improve logging system with verbose flag

- silent by default (only warnings/errors)
- add --verbose flag to all scripts
- add enable_logging() function for library users
- cleaner output for end users
This commit is contained in:
yakhyo
2025-11-08 01:15:25 +09:00
parent 77f14a616a
commit 666438909d
8 changed files with 178 additions and 144 deletions

View File

@@ -56,9 +56,14 @@ def main():
parser.add_argument("--threshold", type=float, default=0.6, help="Visualization confidence threshold")
parser.add_argument("--iterations", type=int, default=1, help="Number of inference runs for benchmarking")
parser.add_argument("--save_dir", type=str, default="outputs", help="Directory to save output images")
parser.add_argument("--verbose", action="store_true", help="Enable verbose logging")
args = parser.parse_args()
if args.verbose:
from uniface import enable_logging
enable_logging()
print(f"Initializing detector: {args.method}")
detector = create_detector(method=args.method)

View File

@@ -1,11 +1,12 @@
import cv2
import argparse
import cv2
import numpy as np
# Use the new high-level factory functions
from uniface.detection import create_detector
from uniface.recognition import create_recognizer
from uniface.face_utils import compute_similarity
from uniface.recognition import create_recognizer
def extract_reference_embedding(detector, recognizer, image_path: str) -> np.ndarray:
@@ -19,7 +20,7 @@ def extract_reference_embedding(detector, recognizer, image_path: str) -> np.nda
raise RuntimeError("No faces found in reference image.")
# Get landmarks from the first detected face dictionary
landmarks = np.array(faces[0]['landmarks'])
landmarks = np.array(faces[0]["landmarks"])
# Use normalized embedding for more reliable similarity comparison
embedding = recognizer.get_normalized_embedding(image, landmarks)
@@ -43,8 +44,8 @@ def run_video(detector, recognizer, ref_embedding: np.ndarray, threshold: float
# Loop through each detected face
for face in faces:
# Extract bbox and landmarks from the dictionary
bbox = face['bbox']
landmarks = np.array(face['landmarks'])
bbox = face["bbox"]
landmarks = np.array(face["landmarks"])
x1, y1, x2, y2 = map(int, bbox)
@@ -61,7 +62,7 @@ def run_video(detector, recognizer, ref_embedding: np.ndarray, threshold: float
cv2.putText(frame, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 2)
cv2.imshow("Face Recognition", frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
if cv2.waitKey(1) & 0xFF == ord("q"):
break
cap.release()
@@ -72,21 +73,23 @@ def main():
parser = argparse.ArgumentParser(description="Face recognition using a reference image.")
parser.add_argument("--image", type=str, required=True, help="Path to the reference face image.")
parser.add_argument(
"--detector",
type=str,
default="scrfd",
choices=['retinaface', 'scrfd'],
help="Face detection method."
"--detector", type=str, default="scrfd", choices=["retinaface", "scrfd"], help="Face detection method."
)
parser.add_argument(
"--recognizer",
type=str,
default="arcface",
choices=['arcface', 'mobileface', 'sphereface'],
help="Face recognition method."
choices=["arcface", "mobileface", "sphereface"],
help="Face recognition method.",
)
parser.add_argument("--verbose", action="store_true", help="Enable verbose logging")
args = parser.parse_args()
if args.verbose:
from uniface import enable_logging
enable_logging()
print("Initializing models...")
detector = create_detector(method=args.detector)
recognizer = create_recognizer(method=args.recognizer)

View File

@@ -60,9 +60,14 @@ def main():
choices=['arcface', 'mobileface', 'sphereface'],
help="Face recognition method to use."
)
parser.add_argument("--verbose", action="store_true", help="Enable verbose logging")
args = parser.parse_args()
if args.verbose:
from uniface import enable_logging
enable_logging()
print(f"Initializing detector: {args.detector}")
detector = create_detector(method=args.detector)

View File

@@ -17,7 +17,7 @@ __version__ = "0.1.9"
from uniface.face_utils import compute_similarity, face_alignment
from uniface.log import Logger
from uniface.log import Logger, enable_logging
from uniface.model_store import verify_model_weights
from uniface.visualization import draw_detections
@@ -54,4 +54,5 @@ __all__ = [
"face_alignment",
"verify_model_weights",
"Logger",
"enable_logging",
]

View File

@@ -1,8 +1,28 @@
import logging
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s - %(levelname)s - %(message)s",
datefmt="%Y-%m-%d %H:%M:%S"
)
# Create logger for uniface
Logger = logging.getLogger("uniface")
Logger.setLevel(logging.WARNING) # Only show warnings/errors by default
Logger.addHandler(logging.NullHandler())
def enable_logging(level=logging.INFO):
"""
Enable verbose logging for uniface.
Args:
level: Logging level (logging.DEBUG, logging.INFO, etc.)
Example:
>>> from uniface import enable_logging
>>> enable_logging() # Show INFO logs
"""
Logger.handlers.clear()
handler = logging.StreamHandler()
handler.setFormatter(logging.Formatter(
"%(asctime)s - %(levelname)s - %(message)s",
datefmt="%Y-%m-%d %H:%M:%S"
))
Logger.addHandler(handler)
Logger.setLevel(level)
Logger.propagate = False