feat: Add YOLOv5 face detection support (#26)

* feat: Add YOLOv5 face detection model

* docs: Update docs, add new model information

* feat: Add YOLOv5 face detection model

* test: Add testing and running
This commit is contained in:
Yakhyokhuja Valikhujaev
2025-12-03 23:35:56 +09:00
committed by GitHub
parent a5e97ac484
commit 6b1d2a1ce6
12 changed files with 498 additions and 178 deletions

231
MODELS.md
View File

@@ -10,14 +10,14 @@ Complete guide to all available models, their performance characteristics, and s
RetinaFace models are trained on the WIDER FACE dataset and provide excellent accuracy-speed tradeoffs. RetinaFace models are trained on the WIDER FACE dataset and provide excellent accuracy-speed tradeoffs.
| Model Name | Params | Size | Easy | Medium | Hard | Use Case | | Model Name | Params | Size | Easy | Medium | Hard | Use Case |
|---------------------|--------|--------|--------|--------|--------|----------------------------| | -------------- | ------ | ----- | ------ | ------ | ------ | ----------------------------- |
| `MNET_025` | 0.4M | 1.7MB | 88.48% | 87.02% | 80.61% | Mobile/Edge devices | | `MNET_025` | 0.4M | 1.7MB | 88.48% | 87.02% | 80.61% | Mobile/Edge devices |
| `MNET_050` | 1.0M | 2.6MB | 89.42% | 87.97% | 82.40% | Mobile/Edge devices | | `MNET_050` | 1.0M | 2.6MB | 89.42% | 87.97% | 82.40% | Mobile/Edge devices |
| `MNET_V1` | 3.5M | 3.8MB | 90.59% | 89.14% | 84.13% | Balanced mobile | | `MNET_V1` | 3.5M | 3.8MB | 90.59% | 89.14% | 84.13% | Balanced mobile |
| `MNET_V2` | 3.2M | 3.5MB | 91.70% | 91.03% | 86.60% | **Recommended default** | | `MNET_V2` ⭐ | 3.2M | 3.5MB | 91.70% | 91.03% | 86.60% | **Recommended default** |
| `RESNET18` | 11.7M | 27MB | 92.50% | 91.02% | 86.63% | Server/High accuracy | | `RESNET18` | 11.7M | 27MB | 92.50% | 91.02% | 86.63% | Server/High accuracy |
| `RESNET34` | 24.8M | 56MB | 94.16% | 93.12% | 88.90% | Maximum accuracy | | `RESNET34` | 24.8M | 56MB | 94.16% | 93.12% | 88.90% | Maximum accuracy |
**Accuracy**: WIDER FACE validation set (Easy/Medium/Hard subsets) - from [RetinaFace paper](https://arxiv.org/abs/1905.00641) **Accuracy**: WIDER FACE validation set (Easy/Medium/Hard subsets) - from [RetinaFace paper](https://arxiv.org/abs/1905.00641)
**Speed**: Benchmark on your own hardware using `scripts/run_detection.py --iterations 100` **Speed**: Benchmark on your own hardware using `scripts/run_detection.py --iterations 100`
@@ -46,10 +46,10 @@ detector = RetinaFace(
SCRFD (Sample and Computation Redistribution for Efficient Face Detection) models offer state-of-the-art speed-accuracy tradeoffs. SCRFD (Sample and Computation Redistribution for Efficient Face Detection) models offer state-of-the-art speed-accuracy tradeoffs.
| Model Name | Params | Size | Easy | Medium | Hard | Use Case | | Model Name | Params | Size | Easy | Medium | Hard | Use Case |
|-----------------|--------|-------|--------|--------|--------|----------------------------| | ---------------- | ------ | ----- | ------ | ------ | ------ | ------------------------------- |
| `SCRFD_500M` | 0.6M | 2.5MB | 90.57% | 88.12% | 68.51% | Real-time applications | | `SCRFD_500M` | 0.6M | 2.5MB | 90.57% | 88.12% | 68.51% | Real-time applications |
| `SCRFD_10G` | 4.2M | 17MB | 95.16% | 93.87% | 83.05% | **High accuracy + speed** | | `SCRFD_10G` ⭐ | 4.2M | 17MB | 95.16% | 93.87% | 83.05% | **High accuracy + speed** |
**Accuracy**: WIDER FACE validation set - from [SCRFD paper](https://arxiv.org/abs/2105.04714) **Accuracy**: WIDER FACE validation set - from [SCRFD paper](https://arxiv.org/abs/2105.04714)
**Speed**: Benchmark on your own hardware using `scripts/run_detection.py --iterations 100` **Speed**: Benchmark on your own hardware using `scripts/run_detection.py --iterations 100`
@@ -76,16 +76,58 @@ detector = SCRFD(
--- ---
### YOLOv5-Face Family
YOLOv5-Face models provide excellent detection accuracy with 5-point facial landmarks, optimized for real-time applications.
| Model Name | Params | Size | Easy | Medium | Hard | FLOPs (G) | Use Case |
| -------------- | ------ | ---- | ------ | ------ | ------ | --------- | ------------------------------ |
| `YOLOV5S` ⭐ | 7.1M | 28MB | 94.33% | 92.61% | 83.15% | 5.751 | **Real-time + accuracy** |
| `YOLOV5M` | 21.1M | 84MB | 95.30% | 93.76% | 85.28% | 18.146 | High accuracy |
**Accuracy**: WIDER FACE validation set - from [YOLOv5-Face paper](https://arxiv.org/abs/2105.12931)
**Speed**: Benchmark on your own hardware using `scripts/run_detection.py --iterations 100`
**Note**: Fixed input size of 640×640. Models exported to ONNX from [deepcam-cn/yolov5-face](https://github.com/deepcam-cn/yolov5-face)
#### Usage
```python
from uniface import YOLOv5Face
from uniface.constants import YOLOv5FaceWeights
# Real-time detection (recommended)
detector = YOLOv5Face(
model_name=YOLOv5FaceWeights.YOLOV5S,
conf_thresh=0.6,
nms_thresh=0.5
)
# High accuracy
detector = YOLOv5Face(
model_name=YOLOv5FaceWeights.YOLOV5M,
conf_thresh=0.6
)
# Detect faces with landmarks
faces = detector.detect(image)
for face in faces:
bbox = face['bbox'] # [x1, y1, x2, y2]
confidence = face['confidence']
landmarks = face['landmarks'] # 5-point landmarks (5, 2)
```
---
## Face Recognition Models ## Face Recognition Models
### ArcFace ### ArcFace
State-of-the-art face recognition using additive angular margin loss. State-of-the-art face recognition using additive angular margin loss.
