diff --git a/MODELS.md b/MODELS.md index 86338bd..8f63d06 100644 --- a/MODELS.md +++ b/MODELS.md @@ -10,14 +10,14 @@ Complete guide to all available models, their performance characteristics, and s RetinaFace models are trained on the WIDER FACE dataset and provide excellent accuracy-speed tradeoffs. -| Model Name | Params | Size | Easy | Medium | Hard | Use Case | -|---------------------|--------|--------|--------|--------|--------|----------------------------| -| `MNET_025` | 0.4M | 1.7MB | 88.48% | 87.02% | 80.61% | Mobile/Edge devices | -| `MNET_050` | 1.0M | 2.6MB | 89.42% | 87.97% | 82.40% | Mobile/Edge devices | -| `MNET_V1` | 3.5M | 3.8MB | 90.59% | 89.14% | 84.13% | Balanced mobile | -| `MNET_V2` ⭐ | 3.2M | 3.5MB | 91.70% | 91.03% | 86.60% | **Recommended default** | -| `RESNET18` | 11.7M | 27MB | 92.50% | 91.02% | 86.63% | Server/High accuracy | -| `RESNET34` | 24.8M | 56MB | 94.16% | 93.12% | 88.90% | Maximum accuracy | +| Model Name | Params | Size | Easy | Medium | Hard | Use Case | +| -------------- | ------ | ----- | ------ | ------ | ------ | ----------------------------- | +| `MNET_025` | 0.4M | 1.7MB | 88.48% | 87.02% | 80.61% | Mobile/Edge devices | +| `MNET_050` | 1.0M | 2.6MB | 89.42% | 87.97% | 82.40% | Mobile/Edge devices | +| `MNET_V1` | 3.5M | 3.8MB | 90.59% | 89.14% | 84.13% | Balanced mobile | +| `MNET_V2` ⭐ | 3.2M | 3.5MB | 91.70% | 91.03% | 86.60% | **Recommended default** | +| `RESNET18` | 11.7M | 27MB | 92.50% | 91.02% | 86.63% | Server/High accuracy | +| `RESNET34` | 24.8M | 56MB | 94.16% | 93.12% | 88.90% | Maximum accuracy | **Accuracy**: WIDER FACE validation set (Easy/Medium/Hard subsets) - from [RetinaFace paper](https://arxiv.org/abs/1905.00641) **Speed**: Benchmark on your own hardware using `scripts/run_detection.py --iterations 100` @@ -46,10 +46,10 @@ detector = RetinaFace( SCRFD (Sample and Computation Redistribution for Efficient Face Detection) models offer state-of-the-art speed-accuracy tradeoffs. -| Model Name | Params | Size | Easy | Medium | Hard | Use Case | -|-----------------|--------|-------|--------|--------|--------|----------------------------| -| `SCRFD_500M` | 0.6M | 2.5MB | 90.57% | 88.12% | 68.51% | Real-time applications | -| `SCRFD_10G` ⭐ | 4.2M | 17MB | 95.16% | 93.87% | 83.05% | **High accuracy + speed** | +| Model Name | Params | Size | Easy | Medium | Hard | Use Case | +| ---------------- | ------ | ----- | ------ | ------ | ------ | ------------------------------- | +| `SCRFD_500M` | 0.6M | 2.5MB | 90.57% | 88.12% | 68.51% | Real-time applications | +| `SCRFD_10G` ⭐ | 4.2M | 17MB | 95.16% | 93.87% | 83.05% | **High accuracy + speed** | **Accuracy**: WIDER FACE validation set - from [SCRFD paper](https://arxiv.org/abs/2105.04714) **Speed**: Benchmark on your own hardware using `scripts/run_detection.py --iterations 100` @@ -76,16 +76,58 @@ detector = SCRFD( --- +### YOLOv5-Face Family + +YOLOv5-Face models provide excellent detection accuracy with 5-point facial landmarks, optimized for real-time applications. + +| Model Name | Params | Size | Easy | Medium | Hard | FLOPs (G) | Use Case | +| -------------- | ------ | ---- | ------ | ------ | ------ | --------- | ------------------------------ | +| `YOLOV5S` ⭐ | 7.1M | 28MB | 94.33% | 92.61% | 83.15% | 5.751 | **Real-time + accuracy** | +| `YOLOV5M` | 21.1M | 84MB | 95.30% | 93.76% | 85.28% | 18.146 | High accuracy | + +**Accuracy**: WIDER FACE validation set - from [YOLOv5-Face paper](https://arxiv.org/abs/2105.12931) +**Speed**: Benchmark on your own hardware using `scripts/run_detection.py --iterations 100` +**Note**: Fixed input size of 640×640. Models exported to ONNX from [deepcam-cn/yolov5-face](https://github.com/deepcam-cn/yolov5-face) + +#### Usage + +```python +from uniface import YOLOv5Face +from uniface.constants import YOLOv5FaceWeights + +# Real-time detection (recommended) +detector = YOLOv5Face( + model_name=YOLOv5FaceWeights.YOLOV5S, + conf_thresh=0.6, + nms_thresh=0.5 +) + +# High accuracy +detector = YOLOv5Face( + model_name=YOLOv5FaceWeights.YOLOV5M, + conf_thresh=0.6 +) + +# Detect faces with landmarks +faces = detector.detect(image) +for face in faces: + bbox = face['bbox'] # [x1, y1, x2, y2] + confidence = face['confidence'] + landmarks = face['landmarks'] # 5-point landmarks (5, 2) +``` + +--- + ## Face Recognition Models ### ArcFace State-of-the-art face recognition using additive angular margin loss. -| Model Name | Backbone | Params | Size | Use Case | -|-------------|-------------|--------|-------|----------------------------| -| `MNET` ⭐ | MobileNet | 2.0M | 8MB | **Balanced (recommended)** | -| `RESNET` | ResNet50 | 43.6M | 166MB | Maximum accuracy | +| Model Name | Backbone | Params | Size | Use Case | +| ----------- | --------- | ------ | ----- | -------------------------------- | +| `MNET` ⭐ | MobileNet | 2.0M | 8MB | **Balanced (recommended)** | +| `RESNET` | ResNet50 | 43.6M | 166MB | Maximum accuracy | **Dataset**: Trained on MS1M-V2 (5.8M images, 85K identities) **Accuracy**: Benchmark on your own dataset or use standard face verification benchmarks @@ -113,12 +155,12 @@ embedding = recognizer.get_normalized_embedding(image, landmarks) Lightweight face recognition optimized for mobile devices. -| Model Name | Backbone | Params | Size | LFW | CALFW | CPLFW | AgeDB-30 | Use Case | -|-----------------|-----------------|--------|------|-------|-------|-------|----------|--------------------| -| `MNET_025` | MobileNetV1 0.25| 0.36M | 1MB | 98.76%| 92.02%| 82.37%| 90.02% | Ultra-lightweight | -| `MNET_V2` ⭐ | MobileNetV2 | 2.29M | 4MB | 99.55%| 94.87%| 86.89%| 95.16% | **Mobile/Edge** | -| `MNET_V3_SMALL` | MobileNetV3-S | 1.25M | 3MB | 99.30%| 93.77%| 85.29%| 92.79% | Mobile optimized | -| `MNET_V3_LARGE` | MobileNetV3-L | 3.52M | 10MB | 99.53%| 94.56%| 86.79%| 95.13% | Balanced mobile | +| Model Name | Backbone | Params | Size | LFW | CALFW | CPLFW | AgeDB-30 | Use Case | +| ----------------- | ---------------- | ------ | ---- | ------ | ------ | ------ | -------- | --------------------- | +| `MNET_025` | MobileNetV1 0.25 | 0.36M | 1MB | 98.76% | 92.02% | 82.37% | 90.02% | Ultra-lightweight | +| `MNET_V2` ⭐ | MobileNetV2 | 2.29M | 4MB | 99.55% | 94.87% | 86.89% | 95.16% | **Mobile/Edge** | +| `MNET_V3_SMALL` | MobileNetV3-S | 1.25M | 3MB | 99.30% | 93.77% | 85.29% | 92.79% | Mobile optimized | +| `MNET_V3_LARGE` | MobileNetV3-L | 3.52M | 10MB | 99.53% | 94.56% | 86.79% | 95.13% | Balanced mobile | **Dataset**: Trained on MS1M-V2 (5.8M images, 85K identities) **Accuracy**: Evaluated on LFW, CALFW, CPLFW, and AgeDB-30 benchmarks @@ -140,10 +182,10 @@ recognizer = MobileFace(model_name=MobileFaceWeights.MNET_V2) Face recognition using angular softmax loss. -| Model Name | Backbone | Params | Size | LFW | CALFW | CPLFW | AgeDB-30 | Use Case | -|-------------|----------|--------|------|-------|-------|-------|----------|----------------------| -| `SPHERE20` | Sphere20 | 24.5M | 50MB | 99.67%| 95.61%| 88.75%| 96.58% | Research/Comparison | -| `SPHERE36` | Sphere36 | 34.6M | 92MB | 99.72%| 95.64%| 89.92%| 96.83% | Research/Comparison | +| Model Name | Backbone | Params | Size | LFW | CALFW | CPLFW | AgeDB-30 | Use Case | +| ------------ | -------- | ------ | ---- | ------ | ------ | ------ | -------- | ------------------- | +| `SPHERE20` | Sphere20 | 24.5M | 50MB | 99.67% | 95.61% | 88.75% | 96.58% | Research/Comparison | +| `SPHERE36` | Sphere36 | 34.6M | 92MB | 99.72% | 95.64% | 89.92% | 96.83% | Research/Comparison | **Dataset**: Trained on MS1M-V2 (5.8M images, 85K identities) **Accuracy**: Evaluated on LFW, CALFW, CPLFW, and AgeDB-30 benchmarks @@ -166,9 +208,9 @@ recognizer = SphereFace(model_name=SphereFaceWeights.SPHERE20) High-precision facial landmark localization. -| Model Name | Points | Params | Size | Use Case | -|------------|--------|--------|------|-----------------------------| -| `2D106` | 106 | 3.7M | 14MB | Face alignment, analysis | +| Model Name | Points | Params | Size | Use Case | +| ---------- | ------ | ------ | ---- | ------------------------ | +| `2D106` | 106 | 3.7M | 14MB | Face alignment, analysis | **Note**: Provides 106 facial keypoints for detailed face analysis and alignment @@ -183,6 +225,7 @@ landmarks = landmarker.get_landmarks(image, bbox) ``` **Landmark Groups:** + - Face contour: 0-32 (33 points) - Eyebrows: 33-50 (18 points) - Nose: 51-62 (12 points) @@ -195,9 +238,9 @@ landmarks = landmarker.get_landmarks(image, bbox) ### Age & Gender Detection -| Model Name | Attributes | Params | Size | Use Case | -|------------|-------------|--------|------|-------------------| -| `DEFAULT` | Age, Gender | 2.1M | 8MB | General purpose | +| Model Name | Attributes | Params | Size | Use Case | +| ----------- | ----------- | ------ | ---- | --------------- | +| `DEFAULT` | Age, Gender | 2.1M | 8MB | General purpose | **Dataset**: Trained on CelebA **Note**: Accuracy varies by demographic and image quality. Test on your specific use case. @@ -217,10 +260,10 @@ gender_id, age = predictor.predict(image, bbox) ### Emotion Detection -| Model Name | Classes | Params | Size | Use Case | -|--------------|---------|--------|------|-----------------------| -| `AFFECNET7` | 7 | 0.5M | 2MB | 7-class emotion | -| `AFFECNET8` | 8 | 0.5M | 2MB | 8-class emotion | +| Model Name | Classes | Params | Size | Use Case | +| ------------- | ------- | ------ | ---- | --------------- | +| `AFFECNET7` | 7 | 0.5M | 2MB | 7-class emotion | +| `AFFECNET8` | 8 | 0.5M | 2MB | 8-class emotion | **Classes (7)**: Neutral, Happy, Sad, Surprise, Fear, Disgust, Anger **Classes (8)**: Above + Contempt @@ -240,118 +283,6 @@ emotion, confidence = predictor.predict(image, landmarks) --- -## Model Selection Guide - -### By Use Case - -#### Mobile/Edge Devices -- **Detection**: `RetinaFace(MNET_025)` or `SCRFD(SCRFD_500M)` -- **Recognition**: `MobileFace(MNET_V2)` -- **Priority**: Speed, small model size - -#### Real-Time Applications (Webcam, Video) -- **Detection**: `RetinaFace(MNET_V2)` or `SCRFD(SCRFD_500M)` -- **Recognition**: `ArcFace(MNET)` -- **Priority**: Speed-accuracy balance - -#### High-Accuracy Applications (Security, Verification) -- **Detection**: `SCRFD(SCRFD_10G)` or `RetinaFace(RESNET34)` -- **Recognition**: `ArcFace(RESNET)` -- **Priority**: Maximum accuracy - -#### Server/Cloud Deployment -- **Detection**: `SCRFD(SCRFD_10G)` -- **Recognition**: `ArcFace(RESNET)` -- **Priority**: Accuracy, batch processing - ---- - -### By Hardware - -#### Apple Silicon (M1/M2/M3/M4) -**Recommended**: All models work well with ARM64 optimizations (automatically included) - -```bash -pip install uniface -``` - -**Recommended models**: -- **Fast**: `SCRFD(SCRFD_500M)` - Lightweight, real-time capable -- **Balanced**: `RetinaFace(MNET_V2)` - Good accuracy/speed tradeoff -- **Accurate**: `SCRFD(SCRFD_10G)` - High accuracy - -**Benchmark on your M4**: `python scripts/run_detection.py --iterations 100` - -#### NVIDIA GPU (CUDA) -**Recommended**: Larger models for maximum throughput - -```bash -pip install uniface[gpu] -``` - -**Recommended models**: -- **Fast**: `SCRFD(SCRFD_500M)` - Maximum throughput -- **Balanced**: `SCRFD(SCRFD_10G)` - Best overall -- **Accurate**: `RetinaFace(RESNET34)` - Highest accuracy - -#### CPU Only -**Recommended**: Lightweight models - -**Recommended models**: -- **Fast**: `RetinaFace(MNET_025)` - Smallest, fastest -- **Balanced**: `RetinaFace(MNET_V2)` - Recommended default -- **Accurate**: `SCRFD(SCRFD_10G)` - Best accuracy on CPU - -**Note**: FPS values vary significantly based on image size, number of faces, and hardware. Always benchmark on your specific setup. - ---- - -## Benchmark Details - -### How to Benchmark - -Run benchmarks on your own hardware: - -```bash -# Detection speed -python scripts/run_detection.py --image assets/test.jpg --iterations 100 - -# Compare models -python scripts/run_detection.py --image assets/test.jpg --method retinaface --iterations 100 -python scripts/run_detection.py --image assets/test.jpg --method scrfd --iterations 100 -``` - -### Accuracy Metrics Explained - -- **WIDER FACE**: Standard face detection benchmark with three difficulty levels - - **Easy**: Large faces (>50px), clear backgrounds - - **Medium**: Medium-sized faces (30-50px), moderate occlusion - - **Hard**: Small faces (<30px), heavy occlusion, blur - - *Accuracy values are from the original papers - see references below* - -- **Model Size**: ONNX model file size (affects download time and memory) -- **Params**: Number of model parameters (affects inference speed) - -### Important Notes - -1. **Speed varies by**: - - Image resolution - - Number of faces in image - - Hardware (CPU/GPU/CoreML) - - Batch size - - Operating system - -2. **Accuracy varies by**: - - Image quality - - Lighting conditions - - Face pose and occlusion - - Demographic factors - -3. **Always benchmark on your specific use case** before choosing a model - ---- - ## Model Updates Models are automatically downloaded and cached on first use. Cache location: `~/.uniface/models/` @@ -388,6 +319,8 @@ python scripts/download_model.py --model MNET_V2 ### Model Training & Architectures - **RetinaFace Training**: [yakhyo/retinaface-pytorch](https://github.com/yakhyo/retinaface-pytorch) - PyTorch implementation and training code +- **YOLOv5-Face Original**: [deepcam-cn/yolov5-face](https://github.com/deepcam-cn/yolov5-face) - Original PyTorch implementation +- **YOLOv5-Face ONNX**: [yakhyo/yolov5-face-onnx-inference](https://github.com/yakhyo/yolov5-face-onnx-inference) - ONNX inference implementation - **Face Recognition Training**: [yakhyo/face-recognition](https://github.com/yakhyo/face-recognition) - ArcFace, MobileFace, SphereFace training code - **InsightFace**: [deepinsight/insightface](https://github.com/deepinsight/insightface) - Model architectures and pretrained weights @@ -395,6 +328,6 @@ python scripts/download_model.py --model MNET_V2 - **RetinaFace**: [Single-Shot Multi-Level Face Localisation in the Wild](https://arxiv.org/abs/1905.00641) - **SCRFD**: [Sample and Computation Redistribution for Efficient Face Detection](https://arxiv.org/abs/2105.04714) +- **YOLOv5-Face**: [YOLO5Face: Why Reinventing a Face Detector](https://arxiv.org/abs/2105.12931) - **ArcFace**: [Additive Angular Margin Loss for Deep Face Recognition](https://arxiv.org/abs/1801.07698) - **SphereFace**: [Deep Hypersphere Embedding for Face Recognition](https://arxiv.org/abs/1704.08063) - diff --git a/QUICKSTART.md b/QUICKSTART.md index