feat: Add YOLOv5 face detection support (#26)

* feat: Add YOLOv5 face detection model

* docs: Update docs, add new model information

* feat: Add YOLOv5 face detection model

* test: Add testing and running
This commit is contained in:
Yakhyokhuja Valikhujaev
2025-12-03 23:35:56 +09:00
committed by GitHub
parent a5e97ac484
commit 6b1d2a1ce6
12 changed files with 498 additions and 178 deletions

231
MODELS.md
View File

@@ -10,14 +10,14 @@ Complete guide to all available models, their performance characteristics, and s
RetinaFace models are trained on the WIDER FACE dataset and provide excellent accuracy-speed tradeoffs.
| Model Name | Params | Size | Easy | Medium | Hard | Use Case |
|---------------------|--------|--------|--------|--------|--------|----------------------------|
| `MNET_025` | 0.4M | 1.7MB | 88.48% | 87.02% | 80.61% | Mobile/Edge devices |
| `MNET_050` | 1.0M | 2.6MB | 89.42% | 87.97% | 82.40% | Mobile/Edge devices |
| `MNET_V1` | 3.5M | 3.8MB | 90.59% | 89.14% | 84.13% | Balanced mobile |
| `MNET_V2` | 3.2M | 3.5MB | 91.70% | 91.03% | 86.60% | **Recommended default** |
| `RESNET18` | 11.7M | 27MB | 92.50% | 91.02% | 86.63% | Server/High accuracy |
| `RESNET34` | 24.8M | 56MB | 94.16% | 93.12% | 88.90% | Maximum accuracy |
| Model Name | Params | Size | Easy | Medium | Hard | Use Case |
| -------------- | ------ | ----- | ------ | ------ | ------ | ----------------------------- |
| `MNET_025` | 0.4M | 1.7MB | 88.48% | 87.02% | 80.61% | Mobile/Edge devices |
| `MNET_050` | 1.0M | 2.6MB | 89.42% | 87.97% | 82.40% | Mobile/Edge devices |
| `MNET_V1` | 3.5M | 3.8MB | 90.59% | 89.14% | 84.13% | Balanced mobile |
| `MNET_V2` ⭐ | 3.2M | 3.5MB | 91.70% | 91.03% | 86.60% | **Recommended default** |
| `RESNET18` | 11.7M | 27MB | 92.50% | 91.02% | 86.63% | Server/High accuracy |
| `RESNET34` | 24.8M | 56MB | 94.16% | 93.12% | 88.90% | Maximum accuracy |
**Accuracy**: WIDER FACE validation set (Easy/Medium/Hard subsets) - from [RetinaFace paper](https://arxiv.org/abs/1905.00641)
**Speed**: Benchmark on your own hardware using `scripts/run_detection.py --iterations 100`
@@ -46,10 +46,10 @@ detector = RetinaFace(
SCRFD (Sample and Computation Redistribution for Efficient Face Detection) models offer state-of-the-art speed-accuracy tradeoffs.
| Model Name | Params | Size | Easy | Medium | Hard | Use Case |
|-----------------|--------|-------|--------|--------|--------|----------------------------|
| `SCRFD_500M` | 0.6M | 2.5MB | 90.57% | 88.12% | 68.51% | Real-time applications |
| `SCRFD_10G` | 4.2M | 17MB | 95.16% | 93.87% | 83.05% | **High accuracy + speed** |
| Model Name | Params | Size | Easy | Medium | Hard | Use Case |
| ---------------- | ------ | ----- | ------ | ------ | ------ | ------------------------------- |
| `SCRFD_500M` | 0.6M | 2.5MB | 90.57% | 88.12% | 68.51% | Real-time applications |
| `SCRFD_10G` ⭐ | 4.2M | 17MB | 95.16% | 93.87% | 83.05% | **High accuracy + speed** |
**Accuracy**: WIDER FACE validation set - from [SCRFD paper](https://arxiv.org/abs/2105.04714)
**Speed**: Benchmark on your own hardware using `scripts/run_detection.py --iterations 100`
@@ -76,16 +76,58 @@ detector = SCRFD(
---
### YOLOv5-Face Family
YOLOv5-Face models provide excellent detection accuracy with 5-point facial landmarks, optimized for real-time applications.
| Model Name | Params | Size | Easy | Medium | Hard | FLOPs (G) | Use Case |
| -------------- | ------ | ---- | ------ | ------ | ------ | --------- | ------------------------------ |
| `YOLOV5S` ⭐ | 7.1M | 28MB | 94.33% | 92.61% | 83.15% | 5.751 | **Real-time + accuracy** |
| `YOLOV5M` | 21.1M | 84MB | 95.30% | 93.76% | 85.28% | 18.146 | High accuracy |
**Accuracy**: WIDER FACE validation set - from [YOLOv5-Face paper](https://arxiv.org/abs/2105.12931)
**Speed**: Benchmark on your own hardware using `scripts/run_detection.py --iterations 100`
**Note**: Fixed input size of 640×640. Models exported to ONNX from [deepcam-cn/yolov5-face](https://github.com/deepcam-cn/yolov5-face)
#### Usage
```python
from uniface import YOLOv5Face
from uniface.constants import YOLOv5FaceWeights
# Real-time detection (recommended)
detector = YOLOv5Face(
model_name=YOLOv5FaceWeights.YOLOV5S,
conf_thresh=0.6,
nms_thresh=0.5
)
# High accuracy
detector = YOLOv5Face(
model_name=YOLOv5FaceWeights.YOLOV5M,
conf_thresh=0.6
)
# Detect faces with landmarks
faces = detector.detect(image)
for face in faces:
bbox = face['bbox'] # [x1, y1, x2, y2]
confidence = face['confidence']
landmarks = face['landmarks'] # 5-point landmarks (5, 2)
```
---
## Face Recognition Models
### ArcFace
State-of-the-art face recognition using additive angular margin loss.
