mirror of
https://github.com/yakhyo/uniface.git
synced 2025-12-30 09:02:25 +00:00
Merge pull request #23 from yakhyo/test-files-update
feat: Some minor changes to code style and warning supression
This commit is contained in:
24
README.md
24
README.md
@@ -394,12 +394,28 @@ pip install -e ".[dev]"
|
||||
|
||||
# Run tests
|
||||
pytest
|
||||
|
||||
# Format code
|
||||
black uniface/
|
||||
isort uniface/
|
||||
```
|
||||
|
||||
### Code Formatting
|
||||
|
||||
This project uses [Ruff](https://docs.astral.sh/ruff/) for linting and formatting.
|
||||
|
||||
```bash
|
||||
# Format code
|
||||
ruff format .
|
||||
|
||||
# Check for linting errors
|
||||
ruff check .
|
||||
|
||||
# Auto-fix linting errors
|
||||
ruff check . --fix
|
||||
```
|
||||
|
||||
Ruff configuration is in `pyproject.toml`. Key settings:
|
||||
- Line length: 120
|
||||
- Python target: 3.10+
|
||||
- Import sorting: `uniface` as first-party
|
||||
|
||||
### Project Structure
|
||||
|
||||
```
|
||||
|
||||
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
@@ -1,6 +1,6 @@
|
||||
[project]
|
||||
name = "uniface"
|
||||
version = "1.1.0"
|
||||
version = "1.1.1"
|
||||
description = "UniFace: A Comprehensive Library for Face Detection, Recognition, Landmark Analysis, Age, and Gender Detection"
|
||||
readme = "README.md"
|
||||
license = { text = "MIT" }
|
||||
@@ -19,7 +19,7 @@ dependencies = [
|
||||
requires-python = ">=3.10"
|
||||
|
||||
[project.optional-dependencies]
|
||||
dev = ["pytest>=7.0.0"]
|
||||
dev = ["pytest>=7.0.0", "ruff>=0.4.0"]
|
||||
gpu = ["onnxruntime-gpu>=1.16.0"]
|
||||
|
||||
[project.urls]
|
||||
@@ -35,3 +35,13 @@ packages = { find = {} }
|
||||
|
||||
[tool.setuptools.package-data]
|
||||
"uniface" = ["*.txt", "*.md"]
|
||||
|
||||
[tool.ruff]
|
||||
line-length = 120
|
||||
target-version = "py310"
|
||||
|
||||
[tool.ruff.lint]
|
||||
select = ["E", "F", "I", "W"]
|
||||
|
||||
[tool.ruff.lint.isort]
|
||||
known-first-party = ["uniface"]
|
||||
|
||||
@@ -1,97 +1,68 @@
|
||||
# Scripts
|
||||
|
||||
Collection of example scripts demonstrating UniFace functionality.
|
||||
Scripts for testing UniFace features.
|
||||
|
||||
## Available Scripts
|
||||
|
||||
- `run_detection.py` - Face detection on images
|
||||
- `run_age_gender.py` - Age and gender prediction
|
||||
- `run_landmarks.py` - Facial landmark detection
|
||||
- `run_recognition.py` - Face recognition and embeddings
|
||||
- `run_face_search.py` - Face search and matching
|
||||
- `run_video_detection.py` - Video processing with face detection
|
||||
- `batch_process.py` - Batch processing of image folders
|
||||
- `download_model.py` - Download and manage models
|
||||
| Script | Description |
|
||||
|--------|-------------|
|
||||
| `run_detection.py` | Face detection on image or webcam |
|
||||
| `run_age_gender.py` | Age and gender prediction |
|
||||
| `run_landmarks.py` | 106-point facial landmark detection |
|
||||
| `run_recognition.py` | Face embedding extraction and comparison |
|
||||
| `run_face_search.py` | Real-time face matching against reference |
|
||||
| `run_video_detection.py` | Face detection on video files |
|
||||
| `batch_process.py` | Batch process folder of images |
|
||||
| `download_model.py` | Download model weights |
|
||||
| `sha256_generate.py` | Generate SHA256 hash for model files |
|
||||
|
||||
## Quick Start
|
||||
## Usage Examples
|
||||
|
||||
```bash
|
||||
# Face detection
|
||||
python scripts/run_detection.py --image assets/test.jpg
|
||||
python scripts/run_detection.py --webcam
|
||||
|
||||
# Age and gender detection
|
||||
# Age and gender
|
||||
python scripts/run_age_gender.py --image assets/test.jpg
|
||||
|
||||
# Webcam demo
|
||||
python scripts/run_age_gender.py --webcam
|
||||
|
||||
# Landmarks
|
||||
python scripts/run_landmarks.py --image assets/test.jpg
|
||||
python scripts/run_landmarks.py --webcam
|
||||
|
||||
# Face recognition (extract embedding)
|
||||
python scripts/run_recognition.py --image assets/test.jpg
|
||||
|
||||
# Face comparison
|
||||
python scripts/run_recognition.py --image1 face1.jpg --image2 face2.jpg
|
||||
|
||||
# Face search (match webcam against reference)
|
||||
python scripts/run_face_search.py --image reference.jpg
|
||||
|
||||
# Video processing
|
||||
python scripts/run_video_detection.py --input video.mp4 --output output.mp4
|
||||
|
||||
# Batch processing
|
||||
python scripts/batch_process.py --input images/ --output results/
|
||||
|
||||
# Download models
|
||||
python scripts/download_model.py --model-type retinaface
|
||||
python scripts/download_model.py # downloads all
|
||||
```
|
||||
|
||||
## Import Examples
|
||||
|
||||
The scripts use direct class imports for better developer experience:
|
||||
|
||||
```python
|
||||
# Face Detection
|
||||
from uniface.detection import RetinaFace, SCRFD
|
||||
|
||||
detector = RetinaFace() # or SCRFD()
|
||||
faces = detector.detect(image)
|
||||
|
||||
# Face Recognition
|
||||
from uniface.recognition import ArcFace, MobileFace, SphereFace
|
||||
|
||||
recognizer = ArcFace() # or MobileFace(), SphereFace()
|
||||
embedding = recognizer.get_embedding(image, landmarks)
|
||||
|
||||
# Age & Gender
|
||||
from uniface.attribute import AgeGender
|
||||
|
||||
age_gender = AgeGender()
|
||||
gender, age = age_gender.predict(image, bbox)
|
||||
|
||||
# Landmarks
|
||||
from uniface.landmark import Landmark106
|
||||
|
||||
landmarker = Landmark106()
|
||||
landmarks = landmarker.get_landmarks(image, bbox)
|
||||
```
|
||||
|
||||
## Available Classes
|
||||
|
||||
**Detection:**
|
||||
- `RetinaFace` - High accuracy face detection
|
||||
- `SCRFD` - Fast face detection
|
||||
|
||||
**Recognition:**
|
||||
- `ArcFace` - High accuracy face recognition
|
||||
- `MobileFace` - Lightweight face recognition
|
||||
- `SphereFace` - Alternative face recognition
|
||||
|
||||
**Attributes:**
|
||||
- `AgeGender` - Age and gender prediction
|
||||
|
||||
**Landmarks:**
|
||||
- `Landmark106` - 106-point facial landmarks
|
||||
|
||||
## Common Options
|
||||
|
||||
Most scripts support:
|
||||
- `--help` - Show usage information
|
||||
- `--verbose` - Enable detailed logging
|
||||
- `--detector` - Choose detector (retinaface, scrfd)
|
||||
- `--threshold` - Set confidence threshold
|
||||
| Option | Description |
|
||||
|--------|-------------|
|
||||
| `--image` | Path to input image |
|
||||
| `--webcam` | Use webcam instead of image |
|
||||
| `--detector` | Choose detector: `retinaface` or `scrfd` |
|
||||
| `--threshold` | Visualization confidence threshold (default: 0.6) |
|
||||
| `--save_dir` | Output directory (default: `outputs`) |
|
||||
|
||||
## Testing
|
||||
## Quick Test
|
||||
|
||||
Run basic functionality test:
|
||||
```bash
|
||||
python scripts/run_detection.py --image assets/test.jpg
|
||||
```
|
||||
|
||||
For comprehensive testing, see the main project tests:
|
||||
```bash
|
||||
pytest tests/
|
||||
```
|
||||
|
||||
@@ -1,156 +1,95 @@
|
||||
"""Batch Image Processing Script"""
|
||||
# Batch face detection on a folder of images
|
||||
# Usage: python batch_process.py --input images/ --output results/
|
||||
|
||||
import os
|
||||
import cv2
|
||||
import argparse
|
||||
from pathlib import Path
|
||||
|
||||
import cv2
|
||||
from tqdm import tqdm
|
||||
|
||||
from uniface import RetinaFace, SCRFD
|
||||
from uniface import SCRFD, RetinaFace
|
||||
from uniface.visualization import draw_detections
|
||||
|
||||
|
||||
def get_image_files(input_dir: Path, extensions: tuple) -> list:
|
||||
image_files = []
|
||||
files = []
|
||||
for ext in extensions:
|
||||
image_files.extend(input_dir.glob(f"*.{ext}"))
|
||||
image_files.extend(input_dir.glob(f"*.{ext.upper()}"))
|
||||
|
||||
return sorted(image_files)
|
||||
files.extend(input_dir.glob(f"*.{ext}"))
|
||||
files.extend(input_dir.glob(f"*.{ext.upper()}"))
|
||||
return sorted(files)
|
||||
|
||||
|
||||
def process_single_image(detector, image_path: Path, output_dir: Path,
|
||||
vis_threshold: float, skip_existing: bool) -> dict:
|
||||
output_path = output_dir / f"{image_path.stem}_detected{image_path.suffix}"
|
||||
|
||||
# Skip if already processed
|
||||
if skip_existing and output_path.exists():
|
||||
return {"status": "skipped", "faces": 0}
|
||||
|
||||
# Load image
|
||||
def process_image(detector, image_path: Path, output_path: Path, threshold: float) -> int:
|
||||
"""Process single image. Returns face count or -1 on error."""
|
||||
image = cv2.imread(str(image_path))
|
||||
if image is None:
|
||||
return {"status": "error", "error": "Failed to load image"}
|
||||
return -1
|
||||
|
||||
# Detect faces
|
||||
try:
|
||||
faces = detector.detect(image)
|
||||
except Exception as e:
|
||||
return {"status": "error", "error": str(e)}
|
||||
faces = detector.detect(image)
|
||||
|
||||
# Draw detections
|
||||
bboxes = [f['bbox'] for f in faces]
|
||||
scores = [f['confidence'] for f in faces]
|
||||
landmarks = [f['landmarks'] for f in faces]
|
||||
draw_detections(image, bboxes, scores, landmarks, vis_threshold=vis_threshold)
|
||||
# unpack face data for visualization
|
||||
bboxes = [f["bbox"] for f in faces]
|
||||
scores = [f["confidence"] for f in faces]
|
||||
landmarks = [f["landmarks"] for f in faces]
|
||||
draw_detections(image, bboxes, scores, landmarks, vis_threshold=threshold)
|
||||
|
||||
# Add face count
|
||||
cv2.putText(image, f"Faces: {len(faces)}", (10, 30),
|
||||
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
|
||||
|
||||
# Save result
|
||||
cv2.putText(
|
||||
image,
|
||||
f"Faces: {len(faces)}",
|
||||
(10, 30),
|
||||
cv2.FONT_HERSHEY_SIMPLEX,
|
||||
1,
|
||||
(0, 255, 0),
|
||||
2,
|
||||
)
|
||||
cv2.imwrite(str(output_path), image)
|
||||
|
||||
return {"status": "success", "faces": len(faces)}
|
||||
|
||||
|
||||
def batch_process(detector, input_dir: str, output_dir: str, extensions: tuple,
|
||||
vis_threshold: float, skip_existing: bool):
|
||||
input_path = Path(input_dir)
|
||||
output_path = Path(output_dir)
|
||||
|
||||
# Create output directory
|
||||
output_path.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# Get image files
|
||||
image_files = get_image_files(input_path, extensions)
|
||||
|
||||
if not image_files:
|
||||
print(f"No image files found in '{input_dir}' with extensions {extensions}")
|
||||
return
|
||||
|
||||
print(f"Input: {input_dir}")
|
||||
print(f"Output: {output_dir}")
|
||||
print(f"Found {len(image_files)} images\n")
|
||||
|
||||
# Process images
|
||||
results = {
|
||||
"success": 0,
|
||||
"skipped": 0,
|
||||
"error": 0,
|
||||
"total_faces": 0
|
||||
}
|
||||
|
||||
with tqdm(image_files, desc="Processing images", unit="img") as pbar:
|
||||
for image_path in pbar:
|
||||
result = process_single_image(
|
||||
detector, image_path, output_path,
|
||||
vis_threshold, skip_existing
|
||||
)
|
||||
|
||||
if result["status"] == "success":
|
||||
results["success"] += 1
|
||||
results["total_faces"] += result["faces"]
|
||||
pbar.set_postfix({"faces": result["faces"]})
|
||||
elif result["status"] == "skipped":
|
||||
results["skipped"] += 1
|
||||
else:
|
||||
results["error"] += 1
|
||||
print(f"\nError processing {image_path.name}: {result.get('error', 'Unknown error')}")
|
||||
|
||||
# Print summary
|
||||
print(f"\nBatch processing complete!")