ab502ea..384ea20 100644 --- a/QUICKSTART.md +++ b/QUICKSTART.md @@ -271,8 +271,8 @@ Choose the right model for your use case: ### Detection Models ```python -from uniface.detection import RetinaFace, SCRFD -from uniface.constants import RetinaFaceWeights, SCRFDWeights +from uniface.detection import RetinaFace, SCRFD, YOLOv5Face +from uniface.constants import RetinaFaceWeights, SCRFDWeights, YOLOv5FaceWeights # Fast detection (mobile/edge devices) detector = RetinaFace( @@ -285,6 +285,13 @@ detector = RetinaFace( model_name=RetinaFaceWeights.MNET_V2 ) +# Real-time with high accuracy +detector = YOLOv5Face( + model_name=YOLOv5FaceWeights.YOLOV5S, + conf_thresh=0.6, + nms_thresh=0.5 +) + # High accuracy (server/GPU) detector = SCRFD( model_name=SCRFDWeights.SCRFD_10G_KPS, @@ -367,9 +374,7 @@ from uniface import retinaface # Module, not class ## References - **RetinaFace Training**: [yakhyo/retinaface-pytorch](https://github.com/yakhyo/retinaface-pytorch) +- **YOLOv5-Face Original**: [deepcam-cn/yolov5-face](https://github.com/deepcam-cn/yolov5-face) +- **YOLOv5-Face ONNX**: [yakhyo/yolov5-face-onnx-inference](https://github.com/yakhyo/yolov5-face-onnx-inference) - **Face Recognition Training**: [yakhyo/face-recognition](https://github.com/yakhyo/face-recognition) - **InsightFace**: [deepinsight/insightface](https://github.com/deepinsight/insightface) - ---- - -Happy coding! 🚀 diff --git a/README.md b/README.md index 32a0f23..2ea115a 100644 --- a/README.md +++ b/README.md @@ -7,7 +7,6 @@ [![Downloads](https://pepy.tech/badge/uniface)](https://pepy.tech/project/uniface) [![DeepWiki](https://img.shields.io/badge/DeepWiki-yakhyo%2Funiface-blue.svg?logo=)](https://deepwiki.com/yakhyo/uniface) -
@@ -190,8 +189,8 @@ landmarker = Landmark106() ### Direct Model Instantiation ```python -from uniface import RetinaFace, SCRFD, ArcFace, MobileFace, SphereFace -from uniface.constants import RetinaFaceWeights +from uniface import RetinaFace, SCRFD, YOLOv5Face, ArcFace, MobileFace, SphereFace +from uniface.constants import RetinaFaceWeights, YOLOv5FaceWeights # Detection detector = RetinaFace( @@ -200,6 +199,13 @@ detector = RetinaFace( nms_thresh=0.4 ) +# YOLOv5-Face detection +detector = YOLOv5Face( + model_name=YOLOv5FaceWeights.YOLOV5S, + conf_thresh=0.6, + nms_thresh=0.5 +) + # Recognition recognizer = ArcFace() # Uses default weights recognizer = MobileFace() # Lightweight alternative @@ -228,8 +234,10 @@ faces = detect_faces(image, method='retinaface', conf_thresh=0.8) | retinaface_r34 | 94.16% | 93.12% | 88.90% | High accuracy | | scrfd_500m | 90.57% | 88.12% | 68.51% | Real-time applications | | scrfd_10g | 95.16% | 93.87% | 83.05% | Best accuracy/speed | +| yolov5s_face | 94.33% | 92.61% | 83.15% | Real-time + accuracy | +| yolov5m_face | 95.30% | 93.76% | 85.28% | High accuracy | -_Accuracy values from original papers: [RetinaFace](https://arxiv.org/abs/1905.00641), [SCRFD](https://arxiv.org/abs/2105.04714)_ +_Accuracy values from original papers: [RetinaFace](https://arxiv.org/abs/1905.00641), [SCRFD](https://arxiv.org/abs/2105.04714), [YOLOv5-Face](https://arxiv.org/abs/2105.12931)_ **Benchmark on your hardware:** @@ -443,20 +451,12 @@ uniface/ ## References -### Model Training & Architectures - - **RetinaFace Training**: [yakhyo/retinaface-pytorch](https://github.com/yakhyo/retinaface-pytorch) - PyTorch implementation and training code +- **YOLOv5-Face Original**: [deepcam-cn/yolov5-face](https://github.com/deepcam-cn/yolov5-face) - Original PyTorch implementation +- **YOLOv5-Face ONNX**: [yakhyo/yolov5-face-onnx-inference](https://github.com/yakhyo/yolov5-face-onnx-inference) - ONNX inference implementation - **Face Recognition Training**: [yakhyo/face-recognition](https://github.com/yakhyo/face-recognition) - ArcFace, MobileFace, SphereFace training code - **InsightFace**: [deepinsight/insightface](https://github.com/deepinsight/insightface) - Model architectures and pretrained weights -### Papers - -- **RetinaFace**: [Single-Shot Multi-Level Face Localisation in the Wild](https://arxiv.org/abs/1905.00641) -- **SCRFD**: [Sample and Computation Redistribution for Efficient Face Detection](https://arxiv.org/abs/2105.04714) -- **ArcFace**: [Additive Angular Margin Loss for Deep Face Recognition](https://arxiv.org/abs/1801.07698) - ---- - ## Contributing Contributions are welcome! Please open an issue or submit a pull request on [GitHub](https://github.com/yakhyo/uniface). diff --git a/pyproject.toml b/pyproject.toml index f829d8f..a966389 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -1,6 +1,6 @@ [project] name = "uniface" -version = "1.1.2" +version = "1.2.0" description = "UniFace: A Comprehensive Library for Face Detection, Recognition, Landmark Analysis, Age, and Gender Detection" readme = "README.md" license = { text = "MIT" } diff --git