| Model Name | Backbone | Params | Size | Use Case | | Model Name | Backbone | Params | Size | Use Case |
|-------------|-------------|--------|-------|----------------------------| | ----------- | --------- | ------ | ----- | -------------------------------- |
| `MNET` | MobileNet | 2.0M | 8MB | **Balanced (recommended)** | | `MNET` ⭐ | MobileNet | 2.0M | 8MB | **Balanced (recommended)** |
| `RESNET` | ResNet50 | 43.6M | 166MB | Maximum accuracy | | `RESNET` | ResNet50 | 43.6M | 166MB | Maximum accuracy |
**Dataset**: Trained on MS1M-V2 (5.8M images, 85K identities) **Dataset**: Trained on MS1M-V2 (5.8M images, 85K identities)
**Accuracy**: Benchmark on your own dataset or use standard face verification benchmarks **Accuracy**: Benchmark on your own dataset or use standard face verification benchmarks
@@ -113,12 +155,12 @@ embedding = recognizer.get_normalized_embedding(image, landmarks)
Lightweight face recognition optimized for mobile devices. Lightweight face recognition optimized for mobile devices.
| Model Name | Backbone | Params | Size | LFW | CALFW | CPLFW | AgeDB-30 | Use Case | | Model Name | Backbone | Params | Size | LFW | CALFW | CPLFW | AgeDB-30 | Use Case |
|-----------------|-----------------|--------|------|-------|-------|-------|----------|--------------------| | ----------------- | ---------------- | ------ | ---- | ------ | ------ | ------ | -------- | --------------------- |
| `MNET_025` | MobileNetV1 0.25| 0.36M | 1MB | 98.76%| 92.02%| 82.37%| 90.02% | Ultra-lightweight | | `MNET_025` | MobileNetV1 0.25 | 0.36M | 1MB | 98.76% | 92.02% | 82.37% | 90.02% | Ultra-lightweight |
| `MNET_V2` ⭐ | MobileNetV2 | 2.29M | 4MB | 99.55%| 94.87%| 86.89%| 95.16% | **Mobile/Edge** | | `MNET_V2` ⭐ | MobileNetV2 | 2.29M | 4MB | 99.55% | 94.87% | 86.89% | 95.16% | **Mobile/Edge** |
| `MNET_V3_SMALL` | MobileNetV3-S | 1.25M | 3MB | 99.30%| 93.77%| 85.29%| 92.79% | Mobile optimized | | `MNET_V3_SMALL` | MobileNetV3-S | 1.25M | 3MB | 99.30% | 93.77% | 85.29% | 92.79% | Mobile optimized |
| `MNET_V3_LARGE` | MobileNetV3-L | 3.52M | 10MB | 99.53%| 94.56%| 86.79%| 95.13% | Balanced mobile | | `MNET_V3_LARGE` | MobileNetV3-L | 3.52M | 10MB | 99.53% | 94.56% | 86.79% | 95.13% | Balanced mobile |
**Dataset**: Trained on MS1M-V2 (5.8M images, 85K identities) **Dataset**: Trained on MS1M-V2 (5.8M images, 85K identities)
**Accuracy**: Evaluated on LFW, CALFW, CPLFW, and AgeDB-30 benchmarks **Accuracy**: Evaluated on LFW, CALFW, CPLFW, and AgeDB-30 benchmarks
@@ -140,10 +182,10 @@ recognizer = MobileFace(model_name=MobileFaceWeights.MNET_V2)
Face recognition using angular softmax loss. Face recognition using angular softmax loss.
| Model Name | Backbone | Params | Size | LFW | CALFW | CPLFW | AgeDB-30 | Use Case | | Model Name | Backbone | Params | Size | LFW | CALFW | CPLFW | AgeDB-30 | Use Case |
|-------------|----------|--------|------|-------|-------|-------|----------|----------------------| | ------------ | -------- | ------ | ---- | ------ | ------ | ------ | -------- | ------------------- |
| `SPHERE20` | Sphere20 | 24.5M | 50MB | 99.67%| 95.61%| 88.75%| 96.58% | Research/Comparison | | `SPHERE20` | Sphere20 | 24.5M | 50MB | 99.67% | 95.61% | 88.75% | 96.58% | Research/Comparison |
| `SPHERE36` | Sphere36 | 34.6M | 92MB | 99.72%| 95.64%| 89.92%| 96.83% | Research/Comparison | | `SPHERE36` | Sphere36 | 34.6M | 92MB | 99.72% | 95.64% | 89.92% | 96.83% | Research/Comparison |
**Dataset**: Trained on MS1M-V2 (5.8M images, 85K identities) **Dataset**: Trained on MS1M-V2 (5.8M images, 85K identities)
**Accuracy**: Evaluated on LFW, CALFW, CPLFW, and AgeDB-30 benchmarks **Accuracy**: Evaluated on LFW, CALFW, CPLFW, and AgeDB-30 benchmarks
@@ -166,9 +208,9 @@ recognizer = SphereFace(model_name=SphereFaceWeights.SPHERE20)
High-precision facial landmark localization. High-precision facial landmark localization.
| Model Name | Points | Params | Size | Use Case | | Model Name | Points | Params | Size | Use Case |
|------------|--------|--------|------|-----------------------------| | ---------- | ------ | ------ | ---- | ------------------------ |
| `2D106` | 106 | 3.7M | 14MB | Face alignment, analysis | | `2D106` | 106 | 3.7M | 14MB | Face alignment, analysis |
**Note**: Provides 106 facial keypoints for detailed face analysis and alignment **Note**: Provides 106 facial keypoints for detailed face analysis and alignment
@@ -183,6 +225,7 @@ landmarks = landmarker.get_landmarks(image, bbox)
``` ```
**Landmark Groups:** **Landmark Groups:**
- Face contour: 0-32 (33 points) - Face contour: 0-32 (33 points)
- Eyebrows: 33-50 (18 points) - Eyebrows: 33-50 (18 points)
- Nose: 51-62 (12 points) - Nose: 51-62 (12 points)
@@ -195,9 +238,9 @@ landmarks = landmarker.get_landmarks(image, bbox)
### Age & Gender Detection ### Age & Gender Detection
| Model Name | Attributes | Params | Size | Use Case | | Model Name | Attributes | Params | Size | Use Case |
|------------|-------------|--------|------|-------------------| | ----------- | ----------- | ------ | ---- | --------------- |
| `DEFAULT` | Age, Gender | 2.1M | 8MB | General purpose | | `DEFAULT` | Age, Gender | 2.1M | 8MB | General purpose |
**Dataset**: Trained on CelebA **Dataset**: Trained on CelebA
**Note**: Accuracy varies by demographic and image quality. Test on your specific use case. **Note**: Accuracy varies by demographic and image quality. Test on your specific use case.