| Model Name | Backbone | Params | Size | Use Case |
|-------------|-------------|--------|-------|----------------------------|
| `MNET` | MobileNet | 2.0M | 8MB | **Balanced (recommended)** |
| `RESNET` | ResNet50 | 43.6M | 166MB | Maximum accuracy |
| Model Name | Backbone | Params | Size | Use Case |
| ----------- | --------- | ------ | ----- | -------------------------------- |
| `MNET` ⭐ | MobileNet | 2.0M | 8MB | **Balanced (recommended)** |
| `RESNET` | ResNet50 | 43.6M | 166MB | Maximum accuracy |
**Dataset**: Trained on MS1M-V2 (5.8M images, 85K identities)
**Accuracy**: Benchmark on your own dataset or use standard face verification benchmarks
@@ -113,12 +155,12 @@ embedding = recognizer.get_normalized_embedding(image, landmarks)
Lightweight face recognition optimized for mobile devices.
| Model Name | Backbone | Params | Size | LFW | CALFW | CPLFW | AgeDB-30 | Use Case |
|-----------------|-----------------|--------|------|-------|-------|-------|----------|--------------------|
| `MNET_025` | MobileNetV1 0.25| 0.36M | 1MB | 98.76%| 92.02%| 82.37%| 90.02% | Ultra-lightweight |
| `MNET_V2` ⭐ | MobileNetV2 | 2.29M | 4MB | 99.55%| 94.87%| 86.89%| 95.16% | **Mobile/Edge** |
| `MNET_V3_SMALL` | MobileNetV3-S | 1.25M | 3MB | 99.30%| 93.77%| 85.29%| 92.79% | Mobile optimized |
| `MNET_V3_LARGE` | MobileNetV3-L | 3.52M | 10MB | 99.53%| 94.56%| 86.79%| 95.13% | Balanced mobile |
| Model Name | Backbone | Params | Size | LFW | CALFW | CPLFW | AgeDB-30 | Use Case |
| ----------------- | ---------------- | ------ | ---- | ------ | ------ | ------ | -------- | --------------------- |
| `MNET_025` | MobileNetV1 0.25 | 0.36M | 1MB | 98.76% | 92.02% | 82.37% | 90.02% | Ultra-lightweight |
| `MNET_V2` ⭐ | MobileNetV2 | 2.29M | 4MB | 99.55% | 94.87% | 86.89% | 95.16% | **Mobile/Edge** |
| `MNET_V3_SMALL` | MobileNetV3-S | 1.25M | 3MB | 99.30% | 93.77% | 85.29% | 92.79% | Mobile optimized |
| `MNET_V3_LARGE` | MobileNetV3-L | 3.52M | 10MB | 99.53% | 94.56% | 86.79% | 95.13% | Balanced mobile |
**Dataset**: Trained on MS1M-V2 (5.8M images, 85K identities)
**Accuracy**: Evaluated on LFW, CALFW, CPLFW, and AgeDB-30 benchmarks
@@ -140,10 +182,10 @@ recognizer = MobileFace(model_name=MobileFaceWeights.MNET_V2)
Face recognition using angular softmax loss.
| Model Name | Backbone | Params | Size | LFW | CALFW | CPLFW | AgeDB-30 | Use Case |
|-------------|----------|--------|------|-------|-------|-------|----------|----------------------|
| `SPHERE20` | Sphere20 | 24.5M | 50MB | 99.67%| 95.61%| 88.75%| 96.58% | Research/Comparison |
| `SPHERE36` | Sphere36 | 34.6M | 92MB | 99.72%| 95.64%| 89.92%| 96.83% | Research/Comparison |
| Model Name | Backbone | Params | Size | LFW | CALFW | CPLFW | AgeDB-30 | Use Case |
| ------------ | -------- | ------ | ---- | ------ | ------ | ------ | -------- | ------------------- |
| `SPHERE20` | Sphere20 | 24.5M | 50MB | 99.67% | 95.61% | 88.75% | 96.58% | Research/Comparison |
| `SPHERE36` | Sphere36 | 34.6M | 92MB | 99.72% | 95.64% | 89.92% | 96.83% | Research/Comparison |
**Dataset**: Trained on MS1M-V2 (5.8M images, 85K identities)
**Accuracy**: Evaluated on LFW, CALFW, CPLFW, and AgeDB-30 benchmarks
@@ -166,9 +208,9 @@ recognizer = SphereFace(model_name=SphereFaceWeights.SPHERE20)
High-precision facial landmark localization.