|
||||
print(f" Total images: {len(image_files)}")
|
||||
print(f" Successfully processed: {results['success']}")
|
||||
print(f" Skipped: {results['skipped']}")
|
||||
print(f" Errors: {results['error']}")
|
||||
print(f" Total faces detected: {results['total_faces']}")
|
||||
if results['success'] > 0:
|
||||
print(f" Average faces per image: {results['total_faces']/results['success']:.2f}")
|
||||
print(f"\nResults saved to: {output_dir}")
|
||||
return len(faces)
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(description="Batch process images with face detection")
|
||||
parser.add_argument("--input", type=str, required=True,
|
||||
help="Input directory containing images")
|
||||
parser.add_argument("--output", type=str, required=True,
|
||||
help="Output directory for processed images")
|
||||
parser.add_argument("--detector", type=str, default="retinaface",
|
||||
choices=['retinaface', 'scrfd'], help="Face detector to use")
|
||||
parser.add_argument("--threshold", type=float, default=0.6,
|
||||
help="Confidence threshold for visualization")
|
||||
parser.add_argument("--extensions", type=str, default="jpg,jpeg,png,bmp",
|
||||
help="Comma-separated list of image extensions")
|
||||
parser.add_argument("--skip_existing", action="store_true",
|
||||
help="Skip files that already exist in output directory")
|
||||
parser.add_argument("--verbose", action="store_true", help="Enable verbose logging")
|
||||
|
||||
parser.add_argument("--input", type=str, required=True, help="Input directory")
|
||||
parser.add_argument("--output", type=str, required=True, help="Output directory")
|
||||
parser.add_argument("--detector", type=str, default="retinaface", choices=["retinaface", "scrfd"])
|
||||
parser.add_argument("--threshold", type=float, default=0.6, help="Visualization threshold")
|
||||
parser.add_argument("--extensions", type=str, default="jpg,jpeg,png,bmp", help="Image extensions")
|
||||
args = parser.parse_args()
|
||||
|
||||
# Check input directory exists
|
||||
if not Path(args.input).exists():
|
||||
input_path = Path(args.input)
|
||||
output_path = Path(args.output)
|
||||
|
||||
if not input_path.exists():
|
||||
print(f"Error: Input directory '{args.input}' does not exist")
|
||||
return
|
||||
|
||||
if args.verbose:
|
||||
from uniface import enable_logging
|
||||
enable_logging()
|
||||
output_path.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# Parse extensions
|
||||
extensions = tuple(ext.strip() for ext in args.extensions.split(','))
|
||||
extensions = tuple(ext.strip() for ext in args.extensions.split(","))
|
||||
image_files = get_image_files(input_path, extensions)
|
||||
|
||||
# Initialize detector
|
||||
print(f"Initializing detector: {args.detector}")
|
||||
if args.detector == 'retinaface':
|
||||
detector = RetinaFace()
|
||||
else:
|
||||
detector = SCRFD()
|
||||
print("Detector initialized\n")
|
||||
if not image_files:
|
||||
print(f"No images found with extensions {extensions}")
|
||||
return
|
||||
|
||||
# Process batch
|
||||
batch_process(detector, args.input, args.output, extensions,
|
||||
args.threshold, args.skip_existing)
|
||||
print(f"Found {len(image_files)} images")
|
||||
|
||||
detector = RetinaFace() if args.detector == "retinaface" else SCRFD()
|
||||
|
||||
success, errors, total_faces = 0, 0, 0
|
||||
|
||||
for img_path in tqdm(image_files, desc="Processing", unit="img"):
|
||||
out_path = output_path / f"{img_path.stem}_detected{img_path.suffix}"
|
||||
result = process_image(detector, img_path, out_path, args.threshold)
|
||||
|
||||
if result >= 0:
|
||||
success += 1
|
||||
total_faces += result
|
||||
else:
|
||||
errors += 1
|
||||
print(f"\nFailed: {img_path.name}")
|
||||
|
||||
print(f"\nDone! {success} processed, {errors} errors, {total_faces} faces total")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
@@ -1,76 +1,59 @@
|
||||
import argparse
|
||||
|
||||
from uniface.constants import (
|
||||
RetinaFaceWeights, SphereFaceWeights, MobileFaceWeights, ArcFaceWeights,
|
||||
SCRFDWeights, DDAMFNWeights, AgeGenderWeights, LandmarkWeights
|
||||
AgeGenderWeights,
|
||||
ArcFaceWeights,
|
||||
DDAMFNWeights,
|
||||
LandmarkWeights,
|
||||
MobileFaceWeights,
|
||||
RetinaFaceWeights,
|
||||
SCRFDWeights,
|
||||
SphereFaceWeights,
|
||||
)
|
||||
from uniface.model_store import verify_model_weights
|
||||
|
||||
|
||||
# All available model types
|
||||
ALL_MODEL_TYPES = {
|
||||
'retinaface': RetinaFaceWeights,
|
||||
'sphereface': SphereFaceWeights,
|
||||
'mobileface': MobileFaceWeights,
|
||||
'arcface': ArcFaceWeights,
|
||||
'scrfd': SCRFDWeights,
|
||||
'ddamfn': DDAMFNWeights,
|
||||
'agegender': AgeGenderWeights,
|
||||
'landmark': LandmarkWeights,
|
||||
MODEL_TYPES = {
|
||||
"retinaface": RetinaFaceWeights,
|
||||
"sphereface": SphereFaceWeights,
|
||||
"mobileface": MobileFaceWeights,
|
||||
"arcface": ArcFaceWeights,
|
||||
"scrfd": SCRFDWeights,
|
||||
"ddamfn": DDAMFNWeights,
|
||||
"agegender": AgeGenderWeights,
|
||||
"landmark": LandmarkWeights,
|
||||
}
|
||||
|
||||
|
||||
def download_models(model_enum):
|
||||
for weight in model_enum:
|
||||
print(f"Downloading: {weight.value}")
|
||||
try:
|
||||
verify_model_weights(weight)
|
||||
print(f" Done: {weight.value}")
|
||||
except Exception as e:
|
||||
print(f" Failed: {e}")
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(description="Download and verify model weights.")
|
||||
parser = argparse.ArgumentParser(description="Download model weights")
|
||||
parser.add_argument(
|
||||
"--model-type",
|
||||
type=str,
|
||||
choices=list(ALL_MODEL_TYPES.keys()),
|
||||
help="Model type to download (e.g. retinaface, arcface). If not specified, all models will be downloaded.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--model",
|
||||
type=str,
|
||||
help="Specific model to download (e.g. MNET_V2). For RetinaFace backward compatibility.",
|
||||
choices=list(MODEL_TYPES.keys()),
|
||||
help="Model type to download. If not specified, downloads all.",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.model and not args.model_type:
|
||||
# Backward compatibility - assume RetinaFace
|
||||
try:
|
||||
weight = RetinaFaceWeights[args.model]
|
||||
print(f"Downloading RetinaFace model: {weight.value}")
|
||||
verify_model_weights(weight)
|
||||
print("Model downloaded successfully.")
|
||||
except KeyError:
|
||||
print(f"Invalid RetinaFace model: {args.model}")
|
||||
print(f"Available models: {[m.name for m in RetinaFaceWeights]}")
|
||||
return
|
||||
|
||||
if args.model_type:
|
||||
# Download all models from specific type
|
||||
model_enum = ALL_MODEL_TYPES[args.model_type]
|
||||
print(f"Downloading all {args.model_type} models...")
|
||||
for weight in model_enum:
|
||||
print(f"Downloading: {weight.value}")
|
||||
try:
|
||||
verify_model_weights(weight)
|
||||
print(f"Downloaded: {weight.value}")
|
||||
except Exception as e:
|
||||
print(f"Failed to download {weight.value}: {e}")
|
||||
print(f"Downloading {args.model_type} models...")
|
||||
download_models(MODEL_TYPES[args.model_type])
|
||||
else:
|
||||
# Download all models from all types
|
||||
print("Downloading all models...")
|
||||
for model_type, model_enum in ALL_MODEL_TYPES.items():
|
||||
print(f"\nDownloading {model_type} models...")
|
||||
for weight in model_enum:
|
||||
print(f"Downloading: {weight.value}")
|
||||
try:
|
||||
verify_model_weights(weight)
|
||||
print(f"Downloaded: {weight.value}")
|
||||
except Exception as e:
|
||||
print(f"Failed to download {weight.value}: {e}")
|
||||
for name, model_enum in MODEL_TYPES.items():
|
||||
print(f"\n{name}:")
|
||||
download_models(model_enum)
|
||||
|
||||
print("\nDownload process completed.")
|
||||
print("\nDone!")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
@@ -1,158 +1,119 @@
|
||||
"""Age and Gender Detection Demo Script"""
|
||||
# Age and gender prediction on detected faces
|
||||
# Usage: python run_age_gender.py --image path/to/image.jpg
|
||||
# python run_age_gender.py --webcam
|
||||
|
||||
import os
|
||||
import cv2
|
||||
import argparse
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
from uniface import RetinaFace, SCRFD, AgeGender
|
||||
import cv2
|
||||
|
||||
from uniface import SCRFD, AgeGender, RetinaFace
|
||||
from uniface.visualization import draw_detections
|
||||
|
||||
|
||||
def process_image(detector, age_gender, image_path: str, save_dir: str = "outputs", vis_threshold: float = 0.6):
|
||||
def draw_age_gender_label(image, bbox, gender: str, age: int):
|
||||
"""Draw age/gender label above the bounding box."""
|
||||
x1, y1 = int(bbox[0]), int(bbox[1])
|
||||
text = f"{gender}, {age}y"
|
||||
(tw, th), _ = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, 0.6, 2)
|
||||
cv2.rectangle(image, (x1, y1 - th - 10), (x1 + tw + 10, y1), (0, 255, 0), -1)
|
||||
cv2.putText(image, text, (x1 + 5, y1 - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 0), 2)
|
||||
|
||||
|
||||
def process_image(
|
||||
detector,
|
||||
age_gender,
|
||||
image_path: str,
|
||||
save_dir: str = "outputs",
|
||||
threshold: float = 0.6,
|
||||
):
|
||||
image = cv2.imread(image_path)
|
||||
if image is None:
|
||||
print(f"Error: Failed to load image from '{image_path}'")
|
||||
return
|
||||
|
||||
print(f"Processing: {image_path}")
|
||||
|
||||
# Detect faces
|
||||
faces = detector.detect(image)
|
||||
print(f" Detected {len(faces)} face(s)")
|
||||
print(f"Detected {len(faces)} face(s)")
|
||||
|
||||
if not faces:
|
||||
print(" No faces detected")
|
||||
return
|
||||
|
||||
# Draw detections
|
||||
bboxes = [f['bbox'] for f in faces]
|
||||
scores = [f['confidence'] for f in faces]
|
||||
landmarks = [f['landmarks'] for f in faces]
|
||||
draw_detections(image, bboxes, scores, landmarks, vis_threshold=vis_threshold)
|
||||
bboxes = [f["bbox"] for f in faces]
|
||||
scores = [f["confidence"] for f in faces]
|
||||
landmarks = [f["landmarks"] for f in faces]
|
||||
draw_detections(image, bboxes, scores, landmarks, vis_threshold=threshold)
|
||||
|
||||
# Predict and draw age/gender for each face
|
||||
for i, face in enumerate(faces):
|
||||
gender, age = age_gender.predict(image, face['bbox'])
|
||||
print(f" Face {i+1}: {gender}, {age} years old")
|
||||
gender, age = age_gender.predict(image, face["bbox"])
|
||||
print(f" Face {i + 1}: {gender}, {age} years old")
|
||||
draw_age_gender_label(image, face["bbox"], gender, age)
|
||||
|
||||
# Draw age and gender text
|
||||
bbox = face['bbox']
|
||||
x1, y1 = int(bbox[0]), int(bbox[1])
|
||||
text = f"{gender}, {age}y"
|
||||
|
||||
# Background rectangle for text
|
||||
(text_width, text_height), _ = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, 0.6, 2)
|
||||
cv2.rectangle(image, (x1, y1 - text_height - 10),
|
||||
(x1 + text_width + 10, y1), (0, 255, 0), -1)
|
||||
cv2.putText(image, text, (x1 + 5, y1 - 5),
|
||||
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 0), 2)
|
||||
|
||||
# Save result
|
||||
os.makedirs(save_dir, exist_ok=True)
|
||||
output_path = os.path.join(save_dir, f"{Path(image_path).stem}_age_gender.jpg")
|
||||
cv2.imwrite(output_path, image)
|
||||
print(f"Output saved: {output_path}")
|
||||
|
||||
|
||||
def run_webcam(detector, age_gender, vis_threshold: float = 0.6):
|
||||
cap = cv2.VideoCapture(0)
|
||||
|
||||
def run_webcam(detector, age_gender, threshold: float = 0.6):
|
||||
cap = cv2.VideoCapture(0) # 0 = default webcam
|
||||
if not cap.isOpened():
|
||||
print("Cannot open webcam")
|
||||
return
|
||||
|
||||
print("Webcam opened")
|
||||
print("Press 'q' to quit\n")
|
||||
print("Press 'q' to quit")
|
||||
|
||||
frame_count = 0
|
||||
while True:
|
||||
ret, frame = cap.read()
|
||||
frame = cv2.flip(frame, 1) # mirror for natural interaction
|
||||
if not ret:
|
||||
break
|
||||
|
||||
try:
|
||||
while True:
|
||||
ret, frame = cap.read()
|
||||
if not ret:
|
||||
break
|
||||
faces = detector.detect(frame)
|
||||
|
||||
frame_count += 1
|
||||
# unpack face data for visualization
|
||||
bboxes = [f["bbox"] for f in faces]
|
||||
scores = [f["confidence"] for f in faces]
|
||||
landmarks = [f["landmarks"] for f in faces]
|
||||
draw_detections(frame, bboxes, scores, landmarks, vis_threshold=threshold)
|
||||
|
||||
# Detect faces
|
||||
faces = detector.detect(frame)
|
||||
for face in faces:
|
||||
gender, age = age_gender.predict(frame, face["bbox"]) # predict per face
|
||||
draw_age_gender_label(frame, face["bbox"], gender, age)
|
||||
|
||||
# Draw detections
|
||||
bboxes = [f['bbox'] for f in faces]
|
||||
scores = [f['confidence'] for f in faces]
|
||||
landmarks = [f['landmarks'] for f in faces]
|
||||
draw_detections(frame, bboxes, scores, landmarks, vis_threshold=vis_threshold)
|
||||
cv2.putText(
|
||||
frame,
|
||||
f"Faces: {len(faces)}",
|
||||
(10, 30),
|
||||
cv2.FONT_HERSHEY_SIMPLEX,
|
||||
1,
|
||||
(0, 255, 0),
|
||||
2,
|
||||
)
|
||||
cv2.imshow("Age & Gender Detection", frame)
|
||||
|
||||
# Predict and draw age/gender for each face
|
||||
for face in faces:
|
||||
gender, age = age_gender.predict(frame, face['bbox'])
|
||||
if cv2.waitKey(1) & 0xFF == ord("q"):
|
||||
break
|
||||
|
||||
# Draw age and gender text
|
||||
bbox = face['bbox']
|
||||
x1, y1 = int(bbox[0]), int(bbox[1])
|
||||
text = f"{gender}, {age}y"
|
||||
|
||||
# Background rectangle for text
|
||||
(text_width, text_height), _ = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, 0.6, 2)
|
||||
cv2.rectangle(frame, (x1, y1 - text_height - 10),
|
||||
(x1 + text_width + 10, y1), (0, 255, 0), -1)
|
||||
cv2.putText(frame, text, (x1 + 5, y1 - 5),
|
||||
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 0), 2)
|
||||
|
||||
# Add info
|
||||
cv2.putText(frame, f"Faces: {len(faces)}", (10, 30),
|
||||
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
|
||||
cv2.putText(frame, "Press 'q' to quit", (10, frame.shape[0] - 10),
|
||||
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
|
||||
|
||||
cv2.imshow("Age & Gender Detection", frame)
|
||||
|
||||
if cv2.waitKey(1) & 0xFF == ord('q'):
|
||||
break
|
||||
|
||||
except KeyboardInterrupt:
|
||||
print("\nInterrupted")
|
||||
finally:
|
||||
cap.release()
|
||||
cv2.destroyAllWindows()
|
||||
print(f"\nProcessed {frame_count} frames")
|
||||
cap.release()
|
||||
cv2.destroyAllWindows()
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(description="Run age and gender detection")
|
||||
parser.add_argument("--image", type=str, help="Path to input image")
|
||||
parser.add_argument("--webcam", action="store_true", help="Use webcam instead of image")
|
||||
parser.add_argument("--detector", type=str, default="retinaface",
|
||||
choices=['retinaface', 'scrfd'], help="Face detector to use")
|
||||
parser.add_argument("--threshold", type=float, default=0.6,
|
||||
help="Confidence threshold for visualization")
|
||||
parser.add_argument("--save_dir", type=str, default="outputs",
|
||||
help="Directory to save output images")
|
||||
parser.add_argument("--verbose", action="store_true", help="Enable verbose logging")
|
||||
|
||||
parser.add_argument("--webcam", action="store_true", help="Use webcam")
|
||||
parser.add_argument("--detector", type=str, default="retinaface", choices=["retinaface", "scrfd"])
|
||||
parser.add_argument("--threshold", type=float, default=0.6, help="Visualization threshold")
|
||||
parser.add_argument("--save_dir", type=str, default="outputs")
|
||||
args = parser.parse_args()
|
||||
|
||||
# Validate input
|
||||
if not args.image and not args.webcam:
|
||||
parser.error("Either --image or --webcam must be specified")
|
||||
|
||||
if args.verbose:
|
||||
from uniface import enable_logging
|
||||
enable_logging()
|
||||
|
||||
# Initialize models
|
||||
print(f"Initializing detector: {args.detector}")
|
||||
if args.detector == 'retinaface':
|
||||
detector = RetinaFace()
|
||||
else:
|
||||
detector = SCRFD()
|
||||
|
||||
print("Initializing age/gender model...")