a/scripts/run_detection.py b/scripts/run_detection.py index ac8a8b5..8dc3d7e 100644 --- a/scripts/run_detection.py +++ b/scripts/run_detection.py @@ -7,7 +7,7 @@ import os import cv2 -from uniface.detection import SCRFD, RetinaFace +from uniface.detection import SCRFD, RetinaFace, YOLOv5Face from uniface.visualization import draw_detections @@ -75,15 +75,21 @@ def main(): parser = argparse.ArgumentParser(description='Run face detection') parser.add_argument('--image', type=str, help='Path to input image') parser.add_argument('--webcam', action='store_true', help='Use webcam') - parser.add_argument('--method', type=str, default='retinaface', choices=['retinaface', 'scrfd']) - parser.add_argument('--threshold', type=float, default=0.6, help='Visualization threshold') + parser.add_argument('--method', type=str, default='retinaface', choices=['retinaface', 'scrfd', 'yolov5face']) + parser.add_argument('--threshold', type=float, default=0.25, help='Visualization threshold') parser.add_argument('--save_dir', type=str, default='outputs') args = parser.parse_args() if not args.image and not args.webcam: parser.error('Either --image or --webcam must be specified') - detector = RetinaFace() if args.method == 'retinaface' else SCRFD() + if args.method == 'retinaface': + detector = RetinaFace() + elif args.method == 'scrfd': + detector = SCRFD() + else: + from uniface.constants import YOLOv5FaceWeights + detector = YOLOv5Face(model_name=YOLOv5FaceWeights.YOLOV5M) if args.webcam: run_webcam(detector, args.threshold) diff --git a/tests/test_factory.py b/tests/test_factory.py index 0f134bd..2aab407 100644 --- a/tests/test_factory.py +++ b/tests/test_factory.py @@ -263,7 +263,7 @@ def test_factory_returns_correct_types(): """ Test that factory functions return instances of the correct types. """ - from uniface import RetinaFace, ArcFace, Landmark106 + from uniface import ArcFace, Landmark106, RetinaFace detector = create_detector('retinaface') recognizer = create_recognizer('arcface') diff --git a/uniface/__init__.py b/uniface/__init__.py index fed089b..6f92928 100644 --- a/uniface/__init__.py +++ b/uniface/__init__.py @@ -13,7 +13,7 @@ __license__ = 'MIT' __author__ = 'Yakhyokhuja Valikhujaev' -__version__ = '1.1.2' +__version__ = '1.2.0' from uniface.face_utils import compute_similarity, face_alignment @@ -32,6 +32,7 @@ except ImportError: from .detection import ( SCRFD, RetinaFace, + YOLOv5Face, create_detector, detect_faces, list_available_detectors, @@ -55,6 +56,7 @@ __all__ = [ # Detection models 'RetinaFace', 'SCRFD', + 'YOLOv5Face', # Recognition models 'ArcFace', 'MobileFace', diff --git a/uniface/constants.py b/uniface/constants.py index f2178a3..586ce9e 100644 --- a/uniface/constants.py +++ b/uniface/constants.py @@ -55,6 +55,20 @@ class SCRFDWeights(str, Enum): SCRFD_500M_KPS = "scrfd_500m" +class YOLOv5FaceWeights(str, Enum): + """ + Trained on WIDER FACE dataset. + Original implementation: https://github.com/deepcam-cn/yolov5-face + Exported to ONNX from: https://github.com/yakhyo/yolov5-face-onnx-inference + + Model Performance (WIDER FACE): + - YOLOV5S: 7.1M params, 28MB, 94.33% Easy / 92.61% Medium / 83.15% Hard + - YOLOV5M: 21.1M params, 84MB, 95.30% Easy / 93.76% Medium / 85.28% Hard + """ + YOLOV5S = "yolov5s_face" + YOLOV5M = "yolov5m_face" + + class DDAMFNWeights(str, Enum): """ Trained on AffectNet dataset. @@ -102,6 +116,9 @@ MODEL_URLS: Dict[Enum, str] = { # SCRFD SCRFDWeights.SCRFD_10G_KPS: 'https://github.com/yakhyo/uniface/releases/download/weights/scrfd_10g_kps.onnx', SCRFDWeights.SCRFD_500M_KPS: 'https://github.com/yakhyo/uniface/releases/download/weights/scrfd_500m_kps.onnx', + # YOLOv5-Face + YOLOv5FaceWeights.YOLOV5S: 'https://github.com/yakhyo/yolov5-face-onnx-inference/releases/download/weights/yolov5s_face.onnx', + YOLOv5FaceWeights.YOLOV5M: 'https://github.com/yakhyo/yolov5-face-onnx-inference/releases/download/weights/yolov5m_face.onnx', # DDAFM DDAMFNWeights.AFFECNET7: 'https://github.com/yakhyo/uniface/releases/download/weights/affecnet7.script', DDAMFNWeights.AFFECNET8: 'https://github.com/yakhyo/uniface/releases/download/weights/affecnet8.script', @@ -133,6 +150,9 @@ MODEL_SHA256: Dict[Enum, str] = { # SCRFD SCRFDWeights.SCRFD_10G_KPS: '5838f7fe053675b1c7a08b633df49e7af5495cee0493c7dcf6697200b85b5b91', SCRFDWeights.SCRFD_500M_KPS: '5e4447f50245bbd7966bd6c0fa52938c61474a04ec7def48753668a9d8b4ea3a', + # YOLOv5-Face + YOLOv5FaceWeights.YOLOV5S: 'fc682801cd5880e1e296184a14aea0035486b5146ec1a1389d2e7149cb134bb2', + YOLOv5FaceWeights.YOLOV5M: '04302ce27a15bde3e20945691b688e2dd018a10e92dd8932146bede6a49207b2', # DDAFM DDAMFNWeights.AFFECNET7: '10535bf8b6afe8e9d6ae26cea6c3add9a93036e9addb6adebfd4a972171d015d', DDAMFNWeights.AFFECNET8: '8c66963bc71db42796a14dfcbfcd181b268b65a3fc16e87147d6a3a3d7e0f487', diff --git a/uniface/detection/__init__.py