| Model Name | Points | Params | Size | Use Case |
|------------|--------|--------|------|-----------------------------|
| `2D106` | 106 | 3.7M | 14MB | Face alignment, analysis |
| Model Name | Points | Params | Size | Use Case |
| ---------- | ------ | ------ | ---- | ------------------------ |
| `2D106` | 106 | 3.7M | 14MB | Face alignment, analysis |
**Note**: Provides 106 facial keypoints for detailed face analysis and alignment
@@ -183,6 +225,7 @@ landmarks = landmarker.get_landmarks(image, bbox)
```
**Landmark Groups:**
- Face contour: 0-32 (33 points)
- Eyebrows: 33-50 (18 points)
- Nose: 51-62 (12 points)
@@ -195,9 +238,9 @@ landmarks = landmarker.get_landmarks(image, bbox)
### Age & Gender Detection
| Model Name | Attributes | Params | Size | Use Case |
|------------|-------------|--------|------|-------------------|
| `DEFAULT` | Age, Gender | 2.1M | 8MB | General purpose |
| Model Name | Attributes | Params | Size | Use Case |
| ----------- | ----------- | ------ | ---- | --------------- |
| `DEFAULT` | Age, Gender | 2.1M | 8MB | General purpose |
**Dataset**: Trained on CelebA
**Note**: Accuracy varies by demographic and image quality. Test on your specific use case.
@@ -217,10 +260,10 @@ gender_id, age = predictor.predict(image, bbox)
### Emotion Detection
| Model Name | Classes | Params | Size | Use Case |
|--------------|---------|--------|------|-----------------------|
| `AFFECNET7` | 7 | 0.5M | 2MB | 7-class emotion |
| `AFFECNET8` | 8 | 0.5M | 2MB | 8-class emotion |
| Model Name | Classes | Params | Size | Use Case |
| ------------- | ------- | ------ | ---- | --------------- |
| `AFFECNET7` | 7 | 0.5M | 2MB | 7-class emotion |
| `AFFECNET8` | 8 | 0.5M | 2MB | 8-class emotion |
**Classes (7)**: Neutral, Happy, Sad, Surprise, Fear, Disgust, Anger
**Classes (8)**: Above + Contempt
@@ -240,118 +283,6 @@ emotion, confidence = predictor.predict(image, landmarks)
---
## Model Selection Guide
### By Use Case
#### Mobile/Edge Devices
- **Detection**: `RetinaFace(MNET_025)` or `SCRFD(SCRFD_500M)`
- **Recognition**: `MobileFace(MNET_V2)`
- **Priority**: Speed, small model size
#### Real-Time Applications (Webcam, Video)
- **Detection**: `RetinaFace(MNET_V2)` or `SCRFD(SCRFD_500M)`
- **Recognition**: `ArcFace(MNET)`
- **Priority**: Speed-accuracy balance
#### High-Accuracy Applications (Security, Verification)
- **Detection**: `SCRFD(SCRFD_10G)` or `RetinaFace(RESNET34)`
- **Recognition**: `ArcFace(RESNET)`
- **Priority**: Maximum accuracy
#### Server/Cloud Deployment
- **Detection**: `SCRFD(SCRFD_10G)`
- **Recognition**: `ArcFace(RESNET)`
- **Priority**: Accuracy, batch processing
---
### By Hardware
#### Apple Silicon (M1/M2/M3/M4)
**Recommended**: All models work well with ARM64 optimizations (automatically included)
```bash
pip install uniface
```
**Recommended models**:
- **Fast**: `SCRFD(SCRFD_500M)` - Lightweight, real-time capable
- **Balanced**: `RetinaFace(MNET_V2)` - Good accuracy/speed tradeoff
- **Accurate**: `SCRFD(SCRFD_10G)` - High accuracy
**Benchmark on your M4**: `python scripts/run_detection.py --iterations 100`
#### NVIDIA GPU (CUDA)
**Recommended**: Larger models for maximum throughput
```bash
pip install uniface[gpu]
```
**Recommended models**:
- **Fast**: `SCRFD(SCRFD_500M)` - Maximum throughput
- **Balanced**: `SCRFD(SCRFD_10G)` - Best overall
- **Accurate**: `RetinaFace(RESNET34)` - Highest accuracy
#### CPU Only
**Recommended**: Lightweight models
**Recommended models**:
- **Fast**: `RetinaFace(MNET_025)` - Smallest, fastest
- **Balanced**: `RetinaFace(MNET_V2)` - Recommended default
- **Accurate**: `SCRFD(SCRFD_10G)` - Best accuracy on CPU
**Note**: FPS values vary significantly based on image size, number of faces, and hardware. Always benchmark on your specific setup.
