1"
from uniface.face_utils import compute_similarity, face_alignment

View File

@@ -29,7 +29,7 @@ class ArcFaceWeights(str, Enum):
Pretrained weights from ArcFace model (insightface).
https://github.com/deepinsight/insightface
"""
MNET = "arcface_mnet"
MNET = "arcface_mnet"
RESNET = "arcface_resnet"
class RetinaFaceWeights(str, Enum):
@@ -84,42 +84,42 @@ class LandmarkWeights(str, Enum):
MODEL_URLS: Dict[Enum, str] = {
# RetinaFace
RetinaFaceWeights.MNET_025: 'https://github.com/yakhyo/uniface/releases/download/v0.1.2/retinaface_mv1_0.25.onnx',
RetinaFaceWeights.MNET_050: 'https://github.com/yakhyo/uniface/releases/download/v0.1.2/retinaface_mv1_0.50.onnx',
RetinaFaceWeights.MNET_V1: 'https://github.com/yakhyo/uniface/releases/download/v0.1.2/retinaface_mv1.onnx',
RetinaFaceWeights.MNET_V2: 'https://github.com/yakhyo/uniface/releases/download/v0.1.2/retinaface_mv2.onnx',
RetinaFaceWeights.RESNET18: 'https://github.com/yakhyo/uniface/releases/download/v0.1.2/retinaface_r18.onnx',
RetinaFaceWeights.RESNET34: 'https://github.com/yakhyo/uniface/releases/download/v0.1.2/retinaface_r34.onnx',
RetinaFaceWeights.MNET_025: 'https://github.com/yakhyo/uniface/releases/download/weights/retinaface_mv1_0.25.onnx',
RetinaFaceWeights.MNET_050: 'https://github.com/yakhyo/uniface/releases/download/weights/retinaface_mv1_0.50.onnx',
RetinaFaceWeights.MNET_V1: 'https://github.com/yakhyo/uniface/releases/download/weights/retinaface_mv1.onnx',
RetinaFaceWeights.MNET_V2: 'https://github.com/yakhyo/uniface/releases/download/weights/retinaface_mv2.onnx',
RetinaFaceWeights.RESNET18: 'https://github.com/yakhyo/uniface/releases/download/weights/retinaface_r18.onnx',
RetinaFaceWeights.RESNET34: 'https://github.com/yakhyo/uniface/releases/download/weights/retinaface_r34.onnx',
# MobileFace
MobileFaceWeights.MNET_025: 'https://github.com/yakhyo/uniface/releases/download/v0.1.2/###',
MobileFaceWeights.MNET_V2: 'https://github.com/yakhyo/uniface/releases/download/v0.1.2/###',
MobileFaceWeights.MNET_V3_SMALL: 'https://github.com/yakhyo/uniface/releases/download/v0.1.2/###',
MobileFaceWeights.MNET_V3_LARGE: 'https://github.com/yakhyo/uniface/releases/download/v0.1.2/###',
MobileFaceWeights.MNET_025: 'https://github.com/yakhyo/uniface/releases/download/weights/mobilenetv1_0.25.onnx',
MobileFaceWeights.MNET_V2: 'https://github.com/yakhyo/uniface/releases/download/weights/mobilenetv2.onnx',
MobileFaceWeights.MNET_V3_SMALL: 'https://github.com/yakhyo/uniface/releases/download/weights/mobilenetv3_small.onnx',
MobileFaceWeights.MNET_V3_LARGE: 'https://github.com/yakhyo/uniface/releases/download/weights/mobilenetv3_large.onnx',
# SphereFace
SphereFaceWeights.SPHERE20: 'https://github.com/yakhyo/uniface/releases/download/v0.1.2/###',
SphereFaceWeights.SPHERE36: 'https://github.com/yakhyo/uniface/releases/download/v0.1.2/###',
SphereFaceWeights.SPHERE20: 'https://github.com/yakhyo/uniface/releases/download/weights/sphere20.onnx',