|
||||
detector = RetinaFace() if args.detector == "retinaface" else SCRFD()
|
||||
age_gender = AgeGender()
|
||||
print("Models initialized\n")
|
||||
|
||||
# Process
|
||||
if args.webcam:
|
||||
run_webcam(detector, age_gender, args.threshold)
|
||||
else:
|
||||
|
||||
@@ -1,79 +1,94 @@
|
||||
import os
|
||||
import cv2
|
||||
import time
|
||||
import argparse
|
||||
import numpy as np
|
||||
# Face detection on image or webcam
|
||||
# Usage: python run_detection.py --image path/to/image.jpg
|
||||
# python run_detection.py --webcam
|
||||
|
||||
from uniface.detection import RetinaFace, SCRFD
|
||||
import argparse
|
||||
import os
|
||||
|
||||
import cv2
|
||||
|
||||
from uniface.detection import SCRFD, RetinaFace
|
||||
from uniface.visualization import draw_detections
|
||||
|
||||
|
||||
def run_inference(detector, image_path: str, vis_threshold: float = 0.6, save_dir: str = "outputs"):
|
||||
def process_image(detector, image_path: str, threshold: float = 0.6, save_dir: str = "outputs"):
|
||||
image = cv2.imread(image_path)
|
||||
if image is None:
|
||||
print(f"Error: Failed to load image from '{image_path}'")
|
||||
return
|
||||
|
||||
# 1. Get the list of face dictionaries from the detector
|
||||
faces = detector.detect(image)
|
||||
|
||||
if faces:
|
||||
# 2. Unpack the data into separate lists
|
||||
bboxes = [face['bbox'] for face in faces]
|
||||
scores = [face['confidence'] for face in faces]
|
||||
landmarks = [face['landmarks'] for face in faces]
|
||||
|
||||
# 3. Pass the unpacked lists to the drawing function
|
||||
draw_detections(image, bboxes, scores, landmarks, vis_threshold=0.6)
|
||||
|
||||
bboxes = [face["bbox"] for face in faces]
|
||||
scores = [face["confidence"] for face in faces]
|
||||
landmarks = [face["landmarks"] for face in faces]
|
||||
draw_detections(image, bboxes, scores, landmarks, vis_threshold=threshold)
|
||||
|
||||
os.makedirs(save_dir, exist_ok=True)
|
||||
output_path = os.path.join(save_dir, f"{os.path.splitext(os.path.basename(image_path))[0]}_out.jpg")
|
||||
cv2.imwrite(output_path, image)
|
||||
print(f"Output saved at: {output_path}")
|
||||
print(f"Output saved: {output_path}")
|
||||
|
||||
|
||||
def run_webcam(detector, threshold: float = 0.6):
|
||||
cap = cv2.VideoCapture(0) # 0 = default webcam
|
||||
if not cap.isOpened():
|
||||
print("Cannot open webcam")
|
||||
return
|
||||
|
||||
print("Press 'q' to quit")
|
||||
|
||||
while True:
|
||||
ret, frame = cap.read()
|
||||
frame = cv2.flip(frame, 1) # mirror for natural interaction
|
||||
if not ret:
|
||||
break
|
||||
|
||||
faces = detector.detect(frame)
|
||||
|
||||
# unpack face data for visualization
|
||||
bboxes = [f["bbox"] for f in faces]
|
||||
scores = [f["confidence"] for f in faces]
|
||||
landmarks = [f["landmarks"] for f in faces]
|
||||
draw_detections(frame, bboxes, scores, landmarks, vis_threshold=threshold)
|
||||
|
||||
cv2.putText(
|
||||
frame,
|
||||
f"Faces: {len(faces)}",
|
||||
(10, 30),
|
||||
cv2.FONT_HERSHEY_SIMPLEX,
|
||||
1,
|
||||
(0, 255, 0),
|
||||
2,
|
||||
)
|
||||
cv2.imshow("Face Detection", frame)
|
||||
|
||||
if cv2.waitKey(1) & 0xFF == ord("q"):
|
||||
break
|
||||
|
||||
cap.release()
|
||||
cv2.destroyAllWindows()
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(description="Run face detection on an image.")
|
||||
parser.add_argument("--image", type=str, required=True, help="Path to the input image")
|
||||
parser.add_argument(
|
||||
"--method",
|
||||
type=str,
|
||||
default="retinaface",
|
||||
choices=['retinaface', 'scrfd'],
|
||||
help="Detection method to use."
|
||||
)
|
||||
parser.add_argument("--threshold", type=float, default=0.6, help="Visualization confidence threshold")
|
||||
parser.add_argument("--iterations", type=int, default=1, help="Number of inference runs for benchmarking")
|
||||
parser.add_argument("--save_dir", type=str, default="outputs", help="Directory to save output images")
|
||||
parser.add_argument("--verbose", action="store_true", help="Enable verbose logging")
|
||||
|
||||
parser = argparse.ArgumentParser(description="Run face detection")
|
||||
parser.add_argument("--image", type=str, help="Path to input image")
|
||||
parser.add_argument("--webcam", action="store_true", help="Use webcam")
|
||||
parser.add_argument("--method", type=str, default="retinaface", choices=["retinaface", "scrfd"])
|
||||
parser.add_argument("--threshold", type=float, default=0.6, help="Visualization threshold")
|
||||
parser.add_argument("--save_dir", type=str, default="outputs")
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.verbose:
|
||||
from uniface import enable_logging
|
||||
enable_logging()
|
||||
if not args.image and not args.webcam:
|
||||
parser.error("Either --image or --webcam must be specified")
|
||||
|
||||
print(f"Initializing detector: {args.method}")
|
||||
if args.method == 'retinaface':
|
||||
detector = RetinaFace()
|
||||
detector = RetinaFace() if args.method == "retinaface" else SCRFD()
|
||||
|
||||
if args.webcam:
|
||||
run_webcam(detector, args.threshold)
|
||||
else:
|
||||
detector = SCRFD()
|
||||
|
||||
avg_time = 0
|
||||
for i in range(args.iterations):
|
||||
start = time.time()
|
||||
run_inference(detector, args.image, args.threshold, args.save_dir)
|
||||
elapsed = time.time() - start
|
||||
print(f"[{i + 1}/{args.iterations}] Inference time: {elapsed:.4f} seconds")
|
||||
if i >= 0: # Avoid counting the first run if it includes model loading time
|
||||
avg_time += elapsed
|
||||
|
||||
if args.iterations > 1:
|
||||
# Adjust average calculation to exclude potential first-run overhead
|
||||
effective_iterations = max(1, args.iterations)
|
||||
print(
|
||||
f"\nAverage inference time over {effective_iterations} runs: {avg_time / effective_iterations:.4f} seconds")
|
||||
process_image(detector, args.image, args.threshold, args.save_dir)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
@@ -1,13 +1,25 @@
|
||||
# Real-time face search: match webcam faces against a reference image
|
||||
# Usage: python run_face_search.py --image reference.jpg
|
||||
|
||||
import argparse
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
from uniface.detection import RetinaFace, SCRFD
|
||||
from uniface.detection import SCRFD, RetinaFace
|
||||
from uniface.face_utils import compute_similarity
|
||||
from uniface.recognition import ArcFace, MobileFace, SphereFace
|
||||
|
||||
|
||||
def get_recognizer(name: str):
|
||||
if name == "arcface":
|
||||
return ArcFace()
|
||||
elif name == "mobileface":
|
||||
return MobileFace()
|
||||
else:
|
||||
return SphereFace()
|
||||
|
||||
|
||||
def extract_reference_embedding(detector, recognizer, image_path: str) -> np.ndarray:
|
||||
image = cv2.imread(image_path)
|
||||
if image is None:
|
||||
@@ -17,44 +29,37 @@ def extract_reference_embedding(detector, recognizer, image_path: str) -> np.nda
|
||||
if not faces:
|
||||
raise RuntimeError("No faces found in reference image.")
|
||||
|
||||
# Get landmarks from the first detected face dictionary
|
||||
landmarks = np.array(faces[0]["landmarks"])
|
||||
|
||||
# Use normalized embedding for more reliable similarity comparison
|
||||
embedding = recognizer.get_normalized_embedding(image, landmarks)
|
||||
return embedding
|
||||
return recognizer.get_normalized_embedding(image, landmarks)
|
||||
|
||||
|
||||
def run_video(detector, recognizer, ref_embedding: np.ndarray, threshold: float = 0.4):
|
||||
cap = cv2.VideoCapture(0)
|
||||
def run_webcam(detector, recognizer, ref_embedding: np.ndarray, threshold: float = 0.4):
|
||||
cap = cv2.VideoCapture(0) # 0 = default webcam
|
||||
if not cap.isOpened():
|
||||
raise RuntimeError("Webcam could not be opened.")
|
||||
print("Webcam started. Press 'q' to quit.")
|
||||
|
||||
print("Press 'q' to quit")
|
||||
|
||||
while True:
|
||||
ret, frame = cap.read()
|
||||
frame = cv2.flip(frame, 1) # mirror for natural interaction
|
||||
if not ret:
|
||||
break
|
||||
|
||||
faces = detector.detect(frame)
|
||||
|
||||
# Loop through each detected face
|
||||
for face in faces:
|
||||
# Extract bbox and landmarks from the dictionary
|
||||
bbox = face["bbox"]
|
||||
landmarks = np.array(face["landmarks"])
|
||||
|
||||
x1, y1, x2, y2 = map(int, bbox)
|
||||
|
||||
# Get the normalized embedding for the current face
|
||||
embedding = recognizer.get_normalized_embedding(frame, landmarks)
|
||||
sim = compute_similarity(ref_embedding, embedding) # compare with reference
|
||||
|
||||
# Compare with the reference embedding
|
||||
sim = compute_similarity(ref_embedding, embedding)
|
||||
|
||||
# Draw results
|
||||
# green = match, red = unknown
|
||||
label = f"Match ({sim:.2f})" if sim > threshold else f"Unknown ({sim:.2f})"
|
||||
color = (0, 255, 0) if sim > threshold else (0, 0, 255)
|
||||
|
||||
cv2.rectangle(frame, (x1, y1), (x2, y2), color, 2)
|
||||
cv2.putText(frame, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 2)
|
||||
|
||||
@@ -67,43 +72,25 @@ def run_video(detector, recognizer, ref_embedding: np.ndarray, threshold: float
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(description="Face recognition using a reference image.")
|
||||
parser.add_argument("--image", type=str, required=True, help="Path to the reference face image.")
|
||||
parser.add_argument(
|
||||
"--detector", type=str, default="scrfd", choices=["retinaface", "scrfd"], help="Face detection method."
|
||||
)
|
||||
parser = argparse.ArgumentParser(description="Face search using a reference image")
|
||||
parser.add_argument("--image", type=str, required=True, help="Reference face image")
|
||||
parser.add_argument("--threshold", type=float, default=0.4, help="Match threshold")
|
||||
parser.add_argument("--detector", type=str, default="scrfd", choices=["retinaface", "scrfd"])
|
||||
parser.add_argument(
|
||||
"--recognizer",
|
||||
type=str,
|
||||
default="arcface",
|
||||
choices=["arcface", "mobileface", "sphereface"],
|
||||
help="Face recognition method.",
|
||||
)
|
||||
parser.add_argument("--verbose", action="store_true", help="Enable verbose logging")
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.verbose:
|
||||
from uniface import enable_logging
|
||||
detector = RetinaFace() if args.detector == "retinaface" else SCRFD()
|
||||
recognizer = get_recognizer(args.recognizer)
|
||||
|
||||
enable_logging()
|
||||
|
||||
print("Initializing models...")
|
||||
if args.detector == 'retinaface':
|
||||
detector = RetinaFace()
|
||||
else:
|
||||
detector = SCRFD()
|
||||
|
||||
if args.recognizer == 'arcface':
|
||||
recognizer = ArcFace()
|
||||
elif args.recognizer == 'mobileface':
|
||||
recognizer = MobileFace()
|
||||
else:
|
||||
recognizer = SphereFace()
|
||||
|
||||
print("Extracting reference embedding...")