---
## Benchmark Details
### How to Benchmark
Run benchmarks on your own hardware:
```bash
# Detection speed
python scripts/run_detection.py --image assets/test.jpg --iterations 100
# Compare models
python scripts/run_detection.py --image assets/test.jpg --method retinaface --iterations 100
python scripts/run_detection.py --image assets/test.jpg --method scrfd --iterations 100
```
### Accuracy Metrics Explained
- **WIDER FACE**: Standard face detection benchmark with three difficulty levels
- **Easy**: Large faces (>50px), clear backgrounds
- **Medium**: Medium-sized faces (30-50px), moderate occlusion
- **Hard**: Small faces (<30px), heavy occlusion, blur
*Accuracy values are from the original papers - see references below*
- **Model Size**: ONNX model file size (affects download time and memory)
- **Params**: Number of model parameters (affects inference speed)
### Important Notes
1. **Speed varies by**:
- Image resolution
- Number of faces in image
- Hardware (CPU/GPU/CoreML)
- Batch size
- Operating system
2. **Accuracy varies by**:
- Image quality
- Lighting conditions
- Face pose and occlusion
- Demographic factors
3. **Always benchmark on your specific use case** before choosing a model
---
## Model Updates
Models are automatically downloaded and cached on first use. Cache location: `~/.uniface/models/`
@@ -388,6 +319,8 @@ python scripts/download_model.py --model MNET_V2
### Model Training & Architectures
- **RetinaFace Training**: [yakhyo/retinaface-pytorch](https://github.com/yakhyo/retinaface-pytorch) - PyTorch implementation and training code
- **YOLOv5-Face Original**: [deepcam-cn/yolov5-face](https://github.com/deepcam-cn/yolov5-face) - Original PyTorch implementation
- **YOLOv5-Face ONNX**: [yakhyo/yolov5-face-onnx-inference](https://github.com/yakhyo/yolov5-face-onnx-inference) - ONNX inference implementation
- **Face Recognition Training**: [yakhyo/face-recognition](https://github.com/yakhyo/face-recognition) - ArcFace, MobileFace, SphereFace training code
- **InsightFace**: [deepinsight/insightface](https://github.com/deepinsight/insightface) - Model architectures and pretrained weights
@@ -395,6 +328,6 @@ python scripts/download_model.py --model MNET_V2
- **RetinaFace**: [Single-Shot Multi-Level Face Localisation in the Wild](https://arxiv.org/abs/1905.00641)
- **SCRFD**: [Sample and Computation Redistribution for Efficient Face Detection](https://arxiv.org/abs/2105.04714)
- **YOLOv5-Face**: [YOLO5Face: Why Reinventing a Face Detector](https://arxiv.org/abs/2105.12931)
- **ArcFace**: [Additive Angular Margin Loss for Deep Face Recognition](https://arxiv.org/abs/1801.07698)
- **SphereFace**: [Deep Hypersphere Embedding for Face Recognition](https://arxiv.org/abs/1704.08063)

View File

@@ -271,8 +271,8 @@ Choose the right model for your use case:
### Detection Models
```python
from uniface.detection import RetinaFace, SCRFD
from uniface.constants import RetinaFaceWeights, SCRFDWeights
from uniface.detection import RetinaFace, SCRFD, YOLOv5Face
from uniface.constants import RetinaFaceWeights, SCRFDWeights, YOLOv5FaceWeights
# Fast detection (mobile/edge devices)
detector = RetinaFace(
@@ -285,6 +285,13 @@ detector = RetinaFace(
model_name=RetinaFaceWeights.MNET_V2
)
# Real-time with high accuracy
detector = YOLOv5Face(
model_name=YOLOv5FaceWeights.YOLOV5S,
conf_thresh=0.6,
nms_thresh=0.5
)
# High accuracy (server/GPU)
detector = SCRFD(
model_name=SCRFDWeights.SCRFD_10G_KPS,
@@ -367,9 +374,7 @@ from uniface import retinaface # Module, not class
## References
- **RetinaFace Training**: [yakhyo/retinaface-pytorch](https://github.com/yakhyo/retinaface-pytorch)
- **YOLOv5-Face Original**: [deepcam-cn/yolov5-face](https://github.com/deepcam-cn/yolov5-face)
- **YOLOv5-Face ONNX**: [yakhyo/yolov5-face-onnx-inference](https://github.com/yakhyo/yolov5-face-onnx-inference)
- **Face Recognition Training**: [yakhyo/face-recognition](https://github.com/yakhyo/face-recognition)
- **InsightFace**: [deepinsight/insightface](https://github.com/deepinsight/insightface)
---
Happy coding! 🚀

View File

@@ -7,7 +7,6 @@
[![Downloads](https://pepy.tech/badge/uniface)](https://pepy.tech/project/uniface)
[![DeepWiki](https://img.shields.io/badge/DeepWiki-yakhyo%2Funiface-blue.svg?logo=)](https://deepwiki.com/yakhyo/uniface)
<div align="center">
<img src=".github/logos/logo_web.webp" width=75%>
</div>
@@ -190,8 +189,8 @@ landmarker = Landmark106()
### Direct Model Instantiation
```python
from uniface import RetinaFace, SCRFD, ArcFace, MobileFace, SphereFace
from uniface.constants import RetinaFaceWeights
from uniface import RetinaFace, SCRFD, YOLOv5Face, ArcFace, MobileFace, SphereFace
from uniface.constants import RetinaFaceWeights, YOLOv5FaceWeights
# Detection
detector = RetinaFace(
@@ -200,6 +199,13 @@ detector = RetinaFace(
nms_thresh=0.4
)
# YOLOv5-Face detection
detector = YOLOv5Face(
model_name=YOLOv5FaceWeights.YOLOV5S,
conf_thresh=0.6,
nms_thresh=0.5
)
# Recognition
recognizer = ArcFace() # Uses default weights
recognizer = MobileFace() # Lightweight alternative
@@ -228,8 +234,10 @@ faces = detect_faces(image, method='retinaface', conf_thresh=0.8)
| retinaface_r34 | 94.16% | 93.12% | 88.90% | High accuracy |
| scrfd_500m | 90.57% | 88.12% | 68.51% | Real-time applications |
| scrfd_10g | 95.16% | 93.87% | 83.05% | Best accuracy/speed |
| yolov5s_face | 94.33% | 92.61% | 83.15% | Real-time + accuracy |
| yolov5m_face | 95.30% | 93.76% | 85.28% | High accuracy |
_Accuracy values from original papers: [RetinaFace](https://arxiv.org/abs/1905.00641), [SCRFD](https://arxiv.org/abs/2105.04714)_
_Accuracy values from original papers: [RetinaFace](https://arxiv.org/abs/1905.00641), [SCRFD](https://arxiv.org/abs/2105.04714), [YOLOv5-Face](https://arxiv.org/abs/2105.12931)_
**Benchmark on your hardware:**
@@ -443,20 +451,12 @@ uniface/
## References
### Model Training & Architectures
- **RetinaFace Training**: [yakhyo/retinaface-pytorch](https://github.com/yakhyo/retinaface-pytorch) - PyTorch implementation and training code
- **YOLOv5-Face Original**: [deepcam-cn/yolov5-face](https://github.com/deepcam-cn/yolov5-face) - Original PyTorch implementation
- **YOLOv5-Face ONNX**: [yakhyo/yolov5-face-onnx-inference](https://github.com/yakhyo/yolov5-face-onnx-inference) - ONNX inference implementation
- **Face Recognition Training**: [yakhyo/face-recognition](https://github.com/yakhyo/face-recognition) - ArcFace, MobileFace, SphereFace training code
- **InsightFace**: [deepinsight/insightface](https://github.com/deepinsight/insightface) - Model architectures and pretrained weights
### Papers
- **RetinaFace**: [Single-Shot Multi-Level Face Localisation in the Wild](https://arxiv.org/abs/1905.00641)
- **SCRFD**: [Sample and Computation Redistribution for Efficient Face Detection](https://arxiv.org/abs/2105.04714)
- **ArcFace**: [Additive Angular Margin Loss for Deep Face Recognition](https://arxiv.org/abs/1801.07698)
---
## Contributing
Contributions are welcome! Please open an issue or submit a pull request on [GitHub](https://github.com/yakhyo/uniface).