SphereFaceWeights.SPHERE36: 'https://github.com/yakhyo/uniface/releases/download/weights/sphere36.onnx',
# ArcFace
ArcFaceWeights.MNET: 'https://github.com/yakhyo/uniface/releases/download/v0.1.2/w600k_mbf.onnx',
ArcFaceWeights.RESNET: 'https://github.com/yakhyo/uniface/releases/download/v0.1.2/w600k_r50.onnx',
ArcFaceWeights.MNET: 'https://github.com/yakhyo/uniface/releases/download/weights/w600k_mbf.onnx',
ArcFaceWeights.RESNET: 'https://github.com/yakhyo/uniface/releases/download/weights/w600k_r50.onnx',
# SCRFD
SCRFDWeights.SCRFD_10G_KPS: 'https://github.com/yakhyo/uniface/releases/download/v0.1.2/scrfd_10g_kps.onnx',
SCRFDWeights.SCRFD_500M_KPS: 'https://github.com/yakhyo/uniface/releases/download/v0.1.2/scrfd_500m_kps.onnx',
SCRFDWeights.SCRFD_10G_KPS: 'https://github.com/yakhyo/uniface/releases/download/weights/scrfd_10g_kps.onnx',
SCRFDWeights.SCRFD_500M_KPS: 'https://github.com/yakhyo/uniface/releases/download/weights/scrfd_500m_kps.onnx',
# DDAFM
DDAMFNWeights.AFFECNET7: 'https://github.com/yakhyo/uniface/releases/download/v0.1.2/affecnet7.script',
DDAMFNWeights.AFFECNET8: 'https://github.com/yakhyo/uniface/releases/download/v0.1.2/affecnet8.script',
DDAMFNWeights.AFFECNET7: 'https://github.com/yakhyo/uniface/releases/download/weights/affecnet7.script',
DDAMFNWeights.AFFECNET8: 'https://github.com/yakhyo/uniface/releases/download/weights/affecnet8.script',
# AgeGender
AgeGenderWeights.DEFAULT: 'https://github.com/yakhyo/uniface/releases/download/v0.1.2/genderage.onnx',
AgeGenderWeights.DEFAULT: 'https://github.com/yakhyo/uniface/releases/download/weights/genderage.onnx',
# Landmarks
LandmarkWeights.DEFAULT: 'https://github.com/yakhyo/uniface/releases/download/v0.1.2/2d106det.onnx',
LandmarkWeights.DEFAULT: 'https://github.com/yakhyo/uniface/releases/download/weights/2d106det.onnx',
}
MODEL_SHA256: Dict[Enum, str] = {
@@ -132,14 +132,14 @@ MODEL_SHA256: Dict[Enum, str] = {
RetinaFaceWeights.RESNET34: 'bd0263dc2a465d32859555cb1741f2d98991eb0053696e8ee33fec583d30e630',
# MobileFace
MobileFaceWeights.MNET_025: '#',
MobileFaceWeights.MNET_V2: '#',
MobileFaceWeights.MNET_V3_SMALL: '#',
MobileFaceWeights.MNET_V3_LARGE: '#',
MobileFaceWeights.MNET_025: 'eeda7d23d9c2b40cf77fa8da8e895b5697465192648852216074679657f8ee8b',
MobileFaceWeights.MNET_V2: '38b148284dd48cc898d5d4453104252fbdcbacc105fe3f0b80e78954d9d20d89',
MobileFaceWeights.MNET_V3_SMALL: 'd4acafa1039a82957aa8a9a1dac278a401c353a749c39df43de0e29cc1c127c3',
MobileFaceWeights.MNET_V3_LARGE: '0e48f8e11f070211716d03e5c65a3db35a5e917cfb5bc30552358629775a142a',
# SphereFace
SphereFaceWeights.SPHERE20: '#',
SphereFaceWeights.SPHERE36: '#',
SphereFaceWeights.SPHERE20: 'c02878cf658eb1861f580b7e7144b0d27cc29c440bcaa6a99d466d2854f14c9d',
SphereFaceWeights.SPHERE36: '13b3890cd5d7dec2b63f7c36fd7ce07403e5a0bbb701d9647c0289e6cbe7bb20',
# ArcFace