@@ -217,10 +260,10 @@ gender_id, age = predictor.predict(image, bbox)
### Emotion Detection ### Emotion Detection
| Model Name | Classes | Params | Size | Use Case | | Model Name | Classes | Params | Size | Use Case |
|--------------|---------|--------|------|-----------------------| | ------------- | ------- | ------ | ---- | --------------- |
| `AFFECNET7` | 7 | 0.5M | 2MB | 7-class emotion | | `AFFECNET7` | 7 | 0.5M | 2MB | 7-class emotion |
| `AFFECNET8` | 8 | 0.5M | 2MB | 8-class emotion | | `AFFECNET8` | 8 | 0.5M | 2MB | 8-class emotion |
**Classes (7)**: Neutral, Happy, Sad, Surprise, Fear, Disgust, Anger **Classes (7)**: Neutral, Happy, Sad, Surprise, Fear, Disgust, Anger
**Classes (8)**: Above + Contempt **Classes (8)**: Above + Contempt
@@ -240,118 +283,6 @@ emotion, confidence = predictor.predict(image, landmarks)
--- ---
## Model Selection Guide
### By Use Case
#### Mobile/Edge Devices
- **Detection**: `RetinaFace(MNET_025)` or `SCRFD(SCRFD_500M)`
- **Recognition**: `MobileFace(MNET_V2)`
- **Priority**: Speed, small model size
#### Real-Time Applications (Webcam, Video)
- **Detection**: `RetinaFace(MNET_V2)` or `SCRFD(SCRFD_500M)`
- **Recognition**: `ArcFace(MNET)`
- **Priority**: Speed-accuracy balance
#### High-Accuracy Applications (Security, Verification)
- **Detection**: `SCRFD(SCRFD_10G)` or `RetinaFace(RESNET34)`
- **Recognition**: `ArcFace(RESNET)`
- **Priority**: Maximum accuracy
#### Server/Cloud Deployment
- **Detection**: `SCRFD(SCRFD_10G)`
- **Recognition**: `ArcFace(RESNET)`
- **Priority**: Accuracy, batch processing
---
### By Hardware
#### Apple Silicon (M1/M2/M3/M4)
**Recommended**: All models work well with ARM64 optimizations (automatically included)
```bash
pip install uniface
```
**Recommended models**:
- **Fast**: `SCRFD(SCRFD_500M)` - Lightweight, real-time capable
- **Balanced**: `RetinaFace(MNET_V2)` - Good accuracy/speed tradeoff
- **Accurate**: `SCRFD(SCRFD_10G)` - High accuracy
**Benchmark on your M4**: `python scripts/run_detection.py --iterations 100`
#### NVIDIA GPU (CUDA)
**Recommended**: Larger models for maximum throughput
```bash
pip install uniface[gpu]
```
**Recommended models**:
- **Fast**: `SCRFD(SCRFD_500M)` - Maximum throughput
- **Balanced**: `SCRFD(SCRFD_10G)` - Best overall
- **Accurate**: `RetinaFace(RESNET34)` - Highest accuracy
#### CPU Only
**Recommended**: Lightweight models
**Recommended models**:
- **Fast**: `RetinaFace(MNET_025)` - Smallest, fastest
- **Balanced**: `RetinaFace(MNET_V2)` - Recommended default
- **Accurate**: `SCRFD(SCRFD_10G)` - Best accuracy on CPU
**Note**: FPS values vary significantly based on image size, number of faces, and hardware. Always benchmark on your specific setup.
---
## Benchmark Details
### How to Benchmark
Run benchmarks on your own hardware:
```bash
# Detection speed
python scripts/run_detection.py --image assets/test.jpg --iterations 100
# Compare models
python scripts/run_detection.py --image assets/test.jpg --method retinaface --iterations 100
python scripts/run_detection.py --image assets/test.jpg --method scrfd --iterations 100
```
### Accuracy Metrics Explained
- **WIDER FACE**: Standard face detection benchmark with three difficulty levels
- **Easy**: Large faces (>50px), clear backgrounds
- **Medium**: Medium-sized faces (30-50px), moderate occlusion
- **Hard**: Small faces (<30px), heavy occlusion, blur
*Accuracy values are from the original papers - see references below*
- **Model Size**: ONNX model file size (affects download time and memory)
- **Params**: Number of model parameters (affects inference speed)
### Important Notes
1. **Speed varies by**:
- Image resolution
- Number of faces in image
- Hardware (CPU/GPU/CoreML)
- Batch size
- Operating system
2. **Accuracy varies by**:
- Image quality
- Lighting conditions
- Face pose and occlusion
- Demographic factors
3. **Always benchmark on your specific use case** before choosing a model
---
## Model Updates ## Model Updates
Models are automatically downloaded and cached on first use. Cache location: `~/.uniface/models/` Models are automatically downloaded and cached on first use. Cache location: `~/.uniface/models/`
@@ -388,6 +319,8 @@ python scripts/download_model.py --model MNET_V2
### Model Training & Architectures ### Model Training & Architectures
- **RetinaFace Training**: [yakhyo/retinaface-pytorch](https://github.com/yakhyo/retinaface-pytorch) - PyTorch implementation and training code - **RetinaFace Training**: [yakhyo/retinaface-pytorch](https://github.com/yakhyo/retinaface-pytorch) - PyTorch implementation and training code
- **YOLOv5-Face Original**: [deepcam-cn/yolov5-face](https://github.com/deepcam-cn/yolov5-face) - Original PyTorch implementation
- **YOLOv5-Face ONNX**: [yakhyo/yolov5-face-onnx-inference](https://github.com/yakhyo/yolov5-face-onnx-inference) - ONNX inference implementation
- **Face Recognition Training**: [yakhyo/face-recognition](https://github.com/yakhyo/face-recognition) - ArcFace, MobileFace, SphereFace training code - **Face Recognition Training**: [yakhyo/face-recognition](https://github.com/yakhyo/face-recognition) - ArcFace, MobileFace, SphereFace training code
- **InsightFace**: [deepinsight/insightface](https://github.com/deepinsight/insightface) - Model architectures and pretrained weights - **InsightFace**: [deepinsight/insightface](https://github.com/deepinsight/insightface) - Model architectures and pretrained weights
@@ -395,6 +328,6 @@ python scripts/download_model.py --model MNET_V2
- **RetinaFace**: [Single-Shot Multi-Level Face Localisation in the Wild](https://arxiv.org/abs/1905.00641) - **RetinaFace**: [Single-Shot Multi-Level Face Localisation in the Wild](https://arxiv.org/abs/1905.00641)
- **SCRFD**: [Sample and Computation Redistribution for Efficient Face Detection](https://arxiv.org/abs/2105.04714) - **SCRFD**: [Sample and Computation Redistribution for Efficient Face Detection](https://arxiv.org/abs/2105.04714)
- **YOLOv5-Face**: [YOLO5Face: Why Reinventing a Face Detector](https://arxiv.org/abs/2105.12931)
- **ArcFace**: [Additive Angular Margin Loss for Deep Face Recognition](https://arxiv.org/abs/1801.07698) - **ArcFace**: [Additive Angular Margin Loss for Deep Face Recognition](https://arxiv.org/abs/1801.07698)