View File

@@ -1,6 +1,6 @@
[project]
name = "uniface"
version = "1.1.2"
version = "1.2.0"
description = "UniFace: A Comprehensive Library for Face Detection, Recognition, Landmark Analysis, Age, and Gender Detection"
readme = "README.md"
license = { text = "MIT" }

View File

@@ -7,7 +7,7 @@ import os
import cv2
from uniface.detection import SCRFD, RetinaFace
from uniface.detection import SCRFD, RetinaFace, YOLOv5Face
from uniface.visualization import draw_detections
@@ -75,15 +75,21 @@ def main():
parser = argparse.ArgumentParser(description='Run face detection')
parser.add_argument('--image', type=str, help='Path to input image')
parser.add_argument('--webcam', action='store_true', help='Use webcam')
parser.add_argument('--method', type=str, default='retinaface', choices=['retinaface', 'scrfd'])
parser.add_argument('--threshold', type=float, default=0.6, help='Visualization threshold')
parser.add_argument('--method', type=str, default='retinaface', choices=['retinaface', 'scrfd', 'yolov5face'])
parser.add_argument('--threshold', type=float, default=0.25, help='Visualization threshold')
parser.add_argument('--save_dir', type=str, default='outputs')
args = parser.parse_args()
if not args.image and not args.webcam:
parser.error('Either --image or --webcam must be specified')
detector = RetinaFace() if args.method == 'retinaface' else SCRFD()
if args.method == 'retinaface':
detector = RetinaFace()
elif args.method == 'scrfd':
detector = SCRFD()
else:
from uniface.constants import YOLOv5FaceWeights
detector = YOLOv5Face(model_name=YOLOv5FaceWeights.YOLOV5M)
if args.webcam:
run_webcam(detector, args.threshold)

View File

@@ -263,7 +263,7 @@ def test_factory_returns_correct_types():
"""
Test that factory functions return instances of the correct types.
"""
from uniface import RetinaFace, ArcFace, Landmark106
from uniface import ArcFace, Landmark106, RetinaFace
detector = create_detector('retinaface')
recognizer = create_recognizer('arcface')

View File

@@ -13,7 +13,7 @@
__license__ = 'MIT'
__author__ = 'Yakhyokhuja Valikhujaev'
__version__ = '1.1.2'
__version__ = '1.2.0'
from uniface.face_utils import compute_similarity, face_alignment
@@ -32,6 +32,7 @@ except ImportError:
from .detection import (
SCRFD,
RetinaFace,
YOLOv5Face,
create_detector,
detect_faces,
list_available_detectors,
@@ -55,6 +56,7 @@ __all__ = [
# Detection models
'RetinaFace',
'SCRFD',
'YOLOv5Face',
# Recognition models
'ArcFace',
'MobileFace',

View File

@@ -55,6 +55,20 @@ class SCRFDWeights(str, Enum):
SCRFD_500M_KPS = "scrfd_500m"
class YOLOv5FaceWeights(str, Enum):
"""
Trained on WIDER FACE dataset.
Original implementation: https://github.com/deepcam-cn/yolov5-face
Exported to ONNX from: https://github.com/yakhyo/yolov5-face-onnx-inference
Model Performance (WIDER FACE):
- YOLOV5S: 7.1M params, 28MB, 94.33% Easy / 92.61% Medium / 83.15% Hard
- YOLOV5M: 21.1M params, 84MB, 95.30% Easy / 93.76% Medium / 85.28% Hard
"""
YOLOV5S = "yolov5s_face"
YOLOV5M = "yolov5m_face"
class DDAMFNWeights(str, Enum):
"""
Trained on AffectNet dataset.