View File

@@ -287,15 +287,15 @@ if __name__ == "__main__":
cap = cv2.VideoCapture(0)
if not cap.isOpened():
print("Failed to open webcam.")
print("Failed to open webcam.")
exit()
print("📷 Webcam started. Press 'q' to exit.")
print("Webcam started. Press 'q' to exit.")
while True:
ret, frame = cap.read()
if not ret:
print("Failed to read frame.")
print("Failed to read frame.")
break
# Get face detections as list of dictionaries

View File

@@ -280,15 +280,15 @@ if __name__ == "__main__":
cap = cv2.VideoCapture(0)
if not cap.isOpened():
print("Failed to open webcam.")
print("Failed to open webcam.")
exit()
print("📷 Webcam started. Press 'q' to exit.")
print("Webcam started. Press 'q' to exit.")
while True:
ret, frame = cap.read()
if not ret:
print("Failed to read frame.")
print("Failed to read frame.")
break
# Get face detections as list of dictionaries

View File

@@ -5,7 +5,7 @@
import cv2
import numpy as np
from skimage.transform import SimilarityTransform
from typing import Tuple
from typing import Tuple, Union
__all__ = ["face_alignment", "compute_similarity", "bbox_center_alignment", "transform_points_2d"]
@@ -24,13 +24,14 @@ reference_alignment: np.ndarray = np.array(
)
def estimate_norm(landmark: np.ndarray, image_size: int = 112) -> Tuple[np.ndarray, np.ndarray]:
def estimate_norm(landmark: np.ndarray, image_size: Union[int, Tuple[int, int]] = 112) -> Tuple[np.ndarray, np.ndarray]:
"""
Estimate the normalization transformation matrix for facial landmarks.
Args:
landmark (np.ndarray): Array of shape (5, 2) representing the coordinates of the facial landmarks.
image_size (int, optional): The size of the output image. Default is 112.
image_size (Union[int, Tuple[int, int]], optional): The size of the output image.
Can be an integer (for square images) or a tuple (width, height). Default is 112.
Returns:
np.ndarray: The 2x3 transformation matrix for aligning the landmarks.
@@ -41,13 +42,20 @@ def estimate_norm(landmark: np.ndarray, image_size: int = 112) -> Tuple[np.ndarr
or if image_size is not a multiple of 112 or 128.
"""
assert landmark.shape == (5, 2), "Landmark array must have shape (5, 2)."
assert image_size % 112 == 0 or image_size % 128 == 0, "Image size must be a multiple of 112 or 128."
if image_size % 112 == 0:
ratio = float(image_size) / 112.0
# Handle both int and tuple inputs
if isinstance(image_size, tuple):
size = image_size[0] # Use width for ratio calculation
else:
size = image_size
assert size % 112 == 0 or size % 128 == 0, "Image size must be a multiple of 112 or 128."
if size % 112 == 0:
ratio = float(size) / 112.0
diff_x = 0.0
else:
ratio = float(image_size) / 128.0
ratio = float(size) / 128.0
diff_x = 8.0 * ratio
# Adjust reference alignment based on ratio and diff_x
@@ -64,14 +72,15 @@ def estimate_norm(landmark: np.ndarray, image_size: int = 112) -> Tuple[np.ndarr
return matrix, inverse_matrix
def face_alignment(image: np.ndarray, landmark: np.ndarray, image_size: int = 112) -> Tuple[np.ndarray, np.ndarray]:
def face_alignment(image: np.ndarray, landmark: np.ndarray, image_size: Union[int, Tuple[int, int]] = 112) -> Tuple[np.ndarray, np.ndarray]:
"""
Align the face in the input image based on the given facial landmarks.
Args:
image (np.ndarray): Input image as a NumPy array.
landmark (np.ndarray): Array of shape (5, 2) representing the coordinates of the facial landmarks.
image_size (int, optional): The size of the aligned output image. Default is 112.
image_size (Union[int, Tuple[int, int]], optional): The size of the aligned output image.
Can be an integer (for square images) or a tuple (width, height). Default is 112.
Returns:
np.ndarray: The aligned face as a NumPy array.
@@ -80,8 +89,14 @@ def face_alignment(image: np.ndarray, landmark: np.ndarray, image_size: int = 11
# Get the transformation matrix
M, M_inv = estimate_norm(landmark, image_size)
# Handle both int and tuple for warpAffine output size
if isinstance(image_size, int):
output_size = (image_size, image_size)
else:
output_size = image_size
# Warp the input image to align the face
warped = cv2.warpAffine(image, M, (image_size, image_size), borderValue=0.0)
warped = cv2.warpAffine(image, M, output_size, borderValue=0.0)
return warped, M_inv

View File

@@ -157,15 +157,13 @@ class Landmark106(BaseLandmarker):
# TODO: For testing purposes only, remote later
# Testing code
if __name__ == "__main__":
# UPDATED: Use the high-level factory functions
from uniface.detection import create_detector
from uniface.landmark import create_landmarker
from uniface.detection import RetinaFace
from uniface.landmark import Landmark106
# 1. Create the detector and landmarker using the new API
face_detector = create_detector('retinaface')
landmarker = create_landmarker() # Uses the default '2d106det' method
face_detector = RetinaFace()
landmarker = Landmark106()
cap = cv2.VideoCapture(0)
if not cap.isOpened():

View File

@@ -109,19 +109,23 @@ class BaseRecognizer(ABC):
return blob
def get_embedding(self, image: np.ndarray, landmarks: np.ndarray) -> np.ndarray:
def get_embedding(self, image: np.ndarray, landmarks: np.ndarray = None) -> np.ndarray:
"""
Extracts face embedding from an image.
Args:
image: Input face image (BGR format).
landmarks: Facial landmarks (5 points for alignment).
image: Input face image (BGR format). If already aligned (112x112), landmarks can be None.
landmarks: Facial landmarks (5 points for alignment). Optional if image is already aligned.
Returns:
Face embedding vector (typically 512-dimensional).
"""
# Align face using landmarks
aligned_face, _ = face_alignment(image, landmarks)
# If landmarks are provided, align the face first
if landmarks is not None:
aligned_face, _ = face_alignment(image, landmarks, image_size=self.input_size)
else:
# Assume image is already aligned
aligned_face = image
# Generate embedding from aligned face
face_blob = self.preprocess(aligned_face)