- **SphereFace**: [Deep Hypersphere Embedding for Face Recognition](https://arxiv.org/abs/1704.08063) - **SphereFace**: [Deep Hypersphere Embedding for Face Recognition](https://arxiv.org/abs/1704.08063)

View File

@@ -271,8 +271,8 @@ Choose the right model for your use case:
### Detection Models ### Detection Models
```python ```python
from uniface.detection import RetinaFace, SCRFD from uniface.detection import RetinaFace, SCRFD, YOLOv5Face
from uniface.constants import RetinaFaceWeights, SCRFDWeights from uniface.constants import RetinaFaceWeights, SCRFDWeights, YOLOv5FaceWeights
# Fast detection (mobile/edge devices) # Fast detection (mobile/edge devices)
detector = RetinaFace( detector = RetinaFace(
@@ -285,6 +285,13 @@ detector = RetinaFace(
model_name=RetinaFaceWeights.MNET_V2 model_name=RetinaFaceWeights.MNET_V2
) )
# Real-time with high accuracy
detector = YOLOv5Face(
model_name=YOLOv5FaceWeights.YOLOV5S,
conf_thresh=0.6,
nms_thresh=0.5
)
# High accuracy (server/GPU) # High accuracy (server/GPU)
detector = SCRFD( detector = SCRFD(
model_name=SCRFDWeights.SCRFD_10G_KPS, model_name=SCRFDWeights.SCRFD_10G_KPS,
@@ -367,9 +374,7 @@ from uniface import retinaface # Module, not class
## References ## References
- **RetinaFace Training**: [yakhyo/retinaface-pytorch](https://github.com/yakhyo/retinaface-pytorch) - **RetinaFace Training**: [yakhyo/retinaface-pytorch](https://github.com/yakhyo/retinaface-pytorch)
- **YOLOv5-Face Original**: [deepcam-cn/yolov5-face](https://github.com/deepcam-cn/yolov5-face)
- **YOLOv5-Face ONNX**: [yakhyo/yolov5-face-onnx-inference](https://github.com/yakhyo/yolov5-face-onnx-inference)
- **Face Recognition Training**: [yakhyo/face-recognition](https://github.com/yakhyo/face-recognition) - **Face Recognition Training**: [yakhyo/face-recognition](https://github.com/yakhyo/face-recognition)
- **InsightFace**: [deepinsight/insightface](https://github.com/deepinsight/insightface) - **InsightFace**: [deepinsight/insightface](https://github.com/deepinsight/insightface)
---
Happy coding! 🚀

View File

@@ -7,7 +7,6 @@
[![Downloads](https://pepy.tech/badge/uniface)](https://pepy.tech/project/uniface) [![Downloads](https://pepy.tech/badge/uniface)](https://pepy.tech/project/uniface)
[![DeepWiki](https://img.shields.io/badge/DeepWiki-yakhyo%2Funiface-blue.svg?logo=)](https://deepwiki.com/yakhyo/uniface) [![DeepWiki](https://img.shields.io/badge/DeepWiki-yakhyo%2Funiface-blue.svg?logo=)](https://deepwiki.com/yakhyo/uniface)
<div align="center"> <div align="center">
<img src=".github/logos/logo_web.webp" width=75%> <img src=".github/logos/logo_web.webp" width=75%>
</div> </div>
@@ -190,8 +189,8 @@ landmarker = Landmark106()
### Direct Model Instantiation ### Direct Model Instantiation
```python ```python
from uniface import RetinaFace, SCRFD, ArcFace, MobileFace, SphereFace from uniface import RetinaFace, SCRFD, YOLOv5Face, ArcFace, MobileFace, SphereFace
from uniface.constants import RetinaFaceWeights from uniface.constants import RetinaFaceWeights, YOLOv5FaceWeights
# Detection # Detection
detector = RetinaFace( detector = RetinaFace(
@@ -200,6 +199,13 @@ detector = RetinaFace(
nms_thresh=0.4 nms_thresh=0.4
) )
# YOLOv5-Face detection
detector = YOLOv5Face(
model_name=YOLOv5FaceWeights.YOLOV5S,
conf_thresh=0.6,
nms_thresh=0.5
)
# Recognition # Recognition
recognizer = ArcFace() # Uses default weights recognizer = ArcFace() # Uses default weights
recognizer = MobileFace() # Lightweight alternative recognizer = MobileFace() # Lightweight alternative
@@ -228,8 +234,10 @@ faces = detect_faces(image, method='retinaface', conf_thresh=0.8)
| retinaface_r34 | 94.16% | 93.12% | 88.90% | High accuracy | | retinaface_r34 | 94.16% | 93.12% | 88.90% | High accuracy |
| scrfd_500m | 90.57% | 88.12% | 68.51% | Real-time applications | | scrfd_500m | 90.57% | 88.12% | 68.51% | Real-time applications |
| scrfd_10g | 95.16% | 93.87% | 83.05% | Best accuracy/speed | | scrfd_10g | 95.16% | 93.87% | 83.05% | Best accuracy/speed |
| yolov5s_face | 94.33% | 92.61% | 83.15% | Real-time + accuracy |
| yolov5m_face | 95.30% | 93.76% | 85.28% | High accuracy |
_Accuracy values from original papers: [RetinaFace](https://arxiv.org/abs/1905.00641), [SCRFD](https://arxiv.org/abs/2105.04714)_ _Accuracy values from original papers: [RetinaFace](https://arxiv.org/abs/1905.00641), [SCRFD](https://arxiv.org/abs/2105.04714), [YOLOv5-Face](https://arxiv.org/abs/2105.12931)_
**Benchmark on your hardware:** **Benchmark on your hardware:**
@@ -443,20 +451,12 @@ uniface/
## References ## References
### Model Training & Architectures
- **RetinaFace Training**: [yakhyo/retinaface-pytorch](https://github.com/yakhyo/retinaface-pytorch) - PyTorch implementation and training code - **RetinaFace Training**: [yakhyo/retinaface-pytorch](https://github.com/yakhyo/retinaface-pytorch) - PyTorch implementation and training code
- **YOLOv5-Face Original**: [deepcam-cn/yolov5-face](https://github.com/deepcam-cn/yolov5-face) - Original PyTorch implementation
- **YOLOv5-Face ONNX**: [yakhyo/yolov5-face-onnx-inference](https://github.com/yakhyo/yolov5-face-onnx-inference) - ONNX inference implementation
- **Face Recognition Training**: [yakhyo/face-recognition](https://github.com/yakhyo/face-recognition) - ArcFace, MobileFace, SphereFace training code - **Face Recognition Training**: [yakhyo/face-recognition](https://github.com/yakhyo/face-recognition) - ArcFace, MobileFace, SphereFace training code
- **InsightFace**: [deepinsight/insightface](https://github.com/deepinsight/insightface) - Model architectures and pretrained weights - **InsightFace**: [deepinsight/insightface](https://github.com/deepinsight/insightface) - Model architectures and pretrained weights
### Papers
- **RetinaFace**: [Single-Shot Multi-Level Face Localisation in the Wild](https://arxiv.org/abs/1905.00641)
- **SCRFD**: [Sample and Computation Redistribution for Efficient Face Detection](https://arxiv.org/abs/2105.04714)
- **ArcFace**: [Additive Angular Margin Loss for Deep Face Recognition](https://arxiv.org/abs/1801.07698)
---
## Contributing ## Contributing
Contributions are welcome! Please open an issue or submit a pull request on [GitHub](https://github.com/yakhyo/uniface). Contributions are welcome! Please open an issue or submit a pull request on [GitHub](https://github.com/yakhyo/uniface).