|
||||
print(f"Loading reference: {args.image}")
|
||||
ref_embedding = extract_reference_embedding(detector, recognizer, args.image)
|
||||
|
||||
run_video(detector, recognizer, ref_embedding)
|
||||
run_webcam(detector, recognizer, ref_embedding, args.threshold)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
@@ -1,11 +1,14 @@
|
||||
"""Facial Landmark Detection Demo Script"""
|
||||
# 106-point facial landmark detection
|
||||
# Usage: python run_landmarks.py --image path/to/image.jpg
|
||||
# python run_landmarks.py --webcam
|
||||
|
||||
import os
|
||||
import cv2
|
||||
import argparse
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
from uniface import RetinaFace, SCRFD, Landmark106
|
||||
import cv2
|
||||
|
||||
from uniface import SCRFD, Landmark106, RetinaFace
|
||||
|
||||
|
||||
def process_image(detector, landmarker, image_path: str, save_dir: str = "outputs"):
|
||||
@@ -14,39 +17,33 @@ def process_image(detector, landmarker, image_path: str, save_dir: str = "output
|
||||
print(f"Error: Failed to load image from '{image_path}'")
|
||||
return
|
||||
|
||||
print(f"Processing: {image_path}")
|
||||
|
||||
# Detect faces
|
||||
faces = detector.detect(image)
|
||||
print(f" Detected {len(faces)} face(s)")
|
||||
print(f"Detected {len(faces)} face(s)")
|
||||
|
||||
if not faces:
|
||||
print(" No faces detected")
|
||||
return
|
||||
|
||||
# Process each face
|
||||
for i, face in enumerate(faces):
|
||||
# Draw bounding box
|
||||
bbox = face['bbox']
|
||||
bbox = face["bbox"]
|
||||
x1, y1, x2, y2 = map(int, bbox)
|
||||
cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
||||
|
||||
# Get and draw 106 landmarks
|
||||
landmarks = landmarker.get_landmarks(image, bbox)
|
||||
print(f" Face {i+1}: Extracted {len(landmarks)} landmarks")
|
||||
print(f" Face {i + 1}: {len(landmarks)} landmarks")
|
||||
|
||||
for x, y in landmarks.astype(int):
|
||||
cv2.circle(image, (x, y), 1, (0, 255, 0), -1)
|
||||
|
||||
# Add face count
|
||||
cv2.putText(image, f"Face {i+1}", (x1, y1 - 10),
|
||||
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
|
||||
cv2.putText(
|
||||
image,
|
||||
f"Face {i + 1}",
|
||||
(x1, y1 - 10),
|
||||
cv2.FONT_HERSHEY_SIMPLEX,
|
||||
0.5,
|
||||
(0, 255, 0),
|
||||
2,
|
||||
)
|
||||
|
||||
# Add total count
|
||||
cv2.putText(image, f"Faces: {len(faces)}", (10, 30),
|
||||
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
|
||||
|
||||
# Save result
|
||||
os.makedirs(save_dir, exist_ok=True)
|
||||
output_path = os.path.join(save_dir, f"{Path(image_path).stem}_landmarks.jpg")
|
||||
cv2.imwrite(output_path, image)
|
||||
@@ -54,91 +51,62 @@ def process_image(detector, landmarker, image_path: str, save_dir: str = "output
|
||||
|
||||
|
||||
def run_webcam(detector, landmarker):
|
||||
cap = cv2.VideoCapture(0)
|
||||
|
||||
cap = cv2.VideoCapture(0) # 0 = default webcam
|
||||
if not cap.isOpened():
|
||||
print("Cannot open webcam")
|
||||
return
|
||||
|
||||
print("Webcam opened")
|
||||
print("Press 'q' to quit\n")
|
||||
print("Press 'q' to quit")
|
||||
|
||||
frame_count = 0
|
||||
while True:
|
||||
ret, frame = cap.read()
|
||||
frame = cv2.flip(frame, 1) # mirror for natural interaction
|
||||
if not ret:
|
||||
break
|
||||
|
||||
try:
|
||||
while True:
|
||||
ret, frame = cap.read()
|
||||
if not ret:
|
||||
break
|
||||
faces = detector.detect(frame)
|
||||
|
||||
frame_count += 1
|
||||
for face in faces:
|
||||
bbox = face["bbox"]
|
||||
x1, y1, x2, y2 = map(int, bbox)
|
||||
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
||||
|
||||
# Detect faces
|
||||
faces = detector.detect(frame)
|
||||
landmarks = landmarker.get_landmarks(frame, bbox) # 106 points
|
||||
for x, y in landmarks.astype(int):
|
||||
cv2.circle(frame, (x, y), 1, (0, 255, 0), -1)
|
||||
|
||||
# Process each face
|
||||
for face in faces:
|
||||
# Draw bounding box
|
||||
bbox = face['bbox']
|
||||
x1, y1, x2, y2 = map(int, bbox)
|
||||
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
||||
cv2.putText(
|
||||
frame,
|
||||
f"Faces: {len(faces)}",
|
||||
(10, 30),
|
||||
cv2.FONT_HERSHEY_SIMPLEX,
|
||||
1,
|
||||
(0, 255, 0),
|
||||
2,
|
||||
)
|
||||
cv2.imshow("106-Point Landmarks", frame)
|
||||
|
||||
# Get and draw 106 landmarks
|
||||
landmarks = landmarker.get_landmarks(frame, bbox)
|
||||
for x, y in landmarks.astype(int):
|
||||
cv2.circle(frame, (x, y), 1, (0, 255, 0), -1)
|
||||
if cv2.waitKey(1) & 0xFF == ord("q"):
|
||||
break
|
||||
|
||||
# Add info
|
||||
cv2.putText(frame, f"Faces: {len(faces)}", (10, 30),
|
||||
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
|
||||
cv2.putText(frame, "Press 'q' to quit", (10, frame.shape[0] - 10),
|
||||
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
|
||||
|
||||
cv2.imshow("106-Point Landmarks", frame)
|
||||
|
||||
if cv2.waitKey(1) & 0xFF == ord('q'):
|
||||
break
|
||||
|
||||
except KeyboardInterrupt:
|
||||
print("\nInterrupted")
|
||||
finally:
|
||||
cap.release()
|
||||
cv2.destroyAllWindows()
|
||||
print(f"\nProcessed {frame_count} frames")
|
||||
cap.release()
|
||||
cv2.destroyAllWindows()
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(description="Run facial landmark detection")
|
||||
parser.add_argument("--image", type=str, help="Path to input image")
|
||||
parser.add_argument("--webcam", action="store_true", help="Use webcam instead of image")
|
||||
parser.add_argument("--detector", type=str, default="retinaface",
|
||||
choices=['retinaface', 'scrfd'], help="Face detector to use")
|
||||
parser.add_argument("--save_dir", type=str, default="outputs",
|
||||
help="Directory to save output images")
|
||||
parser.add_argument("--verbose", action="store_true", help="Enable verbose logging")
|
||||
|
||||
parser.add_argument("--webcam", action="store_true", help="Use webcam")
|
||||
parser.add_argument("--detector", type=str, default="retinaface", choices=["retinaface", "scrfd"])
|
||||
parser.add_argument("--save_dir", type=str, default="outputs")
|
||||
args = parser.parse_args()
|
||||
|
||||
# Validate input
|
||||
if not args.image and not args.webcam:
|
||||
parser.error("Either --image or --webcam must be specified")
|
||||
|
||||
if args.verbose:
|
||||
from uniface import enable_logging
|
||||
enable_logging()
|
||||
|
||||
# Initialize models
|
||||
print(f"Initializing detector: {args.detector}")
|
||||
if args.detector == 'retinaface':
|
||||
detector = RetinaFace()
|
||||
else:
|
||||
detector = SCRFD()
|
||||
|
||||
print("Initializing landmark detector...")
|
||||
detector = RetinaFace() if args.detector == "retinaface" else SCRFD()
|
||||
landmarker = Landmark106()
|
||||
print("Models initialized\n")
|
||||
|
||||
# Process
|
||||
if args.webcam:
|
||||
run_webcam(detector, landmarker)
|
||||
else:
|
||||
|
||||
@@ -1,10 +1,24 @@
|
||||
import cv2
|
||||
# Face recognition: extract embeddings or compare two faces
|
||||
# Usage: python run_recognition.py --image path/to/image.jpg
|
||||
# python run_recognition.py --image1 face1.jpg --image2 face2.jpg
|
||||
|
||||
import argparse
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
from uniface.detection import RetinaFace, SCRFD
|
||||
from uniface.recognition import ArcFace, MobileFace, SphereFace
|
||||
from uniface.detection import SCRFD, RetinaFace
|
||||
from uniface.face_utils import compute_similarity
|
||||
from uniface.recognition import ArcFace, MobileFace, SphereFace
|
||||
|
||||
|
||||
def get_recognizer(name: str):
|
||||
if name == "arcface":
|
||||
return ArcFace()
|
||||
elif name == "mobileface":
|
||||
return MobileFace()
|
||||
else:
|
||||
return SphereFace()
|
||||
|
||||
|
||||
def run_inference(detector, recognizer, image_path: str):
|
||||
@@ -14,38 +28,29 @@ def run_inference(detector, recognizer, image_path: str):
|
||||
return
|
||||
|
||||
faces = detector.detect(image)
|
||||
|
||||
if not faces:
|
||||
print("No faces detected.")
|
||||
return
|
||||
|
||||
print(f"Detected {len(faces)} face(s). Extracting embeddings for the first face...")
|
||||
print(f"Detected {len(faces)} face(s). Extracting embedding for the first face...")
|
||||
|
||||
# Process the first detected face
|
||||
first_face = faces[0]
|
||||
landmarks = np.array(first_face['landmarks']) # Convert landmarks to numpy array
|
||||
|
||||
# Extract embedding using the landmarks from the face dictionary
|
||||
landmarks = np.array(faces[0]["landmarks"]) # 5-point landmarks for alignment
|
||||
embedding = recognizer.get_embedding(image, landmarks)
|
||||
norm_embedding = recognizer.get_normalized_embedding(image, landmarks)
|
||||
norm_embedding = recognizer.get_normalized_embedding(image, landmarks) # L2 normalized
|
||||
|
||||
# Print some info about the embeddings
|
||||
print(f" - Embedding shape: {embedding.shape}")
|
||||
print(f" - L2 norm of unnormalized embedding: {np.linalg.norm(embedding):.4f}")
|
||||
print(f" - L2 norm of normalized embedding: {np.linalg.norm(norm_embedding):.4f}")
|
||||
print(f" Embedding shape: {embedding.shape}")
|
||||
print(f" L2 norm (raw): {np.linalg.norm(embedding):.4f}")
|
||||
print(f" L2 norm (normalized): {np.linalg.norm(norm_embedding):.4f}")
|
||||
|
||||
|
||||
def compare_faces(detector, recognizer, image1_path: str, image2_path: str, threshold: float = 0.35):
|
||||
|
||||
# Load images
|
||||
img1 = cv2.imread(image1_path)
|
||||
img2 = cv2.imread(image2_path)
|
||||
|
||||
if img1 is None or img2 is None:
|
||||
print(f"Error: Failed to load images")
|
||||
print("Error: Failed to load one or both images")
|
||||
return
|
||||
|
||||
# Detect faces
|
||||
faces1 = detector.detect(img1)
|
||||
faces2 = detector.detect(img2)
|
||||
|
||||
@@ -53,74 +58,44 @@ def compare_faces(detector, recognizer, image1_path: str, image2_path: str, thre
|
||||
print("Error: No faces detected in one or both images")
|
||||
return
|
||||
|
||||
# Get landmarks for first face in each image
|
||||
landmarks1 = np.array(faces1[0]['landmarks'])
|
||||
landmarks2 = np.array(faces2[0]['landmarks'])
|
||||
landmarks1 = np.array(faces1[0]["landmarks"])
|
||||
landmarks2 = np.array(faces2[0]["landmarks"])
|
||||
|
||||
# Get normalized embeddings
|
||||
embedding1 = recognizer.get_normalized_embedding(img1, landmarks1)
|
||||
embedding2 = recognizer.get_normalized_embedding(img2, landmarks2)
|
||||
|
||||
# Compute similarity
|
||||
# cosine similarity for normalized embeddings
|
||||
similarity = compute_similarity(embedding1, embedding2, normalized=True)
|
||||
is_match = similarity > threshold
|
||||
|
||||
print(f"Similarity: {similarity:.4f}")
|
||||
print(f"Result: {'Same person' if is_match else 'Different person'}")
|
||||
print(f"Threshold: {threshold}")
|
||||
print(f"Result: {'Same person' if is_match else 'Different person'} (threshold: {threshold})")
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(description="Face recognition and comparison.")
|
||||
parser.add_argument("--image", type=str, help="Path to single image for embedding extraction.")
|
||||
parser.add_argument("--image1", type=str, help="Path to first image for comparison.")
|
||||
parser.add_argument("--image2", type=str, help="Path to second image for comparison.")
|
||||
parser.add_argument("--threshold", type=float, default=0.35, help="Similarity threshold for face matching.")
|
||||
parser.add_argument(
|
||||
"--detector",
|
||||
type=str,
|
||||
default="retinaface",
|
||||
choices=['retinaface', 'scrfd'],
|
||||
help="Face detection method to use."
|
||||
)
|
||||
parser = argparse.ArgumentParser(description="Face recognition and comparison")
|
||||
parser.add_argument("--image", type=str, help="Single image for embedding extraction")
|
||||
parser.add_argument("--image1", type=str, help="First image for comparison")
|
||||
parser.add_argument("--image2", type=str, help="Second image for comparison")
|
||||
parser.add_argument("--threshold", type=float, default=0.35, help="Similarity threshold")
|
||||
parser.add_argument("--detector", type=str, default="retinaface", choices=["retinaface", "scrfd"])
|
||||
parser.add_argument(
|
||||
"--recognizer",
|
||||
type=str,
|
||||
default="arcface",
|
||||
choices=['arcface', 'mobileface', 'sphereface'],
|
||||
help="Face recognition method to use."
|
||||
choices=["arcface", "mobileface", "sphereface"],
|
||||
)
|
||||
parser.add_argument("--verbose", action="store_true", help="Enable verbose logging")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.verbose:
|
||||
from uniface import enable_logging
|
||||
enable_logging()
|
||||
|
||||
print(f"Initializing detector: {args.detector}")
|
||||
if args.detector == 'retinaface':
|
||||
detector = RetinaFace()
|
||||
else:
|
||||
detector = SCRFD()
|
||||
|
||||
print(f"Initializing recognizer: {args.recognizer}")
|
||||
if args.recognizer == 'arcface':
|
||||
recognizer = ArcFace()
|
||||
elif args.recognizer == 'mobileface':
|
||||
recognizer = MobileFace()
|
||||
else:
|
||||
recognizer = SphereFace()
|
||||
detector = RetinaFace() if args.detector == "retinaface" else SCRFD()
|
||||
recognizer = get_recognizer(args.recognizer)
|
||||
|
||||
if args.image1 and args.image2:
|
||||
# Face comparison mode
|
||||
print(f"Comparing faces: {args.image1} vs {args.image2}")
|
||||
compare_faces(detector, recognizer, args.image1, args.image2, args.threshold)
|
||||
elif args.image:
|
||||
# Single image embedding extraction mode
|
||||
run_inference(detector, recognizer, args.image)
|
||||
else:
|
||||
print("Error: Provide either --image for single image processing or --image1 and --image2 for comparison")
|
||||
print("Error: Provide --image or both --image1 and --image2")
|
||||
parser.print_help()
|
||||
|
||||
|
||||
|
||||
@@ -1,141 +1,106 @@
|
||||
"""Video Face Detection Script"""
|
||||
# Face detection on video files
|
||||
# Usage: python run_video_detection.py --input video.mp4 --output output.mp4
|
||||
|
||||
import cv2
|
||||
import argparse
|
||||
from pathlib import Path
|
||||
|
||||
import cv2
|
||||
from tqdm import tqdm
|
||||
|
||||
from uniface import RetinaFace, SCRFD
|
||||
from uniface import SCRFD, RetinaFace
|
||||
from uniface.visualization import draw_detections
|
||||
|
||||
|
||||
def process_video(detector, input_path: str, output_path: str, vis_threshold: float = 0.6,
|
||||
fps: int = None, show_preview: bool = False):
|
||||
# Open input video
|
||||
def process_video(
|
||||
detector,
|
||||
input_path: str,
|
||||
output_path: str,
|
||||
threshold: float = 0.6,
|
||||
show_preview: bool = False,
|
||||
):
|
||||
cap = cv2.VideoCapture(input_path)
|
||||
if not cap.isOpened():
|
||||
print(f"Error: Cannot open video file '{input_path}'")
|
||||
return
|
||||
|
||||
# Get video properties
|
||||
# get video properties
|
||||
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
||||
source_fps = cap.get(cv2.CAP_PROP_FPS)
|
||||
fps = cap.get(cv2.CAP_PROP_FPS)
|
||||
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
||||
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
||||
|
||||
output_fps = fps if fps is not None else source_fps
|
||||
print(f"Input: {input_path} ({width}x{height}, {fps:.1f} fps, {total_frames} frames)")
|
||||
print(f"Output: {output_path}")
|
||||
|
||||
print(f"📹 Input: {input_path}")
|
||||
print(f" Resolution: {width}x{height}")
|
||||
print(f" FPS: {source_fps:.2f}")
|
||||
print(f" Total frames: {total_frames}")
|
||||
print(f"\n📹 Output: {output_path}")
|
||||
print(f" FPS: {output_fps:.2f}\n")
|
||||
|
||||
# Initialize video writer
|
||||
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
||||
out = cv2.VideoWriter(output_path, fourcc, output_fps, (width, height))
|
||||
fourcc = cv2.VideoWriter_fourcc(*"mp4v") # codec for .mp4
|
||||
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
|
||||
|
||||
if not out.isOpened():
|
||||
print(f"Error: Cannot create output video '{output_path}'")
|
||||
cap.release()
|
||||
return
|
||||
|
||||
# Process frames
|
||||
frame_count = 0
|
||||
total_faces = 0
|
||||
|
||||
try:
|
||||
with tqdm(total=total_frames, desc="Processing", unit="frames") as pbar:
|
||||
while True:
|
||||
ret, frame = cap.read()
|
||||
if not ret:
|
||||
break
|
||||
for _ in tqdm(range(total_frames), desc="Processing", unit="frames"):
|
||||
ret, frame = cap.read()
|
||||
if not ret:
|
||||
break
|
||||
|
||||
frame_count += 1
|
||||
frame_count += 1
|
||||
faces = detector.detect(frame)
|
||||
total_faces += len(faces)
|
||||
|
||||
# Detect faces
|
||||
faces = detector.detect(frame)
|
||||
total_faces += len(faces)
|
||||
bboxes = [f["bbox"] for f in faces]
|
||||
scores = [f["confidence"] for f in faces]
|
||||
landmarks = [f["landmarks"] for f in faces]
|
||||
draw_detections(frame, bboxes, scores, landmarks, vis_threshold=threshold)
|
||||
|
||||
# Draw detections
|
||||
bboxes = [f['bbox'] for f in faces]
|
||||
scores = [f['confidence'] for f in faces]
|
||||
landmarks = [f['landmarks'] for f in faces]
|
||||
draw_detections(frame, bboxes, scores, landmarks, vis_threshold=vis_threshold)
|
||||
cv2.putText(
|
||||
frame,
|
||||
f"Faces: {len(faces)}",
|
||||
(10, 30),
|
||||
cv2.FONT_HERSHEY_SIMPLEX,
|
||||
1,
|
||||
(0, 255, 0),
|
||||
2,
|
||||
)
|
||||
out.write(frame)
|
||||
|
||||
# Add frame info
|
||||
cv2.putText(frame, f"Faces: {len(faces)}", (10, 30),
|
||||
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
|
||||
|
||||
# Write frame
|
||||
out.write(frame)
|
||||
|
||||
# Show preview if requested
|
||||
if show_preview:
|
||||
cv2.imshow("Processing Video - Press 'q' to cancel", frame)
|
||||
if cv2.waitKey(1) & 0xFF == ord('q'):
|
||||
print("\nProcessing cancelled by user")
|
||||
break
|
||||
|
||||
pbar.update(1)
|
||||
|
||||
except KeyboardInterrupt:
|
||||
print("\nProcessing interrupted")
|
||||
finally:
|
||||
cap.release()
|
||||
out.release()
|
||||
if show_preview:
|
||||
cv2.destroyAllWindows()
|
||||
cv2.imshow("Processing - Press 'q' to cancel", frame)
|
||||
if cv2.waitKey(1) & 0xFF == ord("q"):
|
||||
print("\nCancelled by user")
|
||||
break
|
||||
|
||||
# Summary
|
||||
print(f"\nProcessing complete!")