@@ -102,6 +116,9 @@ MODEL_URLS: Dict[Enum, str] = {
# SCRFD
SCRFDWeights.SCRFD_10G_KPS: 'https://github.com/yakhyo/uniface/releases/download/weights/scrfd_10g_kps.onnx',
SCRFDWeights.SCRFD_500M_KPS: 'https://github.com/yakhyo/uniface/releases/download/weights/scrfd_500m_kps.onnx',
# YOLOv5-Face
YOLOv5FaceWeights.YOLOV5S: 'https://github.com/yakhyo/yolov5-face-onnx-inference/releases/download/weights/yolov5s_face.onnx',
YOLOv5FaceWeights.YOLOV5M: 'https://github.com/yakhyo/yolov5-face-onnx-inference/releases/download/weights/yolov5m_face.onnx',
# DDAFM
DDAMFNWeights.AFFECNET7: 'https://github.com/yakhyo/uniface/releases/download/weights/affecnet7.script',
DDAMFNWeights.AFFECNET8: 'https://github.com/yakhyo/uniface/releases/download/weights/affecnet8.script',
@@ -133,6 +150,9 @@ MODEL_SHA256: Dict[Enum, str] = {
# SCRFD
SCRFDWeights.SCRFD_10G_KPS: '5838f7fe053675b1c7a08b633df49e7af5495cee0493c7dcf6697200b85b5b91',
SCRFDWeights.SCRFD_500M_KPS: '5e4447f50245bbd7966bd6c0fa52938c61474a04ec7def48753668a9d8b4ea3a',
# YOLOv5-Face
YOLOv5FaceWeights.YOLOV5S: 'fc682801cd5880e1e296184a14aea0035486b5146ec1a1389d2e7149cb134bb2',
YOLOv5FaceWeights.YOLOV5M: '04302ce27a15bde3e20945691b688e2dd018a10e92dd8932146bede6a49207b2',
# DDAFM
DDAMFNWeights.AFFECNET7: '10535bf8b6afe8e9d6ae26cea6c3add9a93036e9addb6adebfd4a972171d015d',
DDAMFNWeights.AFFECNET8: '8c66963bc71db42796a14dfcbfcd181b268b65a3fc16e87147d6a3a3d7e0f487',

View File

@@ -10,6 +10,7 @@ import numpy as np
from .base import BaseDetector
from .retinaface import RetinaFace
from .scrfd import SCRFD
from .yolov5 import YOLOv5Face
# Global cache for detector instances
_detector_cache: Dict[str, BaseDetector] = {}
@@ -59,6 +60,7 @@ def create_detector(method: str = 'retinaface', **kwargs) -> BaseDetector:
method (str): Detection method. Options:
- 'retinaface': RetinaFace detector (default)
- 'scrfd': SCRFD detector (fast and accurate)
- 'yolov5face': YOLOv5-Face detector (accurate with landmarks)
**kwargs: Detector-specific parameters
Returns:
@@ -86,6 +88,14 @@ def create_detector(method: str = 'retinaface', **kwargs) -> BaseDetector:
... conf_thresh=0.8,
... nms_thresh=0.4
... )
>>> # YOLOv5-Face detector
>>> detector = create_detector(
... 'yolov5face',
... model_name=YOLOv5FaceWeights.YOLOV5S,
... conf_thresh=0.25,
... nms_thresh=0.45
... )
"""
method = method.lower()
@@ -95,8 +105,11 @@ def create_detector(method: str = 'retinaface', **kwargs) -> BaseDetector:
elif method == 'scrfd':
return SCRFD(**kwargs)
elif method == 'yolov5face':
return YOLOv5Face(**kwargs)
else:
available_methods = ['retinaface', 'scrfd']
available_methods = ['retinaface', 'scrfd', 'yolov5face']
raise ValueError(f"Unsupported detection method: '{method}'. Available methods: {available_methods}")
@@ -130,6 +143,17 @@ def list_available_detectors() -> Dict[str, Dict[str, Any]]:
'input_size': (640, 640),
},
},
'yolov5face': {
'description': 'YOLOv5-Face detector - accurate face detection with landmarks',
'supports_landmarks': True,
'paper': 'https://arxiv.org/abs/2105.12931',
'default_params': {
'model_name': 'yolov5s_face',
'conf_thresh': 0.25,
'nms_thresh': 0.45,
'input_size': 640,
},
},
}
@@ -139,5 +163,6 @@ __all__ = [
'list_available_detectors',
'SCRFD',
'RetinaFace',
'YOLOv5Face',
'BaseDetector',
]

View File

@@ -38,6 +38,7 @@ class RetinaFace(BaseDetector):
dynamic_size (bool, optional): If True, generate anchors dynamically per input image. Defaults to False.
input_size (Tuple[int, int], optional): Fixed input size (width, height) if `dynamic_size=False`.
Defaults to (640, 640).
Note: Non-default sizes may cause slower inference and CoreML compatibility issues.
Attributes:
model_name (RetinaFaceWeights): Selected model variant.

View File

@@ -31,7 +31,9 @@ class SCRFD(BaseDetector):
Specifies the SCRFD variant to load. Defaults to SCRFD_10G_KPS.
conf_thresh (float, optional): Confidence threshold for filtering detections. Defaults to 0.5.
nms_thresh (float, optional): Non-Maximum Suppression threshold. Defaults to 0.4.
input_size (Tuple[int, int], optional): Input image size (width, height). Defaults to (640, 640).
input_size (Tuple[int, int], optional): Input image size (width, height).
Defaults to (640, 640).
Note: Non-default sizes may cause slower inference and CoreML compatibility issues.
Attributes:
conf_thresh (float): Threshold used to filter low-confidence detections.

326
uniface/detection/yolov5.py Normal file
View File

@@ -0,0 +1,326 @@
# Copyright 2025 Yakhyokhuja Valikhujaev
# Author: Yakhyokhuja Valikhujaev
# GitHub: https://github.com/yakhyo
from typing import Any, Dict, List, Literal, Tuple
import cv2
import numpy as np
from uniface.common import non_max_suppression
from uniface.constants import YOLOv5FaceWeights
from uniface.log import Logger
from uniface.model_store import verify_model_weights
from uniface.onnx_utils import create_onnx_session
from .base import BaseDetector
__all__ = ['YOLOv5Face']
class YOLOv5Face(BaseDetector):
"""
Face detector based on the YOLOv5-Face architecture.