View File

@@ -1,6 +1,6 @@
[project] [project]
name = "uniface" name = "uniface"
version = "1.1.2" version = "1.2.0"
description = "UniFace: A Comprehensive Library for Face Detection, Recognition, Landmark Analysis, Age, and Gender Detection" description = "UniFace: A Comprehensive Library for Face Detection, Recognition, Landmark Analysis, Age, and Gender Detection"
readme = "README.md" readme = "README.md"
license = { text = "MIT" } license = { text = "MIT" }

View File

@@ -7,7 +7,7 @@ import os
import cv2 import cv2
from uniface.detection import SCRFD, RetinaFace from uniface.detection import SCRFD, RetinaFace, YOLOv5Face
from uniface.visualization import draw_detections from uniface.visualization import draw_detections
@@ -75,15 +75,21 @@ def main():
parser = argparse.ArgumentParser(description='Run face detection') parser = argparse.ArgumentParser(description='Run face detection')
parser.add_argument('--image', type=str, help='Path to input image') parser.add_argument('--image', type=str, help='Path to input image')
parser.add_argument('--webcam', action='store_true', help='Use webcam') parser.add_argument('--webcam', action='store_true', help='Use webcam')
parser.add_argument('--method', type=str, default='retinaface', choices=['retinaface', 'scrfd']) parser.add_argument('--method', type=str, default='retinaface', choices=['retinaface', 'scrfd', 'yolov5face'])
parser.add_argument('--threshold', type=float, default=0.6, help='Visualization threshold') parser.add_argument('--threshold', type=float, default=0.25, help='Visualization threshold')
parser.add_argument('--save_dir', type=str, default='outputs') parser.add_argument('--save_dir', type=str, default='outputs')
args = parser.parse_args() args = parser.parse_args()
if not args.image and not args.webcam: if not args.image and not args.webcam:
parser.error('Either --image or --webcam must be specified') parser.error('Either --image or --webcam must be specified')
detector = RetinaFace() if args.method == 'retinaface' else SCRFD() if args.method == 'retinaface':
detector = RetinaFace()
elif args.method == 'scrfd':
detector = SCRFD()
else:
from uniface.constants import YOLOv5FaceWeights
detector = YOLOv5Face(model_name=YOLOv5FaceWeights.YOLOV5M)
if args.webcam: if args.webcam:
run_webcam(detector, args.threshold) run_webcam(detector, args.threshold)

View File

@@ -263,7 +263,7 @@ def test_factory_returns_correct_types():
""" """
Test that factory functions return instances of the correct types. Test that factory functions return instances of the correct types.
""" """
from uniface import RetinaFace, ArcFace, Landmark106 from uniface import ArcFace, Landmark106, RetinaFace
detector = create_detector('retinaface') detector = create_detector('retinaface')
recognizer = create_recognizer('arcface') recognizer = create_recognizer('arcface')

View File

@@ -13,7 +13,7 @@
__license__ = 'MIT' __license__ = 'MIT'
__author__ = 'Yakhyokhuja Valikhujaev' __author__ = 'Yakhyokhuja Valikhujaev'
__version__ = '1.1.2' __version__ = '1.2.0'
from uniface.face_utils import compute_similarity, face_alignment from uniface.face_utils import compute_similarity, face_alignment
@@ -32,6 +32,7 @@ except ImportError:
from .detection import ( from .detection import (
SCRFD, SCRFD,
RetinaFace, RetinaFace,
YOLOv5Face,
create_detector, create_detector,
detect_faces, detect_faces,
list_available_detectors, list_available_detectors,
@@ -55,6 +56,7 @@ __all__ = [
# Detection models # Detection models
'RetinaFace', 'RetinaFace',
'SCRFD', 'SCRFD',
'YOLOv5Face',
# Recognition models # Recognition models
'ArcFace', 'ArcFace',
'MobileFace', 'MobileFace',

View File

@@ -55,6 +55,20 @@ class SCRFDWeights(str, Enum):
SCRFD_500M_KPS = "scrfd_500m" SCRFD_500M_KPS = "scrfd_500m"
class YOLOv5FaceWeights(str, Enum):
"""
Trained on WIDER FACE dataset.
Original implementation: https://github.com/deepcam-cn/yolov5-face
Exported to ONNX from: https://github.com/yakhyo/yolov5-face-onnx-inference
Model Performance (WIDER FACE):
- YOLOV5S: 7.1M params, 28MB, 94.33% Easy / 92.61% Medium / 83.15% Hard
- YOLOV5M: 21.1M params, 84MB, 95.30% Easy / 93.76% Medium / 85.28% Hard
"""
YOLOV5S = "yolov5s_face"
YOLOV5M = "yolov5m_face"
class DDAMFNWeights(str, Enum): class DDAMFNWeights(str, Enum):
""" """
Trained on AffectNet dataset. Trained on AffectNet dataset.