|
||||
print(f" Processed: {frame_count} frames")
|
||||
print(f" Total faces detected: {total_faces}")
|
||||
print(f" Average faces per frame: {total_faces/frame_count:.2f}" if frame_count > 0 else "")
|
||||
print(f" Output saved: {output_path}")
|
||||
cap.release()
|
||||
out.release()
|
||||
if show_preview:
|
||||
cv2.destroyAllWindows()
|
||||
|
||||
avg_faces = total_faces / frame_count if frame_count > 0 else 0
|
||||
print(f"\nDone! {frame_count} frames, {total_faces} faces ({avg_faces:.1f} avg/frame)")
|
||||
print(f"Saved: {output_path}")
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(description="Process video with face detection")
|
||||
parser.add_argument("--input", type=str, required=True, help="Path to input video")
|
||||
parser.add_argument("--output", type=str, required=True, help="Path to output video")
|
||||
parser.add_argument("--detector", type=str, default="retinaface",
|
||||
choices=['retinaface', 'scrfd'], help="Face detector to use")
|
||||
parser.add_argument("--threshold", type=float, default=0.6,
|
||||
help="Confidence threshold for visualization")
|
||||
parser.add_argument("--fps", type=int, default=None,
|
||||
help="Output FPS (default: same as input)")
|
||||
parser.add_argument("--preview", action="store_true",
|
||||
help="Show live preview during processing")
|
||||
parser.add_argument("--verbose", action="store_true", help="Enable verbose logging")
|
||||
|
||||
parser.add_argument("--input", type=str, required=True, help="Input video path")
|
||||
parser.add_argument("--output", type=str, required=True, help="Output video path")
|
||||
parser.add_argument("--detector", type=str, default="retinaface", choices=["retinaface", "scrfd"])
|
||||
parser.add_argument("--threshold", type=float, default=0.6, help="Visualization threshold")
|
||||
parser.add_argument("--preview", action="store_true", help="Show live preview")
|
||||
args = parser.parse_args()
|
||||
|
||||
# Check input exists
|
||||
if not Path(args.input).exists():
|
||||
print(f"Error: Input file '{args.input}' does not exist")
|
||||
return
|
||||
|
||||
# Create output directory if needed
|
||||
output_dir = Path(args.output).parent
|
||||
if output_dir != Path('.'):
|
||||
output_dir.mkdir(parents=True, exist_ok=True)
|
||||
Path(args.output).parent.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
if args.verbose:
|
||||
from uniface import enable_logging
|
||||
enable_logging()
|
||||
|
||||
# Initialize detector
|
||||
print(f"Initializing detector: {args.detector}")
|
||||
if args.detector == 'retinaface':
|
||||
detector = RetinaFace()
|
||||
else:
|
||||
detector = SCRFD()
|
||||
print("Detector initialized\n")
|
||||
|
||||
# Process video
|
||||
process_video(detector, args.input, args.output, args.threshold, args.fps, args.preview)
|
||||
detector = RetinaFace() if args.detector == "retinaface" else SCRFD()
|
||||
process_video(detector, args.input, args.output, args.threshold, args.preview)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
@@ -12,15 +12,8 @@ def compute_sha256(file_path: Path, chunk_size: int = 8192) -> str:
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Compute SHA256 hash of a model weight file."
|
||||
)
|
||||
parser.add_argument(
|
||||
"file",
|
||||
type=Path,
|
||||
help="Path to the model weight file (.onnx, .pth, etc)."
|
||||
)
|
||||
|
||||
parser = argparse.ArgumentParser(description="Compute SHA256 hash of a file")
|
||||
parser.add_argument("file", type=Path, help="Path to file")
|
||||
args = parser.parse_args()
|
||||
|
||||
if not args.file.exists() or not args.file.is_file():
|
||||
@@ -28,7 +21,7 @@ def main():
|
||||
return
|
||||
|
||||
sha256 = compute_sha256(args.file)
|
||||
print(f"`SHA256 hash for '{args.file.name}':\n{sha256}")
|
||||
print(f"SHA256 hash for '{args.file.name}':\n{sha256}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
@@ -31,7 +31,7 @@ def test_prediction_output_format(age_gender_model, mock_image, mock_bbox):
|
||||
|
||||
def test_gender_values(age_gender_model, mock_image, mock_bbox):
|
||||
gender, age = age_gender_model.predict(mock_image, mock_bbox)
|
||||
assert gender in ['Male', 'Female'], f"Gender should be 'Male' or 'Female', got '{gender}'"
|
||||
assert gender in ["Male", "Female"], f"Gender should be 'Male' or 'Female', got '{gender}'"
|
||||
|
||||
|
||||
def test_age_range(age_gender_model, mock_image, mock_bbox):
|
||||
@@ -48,7 +48,7 @@ def test_different_bbox_sizes(age_gender_model, mock_image):
|
||||
|
||||
for bbox in test_bboxes:
|
||||
gender, age = age_gender_model.predict(mock_image, bbox)
|
||||
assert gender in ['Male', 'Female'], f"Failed for bbox {bbox}"
|
||||
assert gender in ["Male", "Female"], f"Failed for bbox {bbox}"
|
||||
assert 0 <= age <= 120, f"Age out of range for bbox {bbox}"
|
||||
|
||||
|
||||
@@ -58,7 +58,7 @@ def test_different_image_sizes(age_gender_model, mock_bbox):
|
||||
for size in test_sizes:
|
||||
mock_image = np.random.randint(0, 255, size, dtype=np.uint8)
|
||||
gender, age = age_gender_model.predict(mock_image, mock_bbox)
|
||||
assert gender in ['Male', 'Female'], f"Failed for image size {size}"
|
||||
assert gender in ["Male", "Female"], f"Failed for image size {size}"
|
||||
assert 0 <= age <= 120, f"Age out of range for image size {size}"
|
||||
|
||||
|
||||
@@ -73,14 +73,14 @@ def test_consistency(age_gender_model, mock_image, mock_bbox):
|
||||
def test_bbox_list_format(age_gender_model, mock_image):
|
||||
bbox_list = [100, 100, 300, 300]
|
||||
gender, age = age_gender_model.predict(mock_image, bbox_list)
|
||||
assert gender in ['Male', 'Female'], "Should work with bbox as list"
|
||||
assert gender in ["Male", "Female"], "Should work with bbox as list"
|
||||
assert 0 <= age <= 120, "Age should be in valid range"
|
||||
|
||||
|
||||
def test_bbox_array_format(age_gender_model, mock_image):
|
||||
bbox_array = np.array([100, 100, 300, 300])
|
||||
gender, age = age_gender_model.predict(mock_image, bbox_array)
|
||||
assert gender in ['Male', 'Female'], "Should work with bbox as numpy array"
|
||||
assert gender in ["Male", "Female"], "Should work with bbox as numpy array"
|
||||
assert 0 <= age <= 120, "Age should be in valid range"
|
||||
|
||||
|
||||
@@ -98,7 +98,7 @@ def test_multiple_predictions(age_gender_model, mock_image):
|
||||
|
||||
assert len(results) == 3, "Should have 3 predictions"
|
||||
for gender, age in results:
|
||||
assert gender in ['Male', 'Female']
|
||||
assert gender in ["Male", "Female"]
|
||||
assert 0 <= age <= 120
|
||||
|
||||
|
||||
|
||||
@@ -16,7 +16,7 @@ def test_create_detector_retinaface():
|
||||
"""
|
||||
Test creating a RetinaFace detector using factory function.
|
||||
"""
|
||||
detector = create_detector('retinaface')
|
||||
detector = create_detector("retinaface")
|
||||
assert detector is not None, "Failed to create RetinaFace detector"
|
||||
|
||||
|
||||
@@ -24,7 +24,7 @@ def test_create_detector_scrfd():
|
||||
"""
|
||||
Test creating a SCRFD detector using factory function.
|
||||
"""
|
||||
detector = create_detector('scrfd')
|
||||
detector = create_detector("scrfd")
|
||||
assert detector is not None, "Failed to create SCRFD detector"
|
||||
|
||||
|
||||
@@ -33,10 +33,10 @@ def test_create_detector_with_config():
|
||||
Test creating detector with custom configuration.
|
||||
"""
|
||||
detector = create_detector(
|
||||
'retinaface',
|
||||
"retinaface",
|
||||
model_name=RetinaFaceWeights.MNET_V2,
|
||||
conf_thresh=0.8,
|
||||
nms_thresh=0.3
|
||||
nms_thresh=0.3,
|
||||
)
|
||||
assert detector is not None, "Failed to create detector with custom config"
|
||||
|
||||
@@ -46,18 +46,14 @@ def test_create_detector_invalid_method():
|
||||
Test that invalid detector method raises an error.
|
||||
"""
|
||||
with pytest.raises((ValueError, KeyError)):
|
||||
create_detector('invalid_method')
|
||||
create_detector("invalid_method")
|
||||
|
||||
|
||||
def test_create_detector_scrfd_with_model():
|
||||
"""
|
||||
Test creating SCRFD detector with specific model.
|
||||
"""
|
||||
detector = create_detector(
|
||||
'scrfd',
|
||||
model_name=SCRFDWeights.SCRFD_10G_KPS,
|
||||
conf_thresh=0.5
|
||||
)
|
||||
detector = create_detector("scrfd", model_name=SCRFDWeights.SCRFD_10G_KPS, conf_thresh=0.5)
|
||||
assert detector is not None, "Failed to create SCRFD with specific model"
|
||||
|
||||
|
||||
@@ -66,7 +62,7 @@ def test_create_recognizer_arcface():
|
||||
"""
|
||||
Test creating an ArcFace recognizer using factory function.
|
||||
"""
|
||||
recognizer = create_recognizer('arcface')
|
||||
recognizer = create_recognizer("arcface")
|
||||
assert recognizer is not None, "Failed to create ArcFace recognizer"
|
||||
|
||||
|
||||
@@ -74,7 +70,7 @@ def test_create_recognizer_mobileface():
|
||||
"""
|
||||
Test creating a MobileFace recognizer using factory function.
|
||||
"""
|
||||
recognizer = create_recognizer('mobileface')
|
||||
recognizer = create_recognizer("mobileface")
|
||||
assert recognizer is not None, "Failed to create MobileFace recognizer"
|
||||
|
||||
|
||||
@@ -82,7 +78,7 @@ def test_create_recognizer_sphereface():
|
||||
"""
|
||||
Test creating a SphereFace recognizer using factory function.
|
||||
"""
|
||||
recognizer = create_recognizer('sphereface')
|
||||
recognizer = create_recognizer("sphereface")
|
||||
assert recognizer is not None, "Failed to create SphereFace recognizer"
|
||||
|
||||
|
||||
@@ -91,7 +87,7 @@ def test_create_recognizer_invalid_method():
|
||||
Test that invalid recognizer method raises an error.
|
||||
"""
|
||||
with pytest.raises((ValueError, KeyError)):
|
||||
create_recognizer('invalid_method')
|
||||
create_recognizer("invalid_method")
|
||||
|
||||
|
||||
# create_landmarker tests
|
||||
@@ -99,7 +95,7 @@ def test_create_landmarker():
|
||||
"""
|
||||
Test creating a Landmark106 detector using factory function.
|
||||
"""
|
||||
landmarker = create_landmarker('2d106det')
|
||||
landmarker = create_landmarker("2d106det")
|
||||
assert landmarker is not None, "Failed to create Landmark106 detector"
|
||||
|
||||
|
||||
@@ -116,7 +112,7 @@ def test_create_landmarker_invalid_method():
|
||||
Test that invalid landmarker method raises an error.
|
||||
"""
|
||||
with pytest.raises((ValueError, KeyError)):
|
||||
create_landmarker('invalid_method')
|
||||
create_landmarker("invalid_method")
|
||||
|
||||
|
||||
# detect_faces tests
|
||||
@@ -125,7 +121,7 @@ def test_detect_faces_retinaface():
|
||||
Test high-level detect_faces function with RetinaFace.
|
||||
"""
|
||||
mock_image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
|
||||
faces = detect_faces(mock_image, method='retinaface')
|
||||
faces = detect_faces(mock_image, method="retinaface")
|
||||
|
||||
assert isinstance(faces, list), "detect_faces should return a list"
|
||||
|
||||
@@ -135,7 +131,7 @@ def test_detect_faces_scrfd():
|
||||
Test high-level detect_faces function with SCRFD.
|
||||
"""
|
||||
mock_image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
|
||||
faces = detect_faces(mock_image, method='scrfd')
|
||||
faces = detect_faces(mock_image, method="scrfd")
|
||||
|
||||
assert isinstance(faces, list), "detect_faces should return a list"
|
||||
|
||||
@@ -145,13 +141,13 @@ def test_detect_faces_with_threshold():
|
||||
Test detect_faces with custom confidence threshold.
|
||||
"""
|
||||
mock_image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
|
||||
faces = detect_faces(mock_image, method='retinaface', conf_thresh=0.8)
|
||||
faces = detect_faces(mock_image, method="retinaface", conf_thresh=0.8)
|
||||
|
||||
assert isinstance(faces, list), "detect_faces should return a list"
|
||||
|
||||
# All detections should respect threshold
|
||||
for face in faces:
|
||||
assert face['confidence'] >= 0.8, "All detections should meet confidence threshold"
|
||||
assert face["confidence"] >= 0.8, "All detections should meet confidence threshold"
|
||||
|
||||
|
||||
def test_detect_faces_default_method():
|
||||
@@ -169,7 +165,7 @@ def test_detect_faces_empty_image():
|
||||
Test detect_faces on a blank image.
