Initial commit

This commit is contained in:
yakhyo
2024-11-20 08:43:25 +00:00
commit 6dbf4e6b87
18 changed files with 1345 additions and 0 deletions

78
tests/test_retinaface.py Normal file
View File

@@ -0,0 +1,78 @@
import pytest
import numpy as np
from uniface import RetinaFace
@pytest.fixture
def retinaface_model():
"""
Fixture to initialize the RetinaFace model for testing.
"""
return RetinaFace(
model="retinaface_mnet_v2",
conf_thresh=0.5,
pre_nms_topk=5000,
nms_thresh=0.4,
post_nms_topk=750,
)
def test_model_initialization(retinaface_model):
"""
Test that the RetinaFace model initializes correctly.
"""
assert retinaface_model is not None, "Model initialization failed."
def test_inference_on_640x640_image(retinaface_model):
"""
Test inference on a 640x640 BGR image.
"""
# Generate a mock 640x640 BGR image
mock_image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
# Run inference
detections, landmarks = retinaface_model.detect(mock_image)
# Check output types
assert isinstance(detections, np.ndarray), "Detections should be a numpy array."
assert isinstance(landmarks, np.ndarray), "Landmarks should be a numpy array."
# Check that detections have the expected shape
if detections.size > 0: # If faces are detected
assert detections.shape[1] == 5, "Each detection should have 5 values (x1, y1, x2, y2, score)."
# Check landmarks shape
if landmarks.size > 0:
assert landmarks.shape[1:] == (5, 2), "Landmarks should have shape (N, 5, 2)."
def test_confidence_threshold(retinaface_model):
"""
Test that detections respect the confidence threshold.
"""
# Generate a mock 640x640 BGR image
mock_image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
# Run inference
detections, _ = retinaface_model.detect(mock_image)
# Ensure all detections have confidence scores above the threshold
if detections.size > 0: # If faces are detected
confidence_scores = detections[:, 4]
assert (confidence_scores >= 0.5).all(), "Some detections have confidence below the threshold."
def test_no_faces_detected(retinaface_model):
"""
Test inference on an image without detectable faces.
"""
# Generate an empty (black) 640x640 image
empty_image = np.zeros((640, 640, 3), dtype=np.uint8)
# Run inference
detections, landmarks = retinaface_model.detect(empty_image)
# Ensure no detections or landmarks are found
assert detections.size == 0, "Detections should be empty for a blank image."
assert landmarks.size == 0, "Landmarks should be empty for a blank image."