@@ -102,6 +116,9 @@ MODEL_URLS: Dict[Enum, str] = {
# SCRFD # SCRFD
SCRFDWeights.SCRFD_10G_KPS: 'https://github.com/yakhyo/uniface/releases/download/weights/scrfd_10g_kps.onnx', SCRFDWeights.SCRFD_10G_KPS: 'https://github.com/yakhyo/uniface/releases/download/weights/scrfd_10g_kps.onnx',
SCRFDWeights.SCRFD_500M_KPS: 'https://github.com/yakhyo/uniface/releases/download/weights/scrfd_500m_kps.onnx', SCRFDWeights.SCRFD_500M_KPS: 'https://github.com/yakhyo/uniface/releases/download/weights/scrfd_500m_kps.onnx',
# YOLOv5-Face
YOLOv5FaceWeights.YOLOV5S: 'https://github.com/yakhyo/yolov5-face-onnx-inference/releases/download/weights/yolov5s_face.onnx',
YOLOv5FaceWeights.YOLOV5M: 'https://github.com/yakhyo/yolov5-face-onnx-inference/releases/download/weights/yolov5m_face.onnx',
# DDAFM # DDAFM
DDAMFNWeights.AFFECNET7: 'https://github.com/yakhyo/uniface/releases/download/weights/affecnet7.script', DDAMFNWeights.AFFECNET7: 'https://github.com/yakhyo/uniface/releases/download/weights/affecnet7.script',
DDAMFNWeights.AFFECNET8: 'https://github.com/yakhyo/uniface/releases/download/weights/affecnet8.script', DDAMFNWeights.AFFECNET8: 'https://github.com/yakhyo/uniface/releases/download/weights/affecnet8.script',
@@ -133,6 +150,9 @@ MODEL_SHA256: Dict[Enum, str] = {
# SCRFD # SCRFD
SCRFDWeights.SCRFD_10G_KPS: '5838f7fe053675b1c7a08b633df49e7af5495cee0493c7dcf6697200b85b5b91', SCRFDWeights.SCRFD_10G_KPS: '5838f7fe053675b1c7a08b633df49e7af5495cee0493c7dcf6697200b85b5b91',
SCRFDWeights.SCRFD_500M_KPS: '5e4447f50245bbd7966bd6c0fa52938c61474a04ec7def48753668a9d8b4ea3a', SCRFDWeights.SCRFD_500M_KPS: '5e4447f50245bbd7966bd6c0fa52938c61474a04ec7def48753668a9d8b4ea3a',
# YOLOv5-Face
YOLOv5FaceWeights.YOLOV5S: 'fc682801cd5880e1e296184a14aea0035486b5146ec1a1389d2e7149cb134bb2',
YOLOv5FaceWeights.YOLOV5M: '04302ce27a15bde3e20945691b688e2dd018a10e92dd8932146bede6a49207b2',
# DDAFM # DDAFM
DDAMFNWeights.AFFECNET7: '10535bf8b6afe8e9d6ae26cea6c3add9a93036e9addb6adebfd4a972171d015d', DDAMFNWeights.AFFECNET7: '10535bf8b6afe8e9d6ae26cea6c3add9a93036e9addb6adebfd4a972171d015d',
DDAMFNWeights.AFFECNET8: '8c66963bc71db42796a14dfcbfcd181b268b65a3fc16e87147d6a3a3d7e0f487', DDAMFNWeights.AFFECNET8: '8c66963bc71db42796a14dfcbfcd181b268b65a3fc16e87147d6a3a3d7e0f487',

View File

@@ -10,6 +10,7 @@ import numpy as np
from .base import BaseDetector from .base import BaseDetector
from .retinaface import RetinaFace from .retinaface import RetinaFace
from .scrfd import SCRFD from .scrfd import SCRFD
from .yolov5 import YOLOv5Face
# Global cache for detector instances # Global cache for detector instances
_detector_cache: Dict[str, BaseDetector] = {} _detector_cache: Dict[str, BaseDetector] = {}
@@ -59,6 +60,7 @@ def create_detector(method: str = 'retinaface', **kwargs) -> BaseDetector:
method (str): Detection method. Options: method (str): Detection method. Options:
- 'retinaface': RetinaFace detector (default) - 'retinaface': RetinaFace detector (default)
- 'scrfd': SCRFD detector (fast and accurate) - 'scrfd': SCRFD detector (fast and accurate)
- 'yolov5face': YOLOv5-Face detector (accurate with landmarks)
**kwargs: Detector-specific parameters **kwargs: Detector-specific parameters
Returns: Returns:
@@ -86,6 +88,14 @@ def create_detector(method: str = 'retinaface', **kwargs) -> BaseDetector:
... conf_thresh=0.8, ... conf_thresh=0.8,
... nms_thresh=0.4 ... nms_thresh=0.4
... ) ... )
>>> # YOLOv5-Face detector
>>> detector = create_detector(
... 'yolov5face',
... model_name=YOLOv5FaceWeights.YOLOV5S,
... conf_thresh=0.25,
... nms_thresh=0.45
... )
""" """
method = method.lower() method = method.lower()
@@ -95,8 +105,11 @@ def create_detector(method: str = 'retinaface', **kwargs) -> BaseDetector:
elif method == 'scrfd': elif method == 'scrfd':
return SCRFD(**kwargs) return SCRFD(**kwargs)
elif method == 'yolov5face':
return YOLOv5Face(**kwargs)
else: else:
available_methods = ['retinaface', 'scrfd'] available_methods = ['retinaface', 'scrfd', 'yolov5face']
raise ValueError(f"Unsupported detection method: '{method}'. Available methods: {available_methods}") raise ValueError(f"Unsupported detection method: '{method}'. Available methods: {available_methods}")
@@ -130,6 +143,17 @@ def list_available_detectors() -> Dict[str, Dict[str, Any]]:
'input_size': (640, 640), 'input_size': (640, 640),
}, },
}, },
'yolov5face': {
'description': 'YOLOv5-Face detector - accurate face detection with landmarks',
'supports_landmarks': True,
'paper': 'https://arxiv.org/abs/2105.12931',
'default_params': {
'model_name': 'yolov5s_face',
'conf_thresh': 0.25,
'nms_thresh': 0.45,
'input_size': 640,
},
},
} }
@@ -139,5 +163,6 @@ __all__ = [
'list_available_detectors', 'list_available_detectors',
'SCRFD', 'SCRFD',
'RetinaFace', 'RetinaFace',
'YOLOv5Face',
'BaseDetector', 'BaseDetector',
] ]

View File

@@ -38,6 +38,7 @@ class RetinaFace(BaseDetector):
dynamic_size (bool, optional): If True, generate anchors dynamically per input image. Defaults to False. dynamic_size (bool, optional): If True, generate anchors dynamically per input image. Defaults to False.
input_size (Tuple[int, int], optional): Fixed input size (width, height) if `dynamic_size=False`. input_size (Tuple[int, int], optional): Fixed input size (width, height) if `dynamic_size=False`.