|
||||
"""
|
||||
empty_image = np.zeros((640, 640, 3), dtype=np.uint8)
|
||||
faces = detect_faces(empty_image, method='retinaface')
|
||||
faces = detect_faces(empty_image, method="retinaface")
|
||||
|
||||
assert isinstance(faces, list), "Should return a list even for empty image"
|
||||
assert len(faces) == 0, "Should detect no faces in blank image"
|
||||
@@ -193,8 +189,8 @@ def test_list_available_detectors_contents():
|
||||
detectors = list_available_detectors()
|
||||
|
||||
# Should include at least these detectors
|
||||
assert 'retinaface' in detectors, "Should include 'retinaface'"
|
||||
assert 'scrfd' in detectors, "Should include 'scrfd'"
|
||||
assert "retinaface" in detectors, "Should include 'retinaface'"
|
||||
assert "scrfd" in detectors, "Should include 'scrfd'"
|
||||
|
||||
|
||||
# Integration tests
|
||||
@@ -202,7 +198,7 @@ def test_detector_inference_from_factory():
|
||||
"""
|
||||
Test that detector created from factory can perform inference.
|
||||
"""
|
||||
detector = create_detector('retinaface')
|
||||
detector = create_detector("retinaface")
|
||||
mock_image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
|
||||
|
||||
faces = detector.detect(mock_image)
|
||||
@@ -213,7 +209,7 @@ def test_recognizer_inference_from_factory():
|
||||
"""
|
||||
Test that recognizer created from factory can perform inference.
|
||||
"""
|
||||
recognizer = create_recognizer('arcface')
|
||||
recognizer = create_recognizer("arcface")
|
||||
mock_image = np.random.randint(0, 255, (112, 112, 3), dtype=np.uint8)
|
||||
|
||||
embedding = recognizer.get_embedding(mock_image)
|
||||
@@ -225,7 +221,7 @@ def test_landmarker_inference_from_factory():
|
||||
"""
|
||||
Test that landmarker created from factory can perform inference.
|
||||
"""
|
||||
landmarker = create_landmarker('2d106det')
|
||||
landmarker = create_landmarker("2d106det")
|
||||
mock_image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
|
||||
mock_bbox = [100, 100, 300, 300]
|
||||
|
||||
@@ -238,8 +234,8 @@ def test_multiple_detector_creation():
|
||||
"""
|
||||
Test that multiple detectors can be created independently.
|
||||
"""
|
||||
detector1 = create_detector('retinaface')
|
||||
detector2 = create_detector('scrfd')
|
||||
detector1 = create_detector("retinaface")
|
||||
detector2 = create_detector("scrfd")
|
||||
|
||||
assert detector1 is not None
|
||||
assert detector2 is not None
|
||||
@@ -250,8 +246,8 @@ def test_detector_with_different_configs():
|
||||
"""
|
||||
Test creating multiple detectors with different configurations.
|
||||
"""
|
||||
detector_high_thresh = create_detector('retinaface', conf_thresh=0.9)
|
||||
detector_low_thresh = create_detector('retinaface', conf_thresh=0.3)
|
||||
detector_high_thresh = create_detector("retinaface", conf_thresh=0.9)
|
||||
detector_low_thresh = create_detector("retinaface", conf_thresh=0.3)
|
||||
|
||||
mock_image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
|
||||
|
||||
@@ -269,9 +265,9 @@ def test_factory_returns_correct_types():
|
||||
"""
|
||||
from uniface import RetinaFace, ArcFace, Landmark106
|
||||
|
||||
detector = create_detector('retinaface')
|
||||
recognizer = create_recognizer('arcface')
|
||||
landmarker = create_landmarker('2d106det')
|
||||
detector = create_detector("retinaface")
|
||||
recognizer = create_recognizer("arcface")
|
||||
landmarker = create_landmarker("2d106det")
|
||||
|
||||
assert isinstance(detector, RetinaFace), "Should return RetinaFace instance"
|
||||
assert isinstance(recognizer, ArcFace), "Should return ArcFace instance"
|
||||
|
||||
@@ -41,13 +41,16 @@ def mock_landmarks():
|
||||
"""
|
||||
Create mock 5-point facial landmarks.
|
||||
"""
|
||||
return np.array([
|
||||
[38.2946, 51.6963],
|
||||
[73.5318, 51.5014],
|
||||
[56.0252, 71.7366],
|
||||
[41.5493, 92.3655],
|
||||
[70.7299, 92.2041]
|
||||
], dtype=np.float32)
|
||||
return np.array(
|
||||
[
|
||||
[38.2946, 51.6963],
|
||||
[73.5318, 51.5014],
|
||||
[56.0252, 71.7366],
|
||||
[41.5493, 92.3655],
|
||||
[70.7299, 92.2041],
|
||||
],
|
||||
dtype=np.float32,
|
||||
)
|
||||
|
||||
|
||||
# ArcFace Tests
|
||||
@@ -173,8 +176,7 @@ def test_different_models_different_embeddings(arcface_model, mobileface_model,
|
||||
|
||||
# Embeddings should be different (with high probability for random input)
|
||||
# We check that they're not identical
|
||||
assert not np.allclose(arcface_emb, mobileface_emb), \
|
||||
"Different models should produce different embeddings"
|
||||
assert not np.allclose(arcface_emb, mobileface_emb), "Different models should produce different embeddings"
|
||||
|
||||
|
||||
def test_embedding_similarity_computation(arcface_model, mock_aligned_face):
|
||||
@@ -191,6 +193,7 @@ def test_embedding_similarity_computation(arcface_model, mock_aligned_face):
|
||||
|
||||
# Compute cosine similarity
|
||||
from uniface import compute_similarity
|
||||
|
||||
similarity = compute_similarity(emb1, emb2)
|
||||
|
||||
# Similarity should be between -1 and 1
|
||||
@@ -205,6 +208,7 @@ def test_same_face_high_similarity(arcface_model, mock_aligned_face):
|
||||
emb2 = arcface_model.get_embedding(mock_aligned_face)
|
||||
|
||||
from uniface import compute_similarity
|
||||
|
||||
similarity = compute_similarity(emb1, emb2)
|
||||
|
||||
# Same image should have similarity close to 1.0
|
||||
|
||||
@@ -18,13 +18,16 @@ def mock_landmarks():
|
||||
Create mock 5-point facial landmarks.
|
||||
Standard positions for a face roughly centered at (112/2, 112/2).
|
||||
"""
|
||||
return np.array([
|
||||
[38.2946, 51.6963], # Left eye
|
||||
[73.5318, 51.5014], # Right eye
|
||||
[56.0252, 71.7366], # Nose
|
||||
[41.5493, 92.3655], # Left mouth corner
|
||||
[70.7299, 92.2041] # Right mouth corner
|
||||
], dtype=np.float32)
|
||||
return np.array(
|
||||
[
|
||||
[38.2946, 51.6963], # Left eye
|
||||
[73.5318, 51.5014], # Right eye
|
||||
[56.0252, 71.7366], # Nose
|
||||
[41.5493, 92.3655], # Left mouth corner
|
||||
[70.7299, 92.2041], # Right mouth corner
|
||||
],
|
||||
dtype=np.float32,
|
||||
)
|
||||
|
||||
|
||||
# compute_similarity tests
|
||||
@@ -166,7 +169,7 @@ def test_face_alignment_landmarks_as_list(mock_image):
|
||||
[73.5318, 51.5014],
|
||||
[56.0252, 71.7366],
|
||||
[41.5493, 92.3655],
|
||||
[70.7299, 92.2041]
|
||||
[70.7299, 92.2041],
|
||||
]
|
||||
|
||||
# Convert list to numpy array before passing to face_alignment
|
||||
@@ -201,9 +204,18 @@ def test_face_alignment_from_different_positions(mock_image):
|
||||
"""
|
||||
# Landmarks at different positions
|
||||
positions = [
|
||||
np.array([[100, 100], [150, 100], [125, 130], [110, 150], [140, 150]], dtype=np.float32),
|
||||
np.array([[300, 200], [350, 200], [325, 230], [310, 250], [340, 250]], dtype=np.float32),
|
||||
np.array([[500, 400], [550, 400], [525, 430], [510, 450], [540, 450]], dtype=np.float32),
|
||||
np.array(
|
||||
[[100, 100], [150, 100], [125, 130], [110, 150], [140, 150]],
|
||||
dtype=np.float32,
|
||||
),
|
||||
np.array(
|
||||
[[300, 200], [350, 200], [325, 230], [310, 250], [340, 250]],
|
||||
dtype=np.float32,
|
||||
),
|
||||
np.array(
|
||||
[[500, 400], [550, 400], [525, 430], [510, 450], [540, 450]],
|
||||
dtype=np.float32,
|
||||
),
|
||||
]
|
||||
|
||||
for landmarks in positions:
|
||||
@@ -216,13 +228,16 @@ def test_face_alignment_landmark_count(mock_image):
|
||||
Test that face_alignment works specifically with 5-point landmarks.
|
||||
"""
|
||||
# Standard 5-point landmarks
|
||||
landmarks_5pt = np.array([
|
||||
[38.2946, 51.6963],
|
||||
[73.5318, 51.5014],
|
||||
[56.0252, 71.7366],
|
||||
[41.5493, 92.3655],
|
||||
[70.7299, 92.2041]
|
||||
], dtype=np.float32)
|
||||
landmarks_5pt = np.array(
|
||||
[
|
||||
[38.2946, 51.6963],
|
||||
[73.5318, 51.5014],
|
||||
[56.0252, 71.7366],
|
||||
[41.5493, 92.3655],
|
||||
[70.7299, 92.2041],
|
||||
],
|
||||
dtype=np.float32,
|
||||
)
|
||||
|
||||
aligned, _ = face_alignment(mock_image, landmarks_5pt, image_size=(112, 112))
|
||||
assert aligned.shape == (112, 112, 3), "Should work with 5-point landmarks"
|
||||
|
||||
@@ -13,7 +13,7 @@
|
||||
|
||||
__license__ = "MIT"
|
||||
__author__ = "Yakhyokhuja Valikhujaev"
|
||||
__version__ = "1.1.0"
|
||||
__version__ = "1.1.1"
|
||||
|
||||
|
||||
from uniface.face_utils import compute_similarity, face_alignment
|
||||
@@ -22,11 +22,18 @@ from uniface.model_store import verify_model_weights
|
||||
from uniface.visualization import draw_detections
|
||||
|
||||
from .attribute import AgeGender
|
||||
|
||||
try:
|
||||
from .attribute import Emotion
|
||||
except ImportError:
|
||||
Emotion = None # PyTorch not installed
|
||||
from .detection import SCRFD, RetinaFace, create_detector, detect_faces, list_available_detectors
|
||||
from .detection import (
|
||||
SCRFD,
|
||||
RetinaFace,
|
||||
create_detector,
|
||||
detect_faces,
|
||||
list_available_detectors,
|
||||
)
|
||||
from .landmark import Landmark106, create_landmarker
|
||||
from .recognition import ArcFace, MobileFace, SphereFace, create_recognizer
|
||||
|
||||
|
||||
@@ -2,7 +2,8 @@
|
||||
# Author: Yakhyokhuja Valikhujaev
|
||||
# GitHub: https://github.com/yakhyo
|
||||
|
||||
from typing import Dict, Any, List, Union
|
||||
from typing import Any, Dict, List, Union
|
||||
|
||||
import numpy as np
|
||||
|
||||
from uniface.attribute.age_gender import AgeGender
|
||||
@@ -12,18 +13,14 @@ from uniface.constants import AgeGenderWeights, DDAMFNWeights
|
||||
# Emotion requires PyTorch - make it optional
|
||||
try:
|
||||
from uniface.attribute.emotion import Emotion
|
||||
|
||||
_EMOTION_AVAILABLE = True
|
||||
except ImportError:
|
||||
Emotion = None
|
||||
_EMOTION_AVAILABLE = False
|
||||
|
||||
# Public API for the attribute module
|
||||
__all__ = [
|
||||
"AgeGender",
|
||||
"Emotion",
|
||||
"create_attribute_predictor",
|
||||
"predict_attributes"
|
||||
]
|
||||
__all__ = ["AgeGender", "Emotion", "create_attribute_predictor", "predict_attributes"]
|
||||
|
||||
# A mapping from model enums to their corresponding attribute classes
|
||||
_ATTRIBUTE_MODELS = {
|
||||
@@ -35,10 +32,7 @@ if _EMOTION_AVAILABLE:
|
||||
_ATTRIBUTE_MODELS.update({model: Emotion for model in DDAMFNWeights})
|
||||
|
||||
|
||||
def create_attribute_predictor(
|
||||
model_name: Union[AgeGenderWeights, DDAMFNWeights],
|
||||
**kwargs: Any
|
||||
) -> Attribute:
|
||||
def create_attribute_predictor(model_name: Union[AgeGenderWeights, DDAMFNWeights], **kwargs: Any) -> Attribute:
|
||||
"""
|
||||
Factory function to create an attribute predictor instance.
|
||||
|
||||
@@ -59,17 +53,16 @@ def create_attribute_predictor(
|
||||
model_class = _ATTRIBUTE_MODELS.get(model_name)
|
||||
|
||||
if model_class is None:
|
||||
raise ValueError(f"Unsupported attribute model: {model_name}. "
|
||||
f"Please choose from AgeGenderWeights or DDAMFNWeights.")
|
||||
raise ValueError(
|
||||
f"Unsupported attribute model: {model_name}. Please choose from AgeGenderWeights or DDAMFNWeights."
|
||||
)
|
||||
|
||||
# Pass model_name to the constructor, as some classes might need it
|
||||
return model_class(model_name=model_name, **kwargs)
|
||||
|
||||
|
||||
def predict_attributes(
|
||||
image: np.ndarray,
|
||||
detections: List[Dict[str, np.ndarray]],
|
||||
predictor: Attribute
|
||||
image: np.ndarray, detections: List[Dict[str, np.ndarray]], predictor: Attribute
|
||||
) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
High-level API to predict attributes for multiple detected faces.
