mirror of
https://github.com/yakhyo/uniface.git
synced 2025-12-30 09:02:25 +00:00
ref: Add comprehensive test suite and enhance model functionality
- Add new test files for age_gender, factory, landmark, recognition, scrfd, and utils - Add new scripts for age_gender, landmarks, and video detection - Update documentation in README.md, MODELS.md, QUICKSTART.md - Improve model constants and face utilities - Update detection models (retinaface, scrfd) with enhanced functionality - Update project configuration in pyproject.toml
This commit is contained in:
34
README.md
34
README.md
@@ -21,7 +21,7 @@
|
||||
- **Face Recognition**: ArcFace, MobileFace, and SphereFace embeddings
|
||||
- **Attribute Analysis**: Age, gender, and emotion detection
|
||||
- **Face Alignment**: Precise alignment for downstream tasks
|
||||
- **Hardware Acceleration**: CoreML (Apple Silicon), CUDA (NVIDIA), CPU fallback
|
||||
- **Hardware Acceleration**: ARM64 optimizations (Apple Silicon), CUDA (NVIDIA), CPU fallback
|
||||
- **Simple API**: Intuitive factory functions and clean interfaces
|
||||
- **Production-Ready**: Type hints, comprehensive logging, PEP8 compliant
|
||||
|
||||
@@ -39,27 +39,19 @@ pip install uniface
|
||||
|
||||
#### macOS (Apple Silicon - M1/M2/M3/M4)
|
||||
|
||||
For optimal performance with **CoreML acceleration** (3-5x faster):
|
||||
For Apple Silicon Macs, the standard installation automatically includes optimized ARM64 support:
|
||||
|
||||
```bash
|
||||
# Standard installation (CPU only)
|
||||
pip install uniface
|
||||
|
||||
# With CoreML acceleration (recommended for M-series chips)
|
||||
pip install uniface[silicon]
|
||||
```
|
||||
|
||||
**Verify CoreML is available:**
|
||||
```python
|
||||
import onnxruntime as ort
|
||||
print(ort.get_available_providers())
|
||||
# Should show: ['CoreMLExecutionProvider', 'CPUExecutionProvider']
|
||||
```
|
||||
The base `onnxruntime` package (included with uniface) has native Apple Silicon support with ARM64 optimizations built-in since version 1.13+.
|
||||
|
||||
#### Linux/Windows with NVIDIA GPU
|
||||
|
||||
For CUDA acceleration on NVIDIA GPUs:
|
||||
|
||||
```bash
|
||||
# With CUDA acceleration
|
||||
pip install uniface[gpu]
|
||||
```
|
||||
|
||||
@@ -172,28 +164,29 @@ print(f"{gender}, {age} years old")
|
||||
### Factory Functions (Recommended)
|
||||
|
||||
```python
|
||||
from uniface import create_detector, create_recognizer, create_landmarker
|
||||
from uniface.detection import RetinaFace, SCRFD
|
||||
from uniface.recognition import ArcFace
|
||||
from uniface.landmark import Landmark106
|
||||
|
||||
# Create detector with default settings
|
||||
detector = create_detector('retinaface')
|
||||
detector = RetinaFace()
|
||||
|
||||
# Create with custom config
|
||||
detector = create_detector(
|
||||
'scrfd',
|
||||
detector = SCRFD(
|
||||
model_name='scrfd_10g_kps',
|
||||
conf_thresh=0.8,
|
||||
input_size=(640, 640)
|
||||
)
|
||||
|
||||
# Recognition and landmarks
|
||||
recognizer = create_recognizer('arcface')
|
||||
landmarker = create_landmarker('2d106det')
|
||||
recognizer = ArcFace()
|
||||
landmarker = Landmark106()
|
||||
```
|
||||
|
||||
### Direct Model Instantiation
|
||||
|
||||
```python
|
||||
from uniface import RetinaFace, SCRFD, ArcFace, MobileFace
|
||||
from uniface import RetinaFace, SCRFD, ArcFace, MobileFace, SphereFace
|
||||
from uniface.constants import RetinaFaceWeights
|
||||
|
||||
# Detection
|
||||
@@ -206,6 +199,7 @@ detector = RetinaFace(
|
||||
# Recognition
|
||||
recognizer = ArcFace() # Uses default weights
|
||||
recognizer = MobileFace() # Lightweight alternative
|
||||
recognizer = SphereFace() # Angular softmax alternative
|
||||
```
|
||||
|
||||
### High-Level Detection API
|
||||
|
||||
Reference in New Issue
Block a user