b/uniface/detection/__init__.py index 87538f6..5d0b140 100644 --- a/uniface/detection/__init__.py +++ b/uniface/detection/__init__.py @@ -10,6 +10,7 @@ import numpy as np from .base import BaseDetector from .retinaface import RetinaFace from .scrfd import SCRFD +from .yolov5 import YOLOv5Face # Global cache for detector instances _detector_cache: Dict[str, BaseDetector] = {} @@ -59,6 +60,7 @@ def create_detector(method: str = 'retinaface', **kwargs) -> BaseDetector: method (str): Detection method. Options: - 'retinaface': RetinaFace detector (default) - 'scrfd': SCRFD detector (fast and accurate) + - 'yolov5face': YOLOv5-Face detector (accurate with landmarks) **kwargs: Detector-specific parameters Returns: @@ -86,6 +88,14 @@ def create_detector(method: str = 'retinaface', **kwargs) -> BaseDetector: ... conf_thresh=0.8, ... nms_thresh=0.4 ... ) + + >>> # YOLOv5-Face detector + >>> detector = create_detector( + ... 'yolov5face', + ... model_name=YOLOv5FaceWeights.YOLOV5S, + ... conf_thresh=0.25, + ... nms_thresh=0.45 + ... ) """ method = method.lower() @@ -95,8 +105,11 @@ def create_detector(method: str = 'retinaface', **kwargs) -> BaseDetector: elif method == 'scrfd': return SCRFD(**kwargs) + elif method == 'yolov5face': + return YOLOv5Face(**kwargs) + else: - available_methods = ['retinaface', 'scrfd'] + available_methods = ['retinaface', 'scrfd', 'yolov5face'] raise ValueError(f"Unsupported detection method: '{method}'. Available methods: {available_methods}") @@ -130,6 +143,17 @@ def list_available_detectors() -> Dict[str, Dict[str, Any]]: 'input_size': (640, 640), }, }, + 'yolov5face': { + 'description': 'YOLOv5-Face detector - accurate face detection with landmarks', + 'supports_landmarks': True, + 'paper': 'https://arxiv.org/abs/2105.12931', + 'default_params': { + 'model_name': 'yolov5s_face', + 'conf_thresh': 0.25, + 'nms_thresh': 0.45, + 'input_size': 640, + }, + }, } @@ -139,5 +163,6 @@ __all__ = [ 'list_available_detectors', 'SCRFD', 'RetinaFace', + 'YOLOv5Face', 'BaseDetector', ] diff --git a/uniface/detection/retinaface.py b/uniface/detection/retinaface.py index fe06541..8109b4c 100644 --- a/uniface/detection/retinaface.py +++ b/uniface/detection/retinaface.py @@ -38,6 +38,7 @@ class RetinaFace(BaseDetector): dynamic_size (bool, optional): If True, generate anchors dynamically per input image. Defaults to False. input_size (Tuple[int, int], optional): Fixed input size (width, height) if `dynamic_size=False`. Defaults to (640, 640). + Note: Non-default sizes may cause slower inference and CoreML compatibility issues. Attributes: model_name (RetinaFaceWeights): Selected model variant. diff --git a/uniface/detection/scrfd.py b/uniface/detection/scrfd.py index e62b83e..ee4e815 100644 --- a/uniface/detection/scrfd.py +++ b/uniface/detection/scrfd.py @@ -31,7 +31,9 @@ class SCRFD(BaseDetector): Specifies the SCRFD variant to load. Defaults to SCRFD_10G_KPS. conf_thresh (float, optional): Confidence threshold for filtering detections. Defaults to 0.5. nms_thresh (float, optional): Non-Maximum Suppression threshold. Defaults to 0.4. - input_size (Tuple[int, int], optional): Input image size (width, height). Defaults to (640, 640). + input_size (Tuple[int, int], optional): Input image size (width, height). + Defaults to (640, 640). + Note: Non-default sizes may cause slower inference and CoreML compatibility issues. Attributes: conf_thresh (float): Threshold used to filter low-confidence detections. diff --git a/uniface/detection/yolov5.py b/uniface/detection/yolov5.py new file mode 100644 index 0000000..188ba72 --- /dev/null +++ b/uniface/detection/yolov5.py @@ -0,0 +1,326 @@ +# Copyright 2025 Yakhyokhuja Valikhujaev +# Author: Yakhyokhuja Valikhujaev +# GitHub: https://github.com/yakhyo + +from typing import Any, Dict, List, Literal, Tuple + +import cv2 +import numpy as np + +from uniface.common import non_max_suppression +from uniface.constants import YOLOv5FaceWeights +from uniface.log import Logger +from uniface.model_store import verify_model_weights +from uniface.onnx_utils import create_onnx_session + +from .base import BaseDetector + +__all__ = ['YOLOv5Face'] + + +class YOLOv5Face(BaseDetector): + """ + Face detector based on the YOLOv5-Face architecture. + + Paper: https://arxiv.org/abs/2105.12931 + Original Implementation: https://github.com/deepcam-cn/yolov5-face + + Args: + **kwargs: Keyword arguments passed to BaseDetector and YOLOv5Face. Supported keys include: + model_name (YOLOv5FaceWeights, optional): Predefined model enum (e.g., `YOLOV5S`). + Specifies the YOLOv5-Face variant to load. Defaults to YOLOV5S. + conf_thresh (float, optional): Confidence threshold for filtering detections. Defaults to 0.25. + nms_thresh (float, optional): Non-Maximum Suppression threshold. Defaults to 0.45. + input_size (int, optional): Input image