|
||||
@@ -91,16 +84,16 @@ def predict_attributes(
|
||||
"""
|
||||
for face in detections:
|
||||
# Initialize attributes dict if it doesn't exist
|
||||
if 'attributes' not in face:
|
||||
face['attributes'] = {}
|
||||
if "attributes" not in face:
|
||||
face["attributes"] = {}
|
||||
|
||||
if isinstance(predictor, AgeGender):
|
||||
gender, age = predictor(image, face['bbox'])
|
||||
face['attributes']['gender'] = gender
|
||||
face['attributes']['age'] = age
|
||||
gender, age = predictor(image, face["bbox"])
|
||||
face["attributes"]["gender"] = gender
|
||||
face["attributes"]["age"] = age
|
||||
elif isinstance(predictor, Emotion):
|
||||
emotion, confidence = predictor(image, face['landmark'])
|
||||
face['attributes']['emotion'] = emotion
|
||||
face['attributes']['confidence'] = confidence
|
||||
emotion, confidence = predictor(image, face["landmark"])
|
||||
face["attributes"]["emotion"] = emotion
|
||||
face["attributes"]["confidence"] = confidence
|
||||
|
||||
return detections
|
||||
|
||||
@@ -51,8 +51,11 @@ class AgeGender(Attribute):
|
||||
self.output_names = [output.name for output in self.session.get_outputs()]
|
||||
Logger.info(f"Successfully initialized AgeGender model with input size {self.input_size}")
|
||||
except Exception as e:
|
||||
Logger.error(f"Failed to load AgeGender model from '{self.model_path}'", exc_info=True)
|
||||
raise RuntimeError(f"Failed to initialize AgeGender model: {e}")
|
||||
Logger.error(
|
||||
f"Failed to load AgeGender model from '{self.model_path}'",
|
||||
exc_info=True,
|
||||
)
|
||||
raise RuntimeError(f"Failed to initialize AgeGender model: {e}") from e
|
||||
|
||||
def preprocess(self, image: np.ndarray, bbox: Union[List, np.ndarray]) -> np.ndarray:
|
||||
"""
|
||||
@@ -76,7 +79,11 @@ class AgeGender(Attribute):
|
||||
aligned_face, _ = bbox_center_alignment(image, center, self.input_size[1], scale, rotation)
|
||||
|
||||
blob = cv2.dnn.blobFromImage(
|
||||
aligned_face, scalefactor=1.0, size=self.input_size[::-1], mean=(0.0, 0.0, 0.0), swapRB=True
|
||||
aligned_face,
|
||||
scalefactor=1.0,
|
||||
size=self.input_size[::-1],
|
||||
mean=(0.0, 0.0, 0.0),
|
||||
swapRB=True,
|
||||
)
|
||||
return blob
|
||||
|
||||
@@ -157,7 +164,15 @@ if __name__ == "__main__":
|
||||
# Prepare text and draw on the frame
|
||||
label = f"{gender}, {age}"
|
||||
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
||||
cv2.putText(frame, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 0), 2)
|
||||
cv2.putText(
|
||||
frame,
|
||||
label,
|
||||
(x1, y1 - 10),
|
||||
cv2.FONT_HERSHEY_SIMPLEX,
|
||||
0.8,
|
||||
(0, 255, 0),
|
||||
2,
|
||||
)
|
||||
|
||||
# Display the resulting frame
|
||||
cv2.imshow("Age and Gender Inference (Press 'q' to quit)", frame)
|
||||
|
||||
@@ -4,6 +4,7 @@
|
||||
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Any
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
|
||||
@@ -2,15 +2,16 @@
|
||||
# Author: Yakhyokhuja Valikhujaev
|
||||
# GitHub: https://github.com/yakhyo
|
||||
|
||||
from typing import List, Tuple, Union
|
||||
|
||||
import cv2
|
||||
import torch
|
||||
import numpy as np
|
||||
from typing import Tuple, Union, List
|
||||
import torch
|
||||
|
||||
from uniface.attribute.base import Attribute
|
||||
from uniface.log import Logger
|
||||
from uniface.constants import DDAMFNWeights
|
||||
from uniface.face_utils import face_alignment
|
||||
from uniface.log import Logger
|
||||
from uniface.model_store import verify_model_weights
|
||||
|
||||
__all__ = ["Emotion"]
|
||||
@@ -43,7 +44,15 @@ class Emotion(Attribute):
|
||||
self.model_path = verify_model_weights(model_weights)
|
||||
|
||||
# Define emotion labels based on the selected model
|
||||
self.emotion_labels = ["Neutral", "Happy", "Sad", "Surprise", "Fear", "Disgust", "Angry"]
|
||||
self.emotion_labels = [
|
||||
"Neutral",
|
||||
"Happy",
|
||||
"Sad",
|
||||
"Surprise",
|
||||
"Fear",
|
||||
"Disgust",
|
||||
"Angry",
|
||||
]
|
||||
if model_weights == DDAMFNWeights.AFFECNET8:
|
||||
self.emotion_labels.append("Contempt")
|
||||
|
||||
@@ -63,7 +72,7 @@ class Emotion(Attribute):
|
||||
Logger.info(f"Successfully initialized Emotion model on {self.device}")
|
||||
except Exception as e:
|
||||
Logger.error(f"Failed to load Emotion model from '{self.model_path}'", exc_info=True)
|
||||
raise RuntimeError(f"Failed to initialize Emotion model: {e}")
|
||||
raise RuntimeError(f"Failed to initialize Emotion model: {e}") from e
|
||||
|
||||
def preprocess(self, image: np.ndarray, landmark: Union[List, np.ndarray]) -> torch.Tensor:
|
||||
"""
|
||||
@@ -77,7 +86,7 @@ class Emotion(Attribute):
|
||||
torch.Tensor: The preprocessed image tensor ready for inference.
|
||||
"""
|
||||
landmark = np.asarray(landmark)
|
||||
|
||||
|
||||
aligned_image, _ = face_alignment(image, landmark)
|
||||
|
||||
# Convert BGR to RGB, resize, normalize, and convert to a CHW tensor
|
||||
@@ -115,8 +124,8 @@ class Emotion(Attribute):
|
||||
|
||||
# TODO: below is only for testing, remove it later
|
||||
if __name__ == "__main__":
|
||||
from uniface.detection import create_detector
|
||||
from uniface.constants import RetinaFaceWeights
|
||||
from uniface.detection import create_detector
|
||||
|
||||
print("Initializing models for live inference...")
|
||||
# 1. Initialize the face detector
|
||||
@@ -145,26 +154,34 @@ if __name__ == "__main__":
|
||||
|
||||
# For each detected face, predict the emotion
|
||||
for detection in detections:
|
||||
box = detection['bbox']
|
||||
landmark = detection['landmarks']
|
||||
box = detection["bbox"]
|
||||
landmark = detection["landmarks"]
|
||||
x1, y1, x2, y2 = map(int, box)
|
||||
|
||||
# Predict attributes using the landmark
|
||||
emotion, confidence = emotion_predictor.predict(frame, landmark)
|
||||
|
||||
|
||||
# Prepare text and draw on the frame
|
||||
label = f"{emotion} ({confidence:.2f})"
|
||||
cv2.rectangle(frame, (x1, y1), (x2, y2), (255, 0, 0), 2)
|
||||
cv2.putText(frame, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (255, 0, 0), 2)
|
||||
cv2.putText(
|
||||
frame,
|
||||
label,
|
||||
(x1, y1 - 10),
|
||||
cv2.FONT_HERSHEY_SIMPLEX,
|
||||
0.8,
|
||||
(255, 0, 0),
|
||||
2,
|
||||
)
|
||||
|
||||
# Display the resulting frame
|
||||
cv2.imshow("Emotion Inference (Press 'q' to quit)", frame)
|
||||
|
||||
# Break the loop if 'q' is pressed
|
||||
if cv2.waitKey(1) & 0xFF == ord('q'):
|
||||
if cv2.waitKey(1) & 0xFF == ord("q"):
|
||||
break
|
||||
|
||||
# Release resources
|
||||
cap.release()
|
||||
cv2.destroyAllWindows()
|
||||
print("Inference stopped.")
|
||||
print("Inference stopped.")
|
||||
|
||||
@@ -2,12 +2,12 @@
|
||||
# Author: Yakhyokhuja Valikhujaev
|
||||
# GitHub: https://github.com/yakhyo
|
||||
|
||||
import cv2
|
||||
import math
|
||||
import itertools
|
||||
import numpy as np
|
||||
import math
|
||||
from typing import List, Tuple
|
||||
|
||||
from typing import Tuple, List
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
|
||||
def resize_image(frame, target_shape: Tuple[int, int] = (640, 640)) -> Tuple[np.ndarray, float]:
|
||||
@@ -59,12 +59,7 @@ def generate_anchors(image_size: Tuple[int, int] = (640, 640)) -> np.ndarray:
|
||||
min_sizes = [[16, 32], [64, 128], [256, 512]]
|
||||
|
||||
anchors = []
|
||||
feature_maps = [
|
||||
[
|
||||
math.ceil(image_size[0] / step),
|
||||
math.ceil(image_size[1] / step)
|
||||
] for step in steps
|
||||
]
|
||||
feature_maps = [[math.ceil(image_size[0] / step), math.ceil(image_size[1] / step)] for step in steps]
|
||||
|
||||
for k, (map_height, map_width) in enumerate(feature_maps):
|
||||
step = steps[k]
|
||||
|
||||
@@ -5,6 +5,7 @@
|
||||
from enum import Enum
|
||||
from typing import Dict
|
||||
|
||||
|
||||
# fmt: off
|
||||
class SphereFaceWeights(str, Enum):
|
||||
"""
|
||||
@@ -82,83 +83,65 @@ class LandmarkWeights(str, Enum):
|
||||
|
||||
|
||||
MODEL_URLS: Dict[Enum, str] = {
|
||||
|
||||
# RetinaFace
|
||||
RetinaFaceWeights.MNET_025: 'https://github.com/yakhyo/uniface/releases/download/weights/retinaface_mv1_0.25.onnx',
|
||||
RetinaFaceWeights.MNET_050: 'https://github.com/yakhyo/uniface/releases/download/weights/retinaface_mv1_0.50.onnx',
|
||||
RetinaFaceWeights.MNET_V1: 'https://github.com/yakhyo/uniface/releases/download/weights/retinaface_mv1.onnx',
|
||||
RetinaFaceWeights.MNET_V2: 'https://github.com/yakhyo/uniface/releases/download/weights/retinaface_mv2.onnx',
|
||||
RetinaFaceWeights.RESNET18: 'https://github.com/yakhyo/uniface/releases/download/weights/retinaface_r18.onnx',
|
||||
RetinaFaceWeights.RESNET34: 'https://github.com/yakhyo/uniface/releases/download/weights/retinaface_r34.onnx',
|
||||
|
||||
RetinaFaceWeights.MNET_025: "https://github.com/yakhyo/uniface/releases/download/weights/retinaface_mv1_0.25.onnx",
|
||||
RetinaFaceWeights.MNET_050: "https://github.com/yakhyo/uniface/releases/download/weights/retinaface_mv1_0.50.onnx",
|
||||
RetinaFaceWeights.MNET_V1: "https://github.com/yakhyo/uniface/releases/download/weights/retinaface_mv1.onnx",
|
||||
RetinaFaceWeights.MNET_V2: "https://github.com/yakhyo/uniface/releases/download/weights/retinaface_mv2.onnx",
|
||||
RetinaFaceWeights.RESNET18: "https://github.com/yakhyo/uniface/releases/download/weights/retinaface_r18.onnx",
|
||||
RetinaFaceWeights.RESNET34: "https://github.com/yakhyo/uniface/releases/download/weights/retinaface_r34.onnx",
|
||||
# MobileFace
|
||||
MobileFaceWeights.MNET_025: 'https://github.com/yakhyo/uniface/releases/download/weights/mobilenetv1_0.25.onnx',
|
||||
MobileFaceWeights.MNET_V2: 'https://github.com/yakhyo/uniface/releases/download/weights/mobilenetv2.onnx',
|
||||
MobileFaceWeights.MNET_V3_SMALL: 'https://github.com/yakhyo/uniface/releases/download/weights/mobilenetv3_small.onnx',
|
||||
MobileFaceWeights.MNET_V3_LARGE: 'https://github.com/yakhyo/uniface/releases/download/weights/mobilenetv3_large.onnx',
|
||||
|
||||
MobileFaceWeights.MNET_025: "https://github.com/yakhyo/uniface/releases/download/weights/mobilenetv1_0.25.onnx",
|
||||
MobileFaceWeights.MNET_V2: "https://github.com/yakhyo/uniface/releases/download/weights/mobilenetv2.onnx",
|
||||
MobileFaceWeights.MNET_V3_SMALL: "https://github.com/yakhyo/uniface/releases/download/weights/mobilenetv3_small.onnx",
|
||||
MobileFaceWeights.MNET_V3_LARGE: "https://github.com/yakhyo/uniface/releases/download/weights/mobilenetv3_large.onnx",
|
||||
# SphereFace
|
||||
SphereFaceWeights.SPHERE20: 'https://github.com/yakhyo/uniface/releases/download/weights/sphere20.onnx',
|
||||
SphereFaceWeights.SPHERE36: 'https://github.com/yakhyo/uniface/releases/download/weights/sphere36.onnx',
|
||||
|
||||
|
||||
SphereFaceWeights.SPHERE20: "https://github.com/yakhyo/uniface/releases/download/weights/sphere20.onnx",
|
||||
SphereFaceWeights.SPHERE36: "https://github.com/yakhyo/uniface/releases/download/weights/sphere36.onnx",
|
||||
# ArcFace
|
||||
ArcFaceWeights.MNET: 'https://github.com/yakhyo/uniface/releases/download/weights/w600k_mbf.onnx',
|
||||
ArcFaceWeights.RESNET: 'https://github.com/yakhyo/uniface/releases/download/weights/w600k_r50.onnx',
|
||||
|
||||
ArcFaceWeights.MNET: "https://github.com/yakhyo/uniface/releases/download/weights/w600k_mbf.onnx",
|
||||
ArcFaceWeights.RESNET: "https://github.com/yakhyo/uniface/releases/download/weights/w600k_r50.onnx",
|
||||
# SCRFD
|
||||
SCRFDWeights.SCRFD_10G_KPS: 'https://github.com/yakhyo/uniface/releases/download/weights/scrfd_10g_kps.onnx',
|
||||
SCRFDWeights.SCRFD_500M_KPS: 'https://github.com/yakhyo/uniface/releases/download/weights/scrfd_500m_kps.onnx',
|
||||
|
||||
|
||||
SCRFDWeights.SCRFD_10G_KPS: "https://github.com/yakhyo/uniface/releases/download/weights/scrfd_10g_kps.onnx",
|
||||
SCRFDWeights.SCRFD_500M_KPS: "https://github.com/yakhyo/uniface/releases/download/weights/scrfd_500m_kps.onnx",
|
||||
# DDAFM
|
||||
DDAMFNWeights.AFFECNET7: 'https://github.com/yakhyo/uniface/releases/download/weights/affecnet7.script',
|
||||
DDAMFNWeights.AFFECNET8: 'https://github.com/yakhyo/uniface/releases/download/weights/affecnet8.script',
|
||||
|
||||
DDAMFNWeights.AFFECNET7: "https://github.com/yakhyo/uniface/releases/download/weights/affecnet7.script",