Paper: https://arxiv.org/abs/2105.12931
Original Implementation: https://github.com/deepcam-cn/yolov5-face
Args:
**kwargs: Keyword arguments passed to BaseDetector and YOLOv5Face. Supported keys include:
model_name (YOLOv5FaceWeights, optional): Predefined model enum (e.g., `YOLOV5S`).
Specifies the YOLOv5-Face variant to load. Defaults to YOLOV5S.
conf_thresh (float, optional): Confidence threshold for filtering detections. Defaults to 0.25.
nms_thresh (float, optional): Non-Maximum Suppression threshold. Defaults to 0.45.
input_size (int, optional): Input image size. Defaults to 640.
Note: ONNX model is fixed at 640. Changing this will cause inference errors.
max_det (int, optional): Maximum number of detections to return. Defaults to 750.
Attributes:
conf_thresh (float): Threshold used to filter low-confidence detections.
nms_thresh (float): Threshold used during NMS to suppress overlapping boxes.
input_size (int): Image size to which inputs are resized before inference.
max_det (int): Maximum number of detections to return.
_model_path (str): Absolute path to the downloaded/verified model weights.
Raises:
ValueError: If the model weights are invalid or not found.
RuntimeError: If the ONNX model fails to load or initialize.
"""
def __init__(self, **kwargs) -> None:
super().__init__(**kwargs)
self._supports_landmarks = True # YOLOv5-Face supports landmarks
model_name = kwargs.get('model_name', YOLOv5FaceWeights.YOLOV5S)
conf_thresh = kwargs.get('conf_thresh', 0.6) # 0.6 is default from original YOLOv5-Face repository
nms_thresh = kwargs.get('nms_thresh', 0.5) # 0.5 is default from original YOLOv5-Face repository
input_size = kwargs.get('input_size', 640)
max_det = kwargs.get('max_det', 750)
# Validate input size
if input_size != 640:
raise ValueError(
f'YOLOv5Face only supports input_size=640 (got {input_size}). The ONNX model has a fixed input shape.'
)
self.conf_thresh = conf_thresh
self.nms_thresh = nms_thresh
self.input_size = input_size
self.max_det = max_det
Logger.info(
f'Initializing YOLOv5Face with model={model_name}, conf_thresh={conf_thresh}, '
f'nms_thresh={nms_thresh}, input_size={input_size}'
)
# Get path to model weights
self._model_path = verify_model_weights(model_name)
Logger.info(f'Verified model weights located at: {self._model_path}')
# Initialize model
self._initialize_model(self._model_path)
def _initialize_model(self, model_path: str) -> None:
"""
Initializes an ONNX model session from the given path.
Args:
model_path (str): The file path to the ONNX model.
Raises:
RuntimeError: If the model fails to load, logs an error and raises an exception.
"""
try:
self.session = create_onnx_session(model_path)
self.input_names = self.session.get_inputs()[0].name
self.output_names = [x.name for x in self.session.get_outputs()]
Logger.info(f'Successfully initialized the model from {model_path}')
except Exception as e:
Logger.error(f"Failed to load model from '{model_path}': {e}", exc_info=True)
raise RuntimeError(f"Failed to initialize model session for '{model_path}'") from e
def preprocess(self, image: np.ndarray) -> Tuple[np.ndarray, float, Tuple[int, int]]:
"""
Preprocess image for inference.
Args:
image (np.ndarray): Input image (BGR format)
Returns:
Tuple[np.ndarray, float, Tuple[int, int]]: Preprocessed image, scale ratio, and padding
"""
# Get original image shape
img_h, img_w = image.shape[:2]
# Calculate scale ratio
scale = min(self.input_size / img_h, self.input_size / img_w)
new_h, new_w = int(img_h * scale), int(img_w * scale)
# Resize image
img_resized = cv2.resize(image, (new_w, new_h), interpolation=cv2.INTER_LINEAR)
# Create padded image
img_padded = np.full((self.input_size, self.input_size, 3), 114, dtype=np.uint8)
# Calculate padding
pad_h = (self.input_size - new_h) // 2
pad_w = (self.input_size - new_w) // 2
# Place resized image in center
img_padded[pad_h : pad_h + new_h, pad_w : pad_w + new_w] = img_resized
# Convert to RGB and normalize
img_rgb = cv2.cvtColor(img_padded, cv2.COLOR_BGR2RGB)
img_normalized = img_rgb.astype(np.float32) / 255.0
# Transpose to CHW format (HWC -> CHW) and add batch dimension
img_transposed = np.transpose(img_normalized, (2, 0, 1))
img_batch = np.expand_dims(img_transposed, axis=0)
img_batch = np.ascontiguousarray(img_batch)
return img_batch, scale, (pad_w, pad_h)
def inference(self, input_tensor: np.ndarray) -> List[np.ndarray]:
"""Perform model inference on the preprocessed image tensor.
Args:
input_tensor (np.ndarray): Preprocessed input tensor.
Returns:
List[np.ndarray]: Raw model outputs.
"""
return self.session.run(self.output_names, {self.input_names: input_tensor})
def postprocess(
self,
predictions: np.ndarray,
scale: float,
padding: Tuple[int, int],
) -> Tuple[np.ndarray, np.ndarray]:
"""
Postprocess model predictions.