size. Defaults to 640. + Note: ONNX model is fixed at 640. Changing this will cause inference errors. + max_det (int, optional): Maximum number of detections to return. Defaults to 750. + + Attributes: + conf_thresh (float): Threshold used to filter low-confidence detections. + nms_thresh (float): Threshold used during NMS to suppress overlapping boxes. + input_size (int): Image size to which inputs are resized before inference. + max_det (int): Maximum number of detections to return. + _model_path (str): Absolute path to the downloaded/verified model weights. + + Raises: + ValueError: If the model weights are invalid or not found. + RuntimeError: If the ONNX model fails to load or initialize. + """ + + def __init__(self, **kwargs) -> None: + super().__init__(**kwargs) + self._supports_landmarks = True # YOLOv5-Face supports landmarks + + model_name = kwargs.get('model_name', YOLOv5FaceWeights.YOLOV5S) + conf_thresh = kwargs.get('conf_thresh', 0.6) # 0.6 is default from original YOLOv5-Face repository + nms_thresh = kwargs.get('nms_thresh', 0.5) # 0.5 is default from original YOLOv5-Face repository + input_size = kwargs.get('input_size', 640) + max_det = kwargs.get('max_det', 750) + + # Validate input size + if input_size != 640: + raise ValueError( + f'YOLOv5Face only supports input_size=640 (got {input_size}). The ONNX model has a fixed input shape.' + ) + + self.conf_thresh = conf_thresh + self.nms_thresh = nms_thresh + self.input_size = input_size + self.max_det = max_det + + Logger.info( + f'Initializing YOLOv5Face with model={model_name}, conf_thresh={conf_thresh}, ' + f'nms_thresh={nms_thresh}, input_size={input_size}' + ) + + # Get path to model weights + self._model_path = verify_model_weights(model_name) + Logger.info(f'Verified model weights located at: {self._model_path}') + + # Initialize model + self._initialize_model(self._model_path) + + def _initialize_model(self, model_path: str) -> None: + """ + Initializes an ONNX model session from the given path. + + Args: + model_path (str): The file path to the ONNX model. + + Raises: + RuntimeError: If the model fails to load, logs an error and raises an exception. + """ + try: + self.session = create_onnx_session(model_path) + self.input_names = self.session.get_inputs()[0].name + self.output_names = [x.name for x in self.session.get_outputs()] + Logger.info(f'Successfully initialized the model from {model_path}') + except Exception as e: + Logger.error(f"Failed to load model from '{model_path}': {e}", exc_info=True) + raise RuntimeError(f"Failed to initialize model session for '{model_path}'") from e + + def preprocess(self, image: np.ndarray) -> Tuple[np.ndarray, float, Tuple[int, int]]: + """ + Preprocess image for inference. + + Args: + image (np.ndarray): Input image (BGR format) + + Returns: + Tuple[np.ndarray, float, Tuple[int, int]]: Preprocessed image, scale ratio, and padding + """ + # Get original image shape + img_h, img_w = image.shape[:2] + + # Calculate scale ratio + scale = min(self.input_size / img_h, self.input_size / img_w) + new_h, new_w = int(img_h * scale), int(img_w * scale) + + # Resize image + img_resized = cv2.resize(image, (new_w, new_h), interpolation=cv2.INTER_LINEAR) + + # Create padded image + img_padded = np.full((self.input_size, self.input_size, 3), 114, dtype=np.uint8) + + # Calculate padding + pad_h = (self.input_size - new_h) // 2 + pad_w = (self.input_size - new_w) // 2 + + # Place resized image in center + img_padded[pad_h : pad_h + new_h, pad_w : pad_w + new_w] = img_resized + + # Convert to RGB and normalize + img_rgb = cv2.cvtColor(img_padded, cv2.COLOR_BGR2RGB) + img_normalized = img_rgb.astype(np.float32) / 255.0 + + # Transpose to CHW format (HWC -> CHW) and add batch dimension + img_transposed = np.transpose(img_normalized, (2, 0, 1)) + img_batch = np.expand_dims(img_transposed, axis=0) + img_batch = np.ascontiguousarray(img_batch) + + return img_batch, scale, (pad_w, pad_h) + + def inference(self, input_tensor: np.ndarray) -> List[np.ndarray]: + """Perform model inference on the preprocessed image tensor. + + Args: + input_tensor (np.ndarray): Preprocessed input tensor. + + Returns: + List[np.ndarray]: Raw model outputs. + """ + return self.session.run(self.output_names, {self.input_names: input_tensor}) + + def postprocess( + self, + predictions: np.ndarray, + scale: float, + padding: Tuple[int, int], + ) -> Tuple[np.ndarray, np.ndarray]: + """ + Postprocess model predictions. + + Args: + predictions (np.ndarray): Raw model output + scale (float): Scale ratio used in preprocessing + padding (Tuple[int, int]): Padding used in preprocessing + + Returns: + Tuple[np.ndarray, np.ndarray]: Filtered detections and landmarks + - detections: [x1, y1, x2, y2, conf] + - landmarks: [5, 2] for each detection + """ + # predictions shape: (1, 25200, 16) + # 