|
||||
DDAMFNWeights.AFFECNET8: "https://github.com/yakhyo/uniface/releases/download/weights/affecnet8.script",
|
||||
# AgeGender
|
||||
AgeGenderWeights.DEFAULT: 'https://github.com/yakhyo/uniface/releases/download/weights/genderage.onnx',
|
||||
|
||||
AgeGenderWeights.DEFAULT: "https://github.com/yakhyo/uniface/releases/download/weights/genderage.onnx",
|
||||
# Landmarks
|
||||
LandmarkWeights.DEFAULT: 'https://github.com/yakhyo/uniface/releases/download/weights/2d106det.onnx',
|
||||
LandmarkWeights.DEFAULT: "https://github.com/yakhyo/uniface/releases/download/weights/2d106det.onnx",
|
||||
}
|
||||
|
||||
MODEL_SHA256: Dict[Enum, str] = {
|
||||
# RetinaFace
|
||||
RetinaFaceWeights.MNET_025: 'b7a7acab55e104dce6f32cdfff929bd83946da5cd869b9e2e9bdffafd1b7e4a5',
|
||||
RetinaFaceWeights.MNET_050: 'd8977186f6037999af5b4113d42ba77a84a6ab0c996b17c713cc3d53b88bfc37',
|
||||
RetinaFaceWeights.MNET_V1: '75c961aaf0aff03d13c074e9ec656e5510e174454dd4964a161aab4fe5f04153',
|
||||
RetinaFaceWeights.MNET_V2: '3ca44c045651cabeed1193a1fae8946ad1f3a55da8fa74b341feab5a8319f757',
|
||||
RetinaFaceWeights.RESNET18: 'e8b5ddd7d2c3c8f7c942f9f10cec09d8e319f78f09725d3f709631de34fb649d',
|
||||
RetinaFaceWeights.RESNET34: 'bd0263dc2a465d32859555cb1741f2d98991eb0053696e8ee33fec583d30e630',
|
||||
|
||||
RetinaFaceWeights.MNET_025: "b7a7acab55e104dce6f32cdfff929bd83946da5cd869b9e2e9bdffafd1b7e4a5",
|
||||
RetinaFaceWeights.MNET_050: "d8977186f6037999af5b4113d42ba77a84a6ab0c996b17c713cc3d53b88bfc37",
|
||||
RetinaFaceWeights.MNET_V1: "75c961aaf0aff03d13c074e9ec656e5510e174454dd4964a161aab4fe5f04153",
|
||||
RetinaFaceWeights.MNET_V2: "3ca44c045651cabeed1193a1fae8946ad1f3a55da8fa74b341feab5a8319f757",
|
||||
RetinaFaceWeights.RESNET18: "e8b5ddd7d2c3c8f7c942f9f10cec09d8e319f78f09725d3f709631de34fb649d",
|
||||
RetinaFaceWeights.RESNET34: "bd0263dc2a465d32859555cb1741f2d98991eb0053696e8ee33fec583d30e630",
|
||||
# MobileFace
|
||||
MobileFaceWeights.MNET_025: 'eeda7d23d9c2b40cf77fa8da8e895b5697465192648852216074679657f8ee8b',
|
||||
MobileFaceWeights.MNET_V2: '38b148284dd48cc898d5d4453104252fbdcbacc105fe3f0b80e78954d9d20d89',
|
||||
MobileFaceWeights.MNET_V3_SMALL: 'd4acafa1039a82957aa8a9a1dac278a401c353a749c39df43de0e29cc1c127c3',
|
||||
MobileFaceWeights.MNET_V3_LARGE: '0e48f8e11f070211716d03e5c65a3db35a5e917cfb5bc30552358629775a142a',
|
||||
|
||||
MobileFaceWeights.MNET_025: "eeda7d23d9c2b40cf77fa8da8e895b5697465192648852216074679657f8ee8b",
|
||||
MobileFaceWeights.MNET_V2: "38b148284dd48cc898d5d4453104252fbdcbacc105fe3f0b80e78954d9d20d89",
|
||||
MobileFaceWeights.MNET_V3_SMALL: "d4acafa1039a82957aa8a9a1dac278a401c353a749c39df43de0e29cc1c127c3",
|
||||
MobileFaceWeights.MNET_V3_LARGE: "0e48f8e11f070211716d03e5c65a3db35a5e917cfb5bc30552358629775a142a",
|
||||
# SphereFace
|
||||
SphereFaceWeights.SPHERE20: 'c02878cf658eb1861f580b7e7144b0d27cc29c440bcaa6a99d466d2854f14c9d',
|
||||
SphereFaceWeights.SPHERE36: '13b3890cd5d7dec2b63f7c36fd7ce07403e5a0bbb701d9647c0289e6cbe7bb20',
|
||||
|
||||
|
||||
SphereFaceWeights.SPHERE20: "c02878cf658eb1861f580b7e7144b0d27cc29c440bcaa6a99d466d2854f14c9d",
|
||||
SphereFaceWeights.SPHERE36: "13b3890cd5d7dec2b63f7c36fd7ce07403e5a0bbb701d9647c0289e6cbe7bb20",
|
||||
# ArcFace
|
||||
ArcFaceWeights.MNET: '9cc6e4a75f0e2bf0b1aed94578f144d15175f357bdc05e815e5c4a02b319eb4f',
|
||||
ArcFaceWeights.RESNET: '4c06341c33c2ca1f86781dab0e829f88ad5b64be9fba56e56bc9ebdefc619e43',
|
||||
|
||||
ArcFaceWeights.MNET: "9cc6e4a75f0e2bf0b1aed94578f144d15175f357bdc05e815e5c4a02b319eb4f",
|
||||
ArcFaceWeights.RESNET: "4c06341c33c2ca1f86781dab0e829f88ad5b64be9fba56e56bc9ebdefc619e43",
|
||||
# SCRFD
|
||||
SCRFDWeights.SCRFD_10G_KPS: '5838f7fe053675b1c7a08b633df49e7af5495cee0493c7dcf6697200b85b5b91',
|
||||
SCRFDWeights.SCRFD_500M_KPS: '5e4447f50245bbd7966bd6c0fa52938c61474a04ec7def48753668a9d8b4ea3a',
|
||||
|
||||
SCRFDWeights.SCRFD_10G_KPS: "5838f7fe053675b1c7a08b633df49e7af5495cee0493c7dcf6697200b85b5b91",
|
||||
SCRFDWeights.SCRFD_500M_KPS: "5e4447f50245bbd7966bd6c0fa52938c61474a04ec7def48753668a9d8b4ea3a",
|
||||
# DDAFM
|
||||
DDAMFNWeights.AFFECNET7: '10535bf8b6afe8e9d6ae26cea6c3add9a93036e9addb6adebfd4a972171d015d',
|
||||
DDAMFNWeights.AFFECNET8: '8c66963bc71db42796a14dfcbfcd181b268b65a3fc16e87147d6a3a3d7e0f487',
|
||||
|
||||
DDAMFNWeights.AFFECNET7: "10535bf8b6afe8e9d6ae26cea6c3add9a93036e9addb6adebfd4a972171d015d",
|
||||
DDAMFNWeights.AFFECNET8: "8c66963bc71db42796a14dfcbfcd181b268b65a3fc16e87147d6a3a3d7e0f487",
|
||||
# AgeGender
|
||||
AgeGenderWeights.DEFAULT: '4fde69b1c810857b88c64a335084f1c3fe8f01246c9a191b48c7bb756d6652fb',
|
||||
|
||||
AgeGenderWeights.DEFAULT: "4fde69b1c810857b88c64a335084f1c3fe8f01246c9a191b48c7bb756d6652fb",
|
||||
# Landmark
|
||||
LandmarkWeights.DEFAULT: 'f001b856447c413801ef5c42091ed0cd516fcd21f2d6b79635b1e733a7109dbf',
|
||||
LandmarkWeights.DEFAULT: "f001b856447c413801ef5c42091ed0cd516fcd21f2d6b79635b1e733a7109dbf",
|
||||
}
|
||||
|
||||
CHUNK_SIZE = 8192
|
||||
|
||||
@@ -3,18 +3,19 @@
|
||||
# GitHub: https://github.com/yakhyo
|
||||
|
||||
|
||||
import numpy as np
|
||||
from typing import Tuple, Dict, Any, List
|
||||
from typing import Any, Dict, List
|
||||
|
||||
import numpy as np
|
||||
|
||||
from .scrfd import SCRFD
|
||||
from .base import BaseDetector
|
||||
from .retinaface import RetinaFace
|
||||
from .scrfd import SCRFD
|
||||
|
||||
# Global cache for detector instances
|
||||
_detector_cache: Dict[str, BaseDetector] = {}
|
||||
|
||||
|
||||
def detect_faces(image: np.ndarray, method: str = 'retinaface', **kwargs) -> List[Dict[str, Any]]:
|
||||
def detect_faces(image: np.ndarray, method: str = "retinaface", **kwargs) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
High-level face detection function.
|
||||
|
||||
@@ -38,7 +39,7 @@ def detect_faces(image: np.ndarray, method: str = 'retinaface', **kwargs) -> Lis
|
||||
... print(f"BBox: {face['bbox']}")
|
||||
"""
|
||||
method_name = method.lower()
|
||||
|
||||
|
||||
sorted_kwargs = sorted(kwargs.items())
|
||||
cache_key = f"{method_name}_{str(sorted_kwargs)}"
|
||||
|
||||
@@ -50,7 +51,7 @@ def detect_faces(image: np.ndarray, method: str = 'retinaface', **kwargs) -> Lis
|
||||
return detector.detect(image)
|
||||
|
||||
|
||||
def create_detector(method: str = 'retinaface', **kwargs) -> BaseDetector:
|
||||
def create_detector(method: str = "retinaface", **kwargs) -> BaseDetector:
|
||||
"""
|
||||
Factory function to create face detectors.
|
||||
|
||||
@@ -88,18 +89,15 @@ def create_detector(method: str = 'retinaface', **kwargs) -> BaseDetector:
|
||||
"""
|
||||
method = method.lower()
|
||||
|
||||
if method == 'retinaface':
|
||||
if method == "retinaface":
|
||||
return RetinaFace(**kwargs)
|
||||
|
||||
elif method == 'scrfd':
|
||||
elif method == "scrfd":
|
||||
return SCRFD(**kwargs)
|
||||
|
||||
else:
|
||||
available_methods = ['retinaface', 'scrfd']
|
||||
raise ValueError(
|
||||
f"Unsupported detection method: '{method}'. "
|
||||
f"Available methods: {available_methods}"
|
||||
)
|
||||
available_methods = ["retinaface", "scrfd"]
|
||||
raise ValueError(f"Unsupported detection method: '{method}'. Available methods: {available_methods}")
|
||||
|
||||
|
||||
def list_available_detectors() -> Dict[str, Dict[str, Any]]:
|
||||
@@ -110,36 +108,36 @@ def list_available_detectors() -> Dict[str, Dict[str, Any]]:
|
||||
Dict[str, Dict[str, Any]]: Dictionary of detector information
|
||||
"""
|
||||
return {
|
||||
'retinaface': {
|
||||
'description': 'RetinaFace detector with high accuracy',
|
||||
'supports_landmarks': True,
|
||||
'paper': 'https://arxiv.org/abs/1905.00641',
|
||||
'default_params': {
|
||||
'model_name': 'mnet_v2',
|
||||
'conf_thresh': 0.5,
|
||||
'nms_thresh': 0.4,
|
||||
'input_size': (640, 640)
|
||||
}
|
||||
"retinaface": {
|
||||
"description": "RetinaFace detector with high accuracy",
|
||||
"supports_landmarks": True,
|
||||
"paper": "https://arxiv.org/abs/1905.00641",
|
||||
"default_params": {
|
||||
"model_name": "mnet_v2",
|
||||
"conf_thresh": 0.5,
|
||||
"nms_thresh": 0.4,
|
||||
"input_size": (640, 640),
|
||||
},
|
||||
},
|
||||
"scrfd": {
|
||||
"description": "SCRFD detector - fast and accurate with efficient architecture",
|
||||
"supports_landmarks": True,
|
||||
"paper": "https://arxiv.org/abs/2105.04714",
|
||||
"default_params": {
|
||||
"model_name": "scrfd_10g_kps",
|
||||
"conf_thresh": 0.5,
|
||||
"nms_thresh": 0.4,
|
||||
"input_size": (640, 640),
|
||||
},
|
||||
},
|
||||
'scrfd': {
|
||||
'description': 'SCRFD detector - fast and accurate with efficient architecture',
|
||||
'supports_landmarks': True,
|
||||
'paper': 'https://arxiv.org/abs/2105.04714',
|
||||
'default_params': {
|
||||
'model_name': 'scrfd_10g_kps',
|
||||
'conf_thresh': 0.5,
|
||||
'nms_thresh': 0.4,
|
||||
'input_size': (640, 640)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
__all__ = [
|
||||
'detect_faces',
|
||||
'create_detector',
|
||||
'list_available_detectors',
|
||||
'SCRFD',
|
||||
'RetinaFace',
|
||||
'BaseDetector',
|
||||
"detect_faces",
|
||||
"create_detector",
|
||||
"list_available_detectors",
|
||||
"SCRFD",
|
||||
"RetinaFace",
|
||||
"BaseDetector",
|
||||
]
|
||||
|
||||
@@ -6,9 +6,10 @@
|
||||
Base classes for face detection.
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Tuple, Dict, Any
|
||||
from typing import Any, Dict, Tuple
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
class BaseDetector(ABC):
|
||||
@@ -84,7 +85,7 @@ class BaseDetector(ABC):
|
||||
Returns:
|
||||
bool: True if landmarks are supported, False otherwise
|
||||
"""
|
||||
return hasattr(self, '_supports_landmarks') and self._supports_landmarks
|
||||
return hasattr(self, "_supports_landmarks") and self._supports_landmarks
|
||||
|
||||
def get_info(self) -> Dict[str, Any]:
|
||||
"""
|
||||
@@ -94,7 +95,7 @@ class BaseDetector(ABC):
|
||||
Dict[str, Any]: Detector information
|
||||
"""
|
||||
return {
|
||||
'name': self.__class__.__name__,
|
||||
'supports_landmarks': self._supports_landmarks,
|
||||
'config': self.config
|
||||
"name": self.__class__.__name__,
|
||||
"supports_landmarks": self._supports_landmarks,
|
||||
"config": self.config,
|
||||
}
|
||||
|
||||
@@ -2,22 +2,22 @@
|
||||
# Author: Yakhyokhuja Valikhujaev
|
||||
# GitHub: https://github.com/yakhyo
|
||||
|
||||
from typing import Any, Dict, List, Literal, Tuple
|
||||
|
||||
import numpy as np
|
||||
|
||||
from typing import Tuple, List, Literal, Dict, Any
|
||||
|
||||
from uniface.constants import RetinaFaceWeights
|
||||
from uniface.log import Logger
|
||||
from uniface.model_store import verify_model_weights
|
||||
from uniface.constants import RetinaFaceWeights
|
||||
from uniface.onnx_utils import create_onnx_session
|
||||
|
||||
from .base import BaseDetector
|
||||
from .utils import (
|
||||
decode_boxes,
|
||||
decode_landmarks,
|
||||
generate_anchors,
|
||||
non_max_supression,
|
||||
resize_image,
|
||||
decode_boxes,
|
||||
generate_anchors,
|
||||
decode_landmarks
|
||||
)
|
||||
|
||||
|
||||
@@ -59,13 +59,13 @@ class RetinaFace(BaseDetector):
|
||||
super().__init__(**kwargs)
|
||||
self._supports_landmarks = True # RetinaFace supports landmarks
|
||||
|
||||
self.model_name = kwargs.get('model_name', RetinaFaceWeights.MNET_V2)
|
||||
self.conf_thresh = kwargs.get('conf_thresh', 0.5)
|
||||
self.nms_thresh = kwargs.get('nms_thresh', 0.4)
|
||||
self.pre_nms_topk = kwargs.get('pre_nms_topk', 5000)
|
||||
self.post_nms_topk = kwargs.get('post_nms_topk', 750)
|
||||
self.dynamic_size = kwargs.get('dynamic_size', False)
|
||||
self.input_size = kwargs.get('input_size', (640, 640))
|
||||
self.model_name = kwargs.get("model_name", RetinaFaceWeights.MNET_V2)
|
||||
self.conf_thresh = kwargs.get("conf_thresh", 0.5)
|
||||
self.nms_thresh = kwargs.get("nms_thresh", 0.4)
|
||||
self.pre_nms_topk = kwargs.get("pre_nms_topk", 5000)
|
||||
self.post_nms_topk = kwargs.get("post_nms_topk", 750)
|
||||
self.dynamic_size = kwargs.get("dynamic_size", False)
|
||||
self.input_size = kwargs.get("input_size", (640, 640))
|
||||
|
||||
Logger.info(
|
||||
f"Initializing RetinaFace with model={self.