Args:
predictions (np.ndarray): Raw model output
scale (float): Scale ratio used in preprocessing
padding (Tuple[int, int]): Padding used in preprocessing
Returns:
Tuple[np.ndarray, np.ndarray]: Filtered detections and landmarks
- detections: [x1, y1, x2, y2, conf]
- landmarks: [5, 2] for each detection
"""
# predictions shape: (1, 25200, 16)
# 16 = [x, y, w, h, obj_conf, cls_conf, 10 landmarks (5 points * 2 coords)]
predictions = predictions[0] # Remove batch dimension
# Filter by confidence
mask = predictions[:, 4] >= self.conf_thresh
predictions = predictions[mask]
if len(predictions) == 0:
return np.array([]), np.array([])
# Convert from xywh to xyxy
boxes = self._xywh2xyxy(predictions[:, :4])
# Get confidence scores
scores = predictions[:, 4]
# Get landmarks (5 points, 10 coordinates)
landmarks = predictions[:, 5:15].copy()
# Apply NMS
detections_for_nms = np.hstack((boxes, scores[:, None])).astype(np.float32, copy=False)
keep = non_max_suppression(detections_for_nms, self.nms_thresh)
if len(keep) == 0:
return np.array([]), np.array([])
# Filter detections and limit to max_det
keep = keep[: self.max_det]
boxes = boxes[keep]
scores = scores[keep]
landmarks = landmarks[keep]
# Scale back to original image coordinates
pad_w, pad_h = padding
boxes[:, [0, 2]] = (boxes[:, [0, 2]] - pad_w) / scale
boxes[:, [1, 3]] = (boxes[:, [1, 3]] - pad_h) / scale
# Scale landmarks
for i in range(5):
landmarks[:, i * 2] = (landmarks[:, i * 2] - pad_w) / scale
landmarks[:, i * 2 + 1] = (landmarks[:, i * 2 + 1] - pad_h) / scale
# Reshape landmarks to (N, 5, 2)
landmarks = landmarks.reshape(-1, 5, 2)
# Combine results
detections = np.concatenate([boxes, scores[:, None]], axis=1)
return detections, landmarks
def _xywh2xyxy(self, x: np.ndarray) -> np.ndarray:
"""
Convert bounding box format from xywh to xyxy.
Args:
x (np.ndarray): Boxes in [x, y, w, h] format
Returns:
np.ndarray: Boxes in [x1, y1, x2, y2] format
"""
y = np.copy(x)
y[..., 0] = x[..., 0] - x[..., 2] / 2 # x1
y[..., 1] = x[..., 1] - x[..., 3] / 2 # y1
y[..., 2] = x[..., 0] + x[..., 2] / 2 # x2
y[..., 3] = x[..., 1] + x[..., 3] / 2 # y2
return y
def detect(
self,
image: np.ndarray,
max_num: int = 0,
metric: Literal['default', 'max'] = 'max',
center_weight: float = 2.0,
) -> List[Dict[str, Any]]:
"""
Perform face detection on an input image and return bounding boxes and facial landmarks.
Args:
image (np.ndarray): Input image as a NumPy array of shape (H, W, C).
max_num (int): Maximum number of detections to return. Use 0 to return all detections. Defaults to 0.
metric (Literal["default", "max"]): Metric for ranking detections when `max_num` is limited.
- "default": Prioritize detections closer to the image center.
- "max": Prioritize detections with larger bounding box areas.
center_weight (float): Weight for penalizing detections farther from the image center
when using the "default" metric. Defaults to 2.0.
Returns:
List[Dict[str, Any]]: List of face detection dictionaries, each containing:
- 'bbox' (np.ndarray): Bounding box coordinates with shape (4,) as [x1, y1, x2, y2]
- 'confidence' (float): Detection confidence score (0.0 to 1.0)
- 'landmarks' (np.ndarray): 5-point facial landmarks with shape (5, 2)
Example:
>>> faces = detector.detect(image)
>>> for face in faces:
... bbox = face['bbox'] # np.ndarray with shape (4,)
... confidence = face['confidence'] # float
... landmarks = face['landmarks'] # np.ndarray with shape (5, 2)
... # Can pass landmarks directly to recognition
... embedding = recognizer.get_normalized_embedding(image, landmarks)
"""
original_height, original_width = image.shape[:2]
# Preprocess
image_tensor, scale, padding = self.preprocess(image)
# ONNXRuntime inference
outputs = self.inference(image_tensor)
# Postprocess
detections, landmarks = self.postprocess(outputs[0], scale, padding)
# Handle case when no faces are detected
if len(detections) == 0:
return []
if 0 < max_num < detections.shape[0]:
# Calculate area of detections
area = (detections[:, 2] - detections[:, 0]) * (detections[:, 3] - detections[:, 1])
# Calculate offsets from image center
center = (original_height // 2, original_width // 2)
offsets = np.vstack(
[
(detections[:, 0] + detections[:, 2]) / 2 - center[1],
(detections[:, 1] + detections[:, 3]) / 2 - center[0],
]
)
# Calculate scores based on the chosen metric
offset_dist_squared = np.sum(np.power(offsets, 2.0), axis=0)
if metric == 'max':
values = area
else:
values = area - offset_dist_squared * center_weight
# Sort by scores and select top `max_num`
sorted_indices = np.argsort(values)[::-1][:max_num]
detections = detections[sorted_indices]
landmarks = landmarks[sorted_indices]
faces = []
for i in range(detections.shape[0]):
face_dict = {
'bbox': detections[i, :4].astype(np.float32),
'confidence': float(detections[i, 4]),
'landmarks': landmarks[i].astype(np.float32),
}
faces.append(face_dict)
return faces