Defaults to (640, 640). Defaults to (640, 640).
Note: Non-default sizes may cause slower inference and CoreML compatibility issues.
Attributes: Attributes:
model_name (RetinaFaceWeights): Selected model variant. model_name (RetinaFaceWeights): Selected model variant.

View File

@@ -31,7 +31,9 @@ class SCRFD(BaseDetector):
Specifies the SCRFD variant to load. Defaults to SCRFD_10G_KPS. Specifies the SCRFD variant to load. Defaults to SCRFD_10G_KPS.
conf_thresh (float, optional): Confidence threshold for filtering detections. Defaults to 0.5. conf_thresh (float, optional): Confidence threshold for filtering detections. Defaults to 0.5.
nms_thresh (float, optional): Non-Maximum Suppression threshold. Defaults to 0.4. nms_thresh (float, optional): Non-Maximum Suppression threshold. Defaults to 0.4.
input_size (Tuple[int, int], optional): Input image size (width, height). Defaults to (640, 640). input_size (Tuple[int, int], optional): Input image size (width, height).
Defaults to (640, 640).
Note: Non-default sizes may cause slower inference and CoreML compatibility issues.
Attributes: Attributes:
conf_thresh (float): Threshold used to filter low-confidence detections. conf_thresh (float): Threshold used to filter low-confidence detections.

326
uniface/detection/yolov5.py Normal file
View File

@@ -0,0 +1,326 @@
# Copyright 2025 Yakhyokhuja Valikhujaev
# Author: Yakhyokhuja Valikhujaev
# GitHub: https://github.com/yakhyo
from typing import Any, Dict, List, Literal, Tuple
import cv2
import numpy as np
from uniface.common import non_max_suppression
from uniface.constants import YOLOv5FaceWeights
from uniface.log import Logger
from uniface.model_store import verify_model_weights
from uniface.onnx_utils import create_onnx_session
from .base import BaseDetector
__all__ = ['YOLOv5Face']
class YOLOv5Face(BaseDetector):
"""
Face detector based on the YOLOv5-Face architecture.
Paper: https://arxiv.org/abs/2105.12931
Original Implementation: https://github.com/deepcam-cn/yolov5-face
Args:
**kwargs: Keyword arguments passed to BaseDetector and YOLOv5Face. Supported keys include:
model_name (YOLOv5FaceWeights, optional): Predefined model enum (e.g., `YOLOV5S`).
Specifies the YOLOv5-Face variant to load. Defaults to YOLOV5S.
conf_thresh (float, optional): Confidence threshold for filtering detections. Defaults to 0.25.
nms_thresh (float, optional): Non-Maximum Suppression threshold. Defaults to 0.45.
input_size (int, optional): Input image size. Defaults to 640.
Note: ONNX model is fixed at 640. Changing this will cause inference errors.
max_det (int, optional): Maximum number of detections to return. Defaults to 750.
Attributes:
conf_thresh (float): Threshold used to filter low-confidence detections.
nms_thresh (float): Threshold used during NMS to suppress overlapping boxes.
input_size (int): Image size to which inputs are resized before inference.
max_det (int): Maximum number of detections to return.
_model_path (str): Absolute path to the downloaded/verified model weights.
Raises:
ValueError: If the model weights are invalid or not found.
RuntimeError: If the ONNX model fails to load or initialize.
"""
def __init__(self, **kwargs) -> None:
super().__init__(**kwargs)
self._supports_landmarks = True # YOLOv5-Face supports landmarks
model_name = kwargs.get('model_name', YOLOv5FaceWeights.YOLOV5S)
conf_thresh = kwargs.get('conf_thresh', 0.6) # 0.6 is default from original YOLOv5-Face repository
nms_thresh = kwargs.get('nms_thresh', 0.5) # 0.5 is default from original YOLOv5-Face repository
input_size = kwargs.get('input_size', 640)
max_det = kwargs.get('max_det', 750)
# Validate input size
if input_size != 640:
raise ValueError(
f'YOLOv5Face only supports input_size=640 (got {input_size}). The ONNX model has a fixed input shape.'
)
self.conf_thresh = conf_thresh
self.nms_thresh = nms_thresh
self.input_size = input_size
self.max_det = max_det
Logger.info(
f'Initializing YOLOv5Face with model={model_name}, conf_thresh={conf_thresh}, '
f'nms_thresh={nms_thresh}, input_size={input_size}'
)
# Get path to model weights
self._model_path = verify_model_weights(model_name)
Logger.info(f'Verified model weights located at: {self._model_path}')
# Initialize model
self._initialize_model(self._model_path)
def _initialize_model(self, model_path: str) -> None:
"""
Initializes an ONNX model session from the given path.
Args:
model_path (str): The file path to the ONNX model.
Raises:
RuntimeError: If the model fails to load, logs an error and raises an exception.
"""
try:
self.session = create_onnx_session(model_path)
self.input_names = self.session.get_inputs()[0].name
self.output_names = [x.name for x in self.session.get_outputs()]
Logger.info(f'Successfully initialized the model from {model_path}')
except Exception as e:
Logger.error(f"Failed to load model from '{model_path}': {e}", exc_info=True)
raise RuntimeError(f"Failed to initialize model session for '{model_path}'") from e
def preprocess(self, image: np.ndarray) -> Tuple[np.ndarray, float, Tuple[int, int]]:
"""
Preprocess image for inference.
Args:
image (np.ndarray): Input image (BGR format)
Returns:
Tuple[np.ndarray, float, Tuple[int, int]]: Preprocessed image, scale ratio, and padding
"""
# Get original image shape
img_h, img_w = image.shape[:2]
# Calculate scale ratio
scale = min(self.input_size / img_h, self.input_size / img_w)
new_h, new_w = int(img_h * scale), int(img_w * scale)
# Resize image
img_resized = cv2.resize(image, (new_w, new_h), interpolation=cv2.INTER_LINEAR)
# Create padded image
img_padded = np.full((self.input_size, self.input_size, 3), 114, dtype=np.uint8)
# Calculate padding
pad_h = (self.input_size - new_h) // 2
pad_w = (self.input_size - new_w) // 2
# Place resized image in center
img_padded[pad_h : pad_h + new_h, pad_w : pad_w + new_w] = img_resized
# Convert to RGB and normalize
img_rgb = cv2.cvtColor(img_padded, cv2.COLOR_BGR2RGB)
img_normalized = img_rgb.astype(np.float32) / 255.0
# Transpose to CHW format (HWC -> CHW) and add batch dimension
img_transposed = np.transpose(img_normalized, (2, 0, 1))
img_batch = np.expand_dims(img_transposed, axis=0)
img_batch = np.ascontiguousarray(img_batch)
return img_batch, scale, (pad_w, pad_h)
def inference(self, input_tensor: np.ndarray) -> List[np.ndarray]:
"""Perform model inference on the preprocessed image tensor.