16 = [x, y, w, h, obj_conf, cls_conf, 10 landmarks (5 points * 2 coords)] + + predictions = predictions[0] # Remove batch dimension + + # Filter by confidence + mask = predictions[:, 4] >= self.conf_thresh + predictions = predictions[mask] + + if len(predictions) == 0: + return np.array([]), np.array([]) + + # Convert from xywh to xyxy + boxes = self._xywh2xyxy(predictions[:, :4]) + + # Get confidence scores + scores = predictions[:, 4] + + # Get landmarks (5 points, 10 coordinates) + landmarks = predictions[:, 5:15].copy() + + # Apply NMS + detections_for_nms = np.hstack((boxes, scores[:, None])).astype(np.float32, copy=False) + keep = non_max_suppression(detections_for_nms, self.nms_thresh) + + if len(keep) == 0: + return np.array([]), np.array([]) + + # Filter detections and limit to max_det + keep = keep[: self.max_det] + boxes = boxes[keep] + scores = scores[keep] + landmarks = landmarks[keep] + + # Scale back to original image coordinates + pad_w, pad_h = padding + boxes[:, [0, 2]] = (boxes[:, [0, 2]] - pad_w) / scale + boxes[:, [1, 3]] = (boxes[:, [1, 3]] - pad_h) / scale + + # Scale landmarks + for i in range(5): + landmarks[:, i * 2] = (landmarks[:, i * 2] - pad_w) / scale + landmarks[:, i * 2 + 1] = (landmarks[:, i * 2 + 1] - pad_h) / scale + + # Reshape landmarks to (N, 5, 2) + landmarks = landmarks.reshape(-1, 5, 2) + + # Combine results + detections = np.concatenate([boxes, scores[:, None]], axis=1) + + return detections, landmarks + + def _xywh2xyxy(self, x: np.ndarray) -> np.ndarray: + """ + Convert bounding box format from xywh to xyxy. + + Args: + x (np.ndarray): Boxes in [x, y, w, h] format + + Returns: + np.ndarray: Boxes in [x1, y1, x2, y2] format + """ + y = np.copy(x) + y[..., 0] = x[..., 0] - x[..., 2] / 2 # x1 + y[..., 1] = x[..., 1] - x[..., 3] / 2 # y1 + y[..., 2] = x[..., 0] + x[..., 2] / 2 # x2 + y[..., 3] = x[..., 1] + x[..., 3] / 2 # y2 + return y + + def detect( + self, + image: np.ndarray, + max_num: int = 0, + metric: Literal['default', 'max'] = 'max', + center_weight: float = 2.0, + ) -> List[Dict[str, Any]]: + """ + Perform face detection on an input image and return bounding boxes and facial landmarks. + + Args: + image (np.ndarray): Input image as a NumPy array of shape (H, W, C). + max_num (int): Maximum number of detections to return. Use 0 to return all detections. Defaults to 0. + metric (Literal["default", "max"]): Metric for ranking detections when `max_num` is limited. + - "default": Prioritize detections closer to the image center. + - "max": Prioritize detections with larger bounding box areas. + center_weight (float): Weight for penalizing detections farther from the image center + when using the "default" metric. Defaults to 2.0. + + Returns: + List[Dict[str, Any]]: List of face detection dictionaries, each containing: + - 'bbox' (np.ndarray): Bounding box coordinates with shape (4,) as [x1, y1, x2, y2] + - 'confidence' (float): Detection confidence score (0.0 to 1.0) + - 'landmarks' (np.ndarray): 5-point facial landmarks with shape (5, 2) + + Example: + >>> faces = detector.detect(image) + >>> for face in faces: + ... bbox = face['bbox'] # np.ndarray with shape (4,) + ... confidence = face['confidence'] # float + ... landmarks = face['landmarks'] # np.ndarray with shape (5, 2) + ... # Can pass landmarks directly to recognition + ... embedding = recognizer.get_normalized_embedding(image, landmarks) + """ + + original_height, original_width = image.shape[:2] + + # Preprocess + image_tensor, scale, padding = self.preprocess(image) + + # ONNXRuntime inference + outputs = self.inference(image_tensor) + + # Postprocess + detections, landmarks = self.postprocess(outputs[0], scale, padding) + + # Handle case when no faces are detected + if len(detections) == 0: + return [] + + if 0 < max_num < detections.shape[0]: + # Calculate area of detections + area = (detections[:, 2] - detections[:, 0]) * (detections[:, 3] - detections[:, 1]) + + # Calculate offsets from image center + center = (original_height // 2, original_width // 2) + offsets = np.vstack( + [ + (detections[:, 0] + detections[:, 2]) / 2 - center[1], + (detections[:, 1] + detections[:, 3]) / 2 - center[0], + ] + ) + + # Calculate scores based on the chosen metric + offset_dist_squared = np.sum(np.power(offsets, 2.0), axis=0) + if metric == 'max': + values = area + else: + values = area - offset_dist_squared * center_weight + + # Sort by scores and select top `max_num` + sorted_indices = np.argsort(values)[::-1][:max_num] + detections = detections[sorted_indices] + landmarks = landmarks[sorted_indices] + + faces = [] + for i in range(detections.shape[0]): + face_dict = { + 'bbox': detections[i, :4].astype(np.float32), + 'confidence': float(detections[i, 4]), + 'landmarks': landmarks[i].astype(np.float32), + } + faces.append(face_dict) + + return faces