Args:
input_tensor (np.ndarray): Preprocessed input tensor.
Returns:
List[np.ndarray]: Raw model outputs.
"""
return self.session.run(self.output_names, {self.input_names: input_tensor})
def postprocess(
self,
predictions: np.ndarray,
scale: float,
padding: Tuple[int, int],
) -> Tuple[np.ndarray, np.ndarray]:
"""
Postprocess model predictions.
Args:
predictions (np.ndarray): Raw model output
scale (float): Scale ratio used in preprocessing
padding (Tuple[int, int]): Padding used in preprocessing
Returns:
Tuple[np.ndarray, np.ndarray]: Filtered detections and landmarks
- detections: [x1, y1, x2, y2, conf]
- landmarks: [5, 2] for each detection
"""
# predictions shape: (1, 25200, 16)
# 16 = [x, y, w, h, obj_conf, cls_conf, 10 landmarks (5 points * 2 coords)]
predictions = predictions[0] # Remove batch dimension
# Filter by confidence
mask = predictions[:, 4] >= self.conf_thresh
predictions = predictions[mask]
if len(predictions) == 0:
return np.array([]), np.array([])
# Convert from xywh to xyxy
boxes = self._xywh2xyxy(predictions[:, :4])
# Get confidence scores
scores = predictions[:, 4]
# Get landmarks (5 points, 10 coordinates)
landmarks = predictions[:, 5:15].copy()
# Apply NMS
detections_for_nms = np.hstack((boxes, scores[:, None])).astype(np.float32, copy=False)
keep = non_max_suppression(detections_for_nms, self.nms_thresh)
if len(keep) == 0:
return np.array([]), np.array([])
# Filter detections and limit to max_det
keep = keep[: self.max_det]
boxes = boxes[keep]
scores = scores[keep]
landmarks = landmarks[keep]
# Scale back to original image coordinates
pad_w, pad_h = padding
boxes[:, [0, 2]] = (boxes[:, [0, 2]] - pad_w) / scale
boxes[:, [1, 3]] = (boxes[:, [1, 3]] - pad_h) / scale
# Scale landmarks
for i in range(5):
landmarks[:, i * 2] = (landmarks[:, i * 2] - pad_w) / scale
landmarks[:, i * 2 + 1] = (landmarks[:, i * 2 + 1] - pad_h) / scale
# Reshape landmarks to (N, 5, 2)
landmarks = landmarks.reshape(-1, 5, 2)
# Combine results
detections = np.concatenate([boxes, scores[:, None]], axis=1)
return detections, landmarks
def _xywh2xyxy(self, x: np.ndarray) -> np.ndarray:
"""
Convert bounding box format from xywh to xyxy.
Args:
x (np.ndarray): Boxes in [x, y, w, h] format
Returns:
np.ndarray: Boxes in [x1, y1, x2, y2] format
"""
y = np.copy(x)
y[..., 0] = x[..., 0] - x[..., 2] / 2 # x1
y[..., 1] = x[..., 1] - x[..., 3] / 2 # y1
y[..., 2] = x[..., 0] + x[..., 2] / 2 # x2
y[..., 3] = x[..., 1] + x[..., 3] / 2 # y2
return y
def detect(
self,
image: np.ndarray,
max_num: int = 0,
metric: Literal['default', 'max'] = 'max',
center_weight: float = 2.0,
) -> List[Dict[str, Any]]:
"""
Perform face detection on an input image and return bounding boxes and facial landmarks.
Args:
image (np.ndarray): Input image as a NumPy array of shape (H, W, C).
max_num (int): Maximum number of detections to return. Use 0 to return all detections. Defaults to 0.
metric (Literal["default", "max"]): Metric for ranking detections when `max_num` is limited.
- "default": Prioritize detections closer to the image center.
- "max": Prioritize detections with larger bounding box areas.
center_weight (float): Weight for penalizing detections farther from the image center
when using the "default" metric. Defaults to 2.0.
Returns:
List[Dict[str, Any]]: List of face detection dictionaries, each containing:
- 'bbox' (np.ndarray): Bounding box coordinates with shape (4,) as [x1, y1, x2, y2]
- 'confidence' (float): Detection confidence score (0.0 to 1.0)
- 'landmarks' (np.ndarray): 5-point facial landmarks with shape (5, 2)
Example:
>>> faces = detector.detect(image)
>>> for face in faces:
... bbox = face['bbox'] # np.ndarray with shape (4,)
... confidence = face['confidence'] # float
... landmarks = face['landmarks'] # np.ndarray with shape (5, 2)
... # Can pass landmarks directly to recognition
... embedding = recognizer.get_normalized_embedding(image, landmarks)
"""
original_height, original_width = image.shape[:2]
# Preprocess
image_tensor, scale, padding = self.preprocess(image)
# ONNXRuntime inference
outputs = self.inference(image_tensor)
# Postprocess
detections, landmarks = self.postprocess(outputs[0], scale, padding)
# Handle case when no faces are detected
if len(detections) == 0:
return []
if 0 < max_num < detections.shape[0]:
# Calculate area of detections
area = (detections[:, 2] - detections[:, 0]) * (detections[:, 3] - detections[:, 1])
# Calculate offsets from image center
center = (original_height // 2, original_width // 2)
offsets = np.vstack(
[
(detections[:, 0] + detections[:, 2]) / 2 - center[1],
(detections[:, 1] + detections[:, 3]) / 2 - center[0],
]
)
# Calculate scores based on the chosen metric
offset_dist_squared = np.sum(np.power(offsets, 2.0), axis=0)
if metric == 'max':
values = area
else:
values = area - offset_dist_squared * center_weight
# Sort by scores and select top `max_num`
sorted_indices = np.argsort(values)[::-1][:max_num]
detections = detections[sorted_indices]
landmarks = landmarks[sorted_indices]
faces = []
for i in range(detections.shape[0]):
face_dict = {
'bbox': detections[i, :4].astype(np.float32),
'confidence': float(detections[i, 4]),
'landmarks': landmarks[i].astype(np.float32),
}
faces.append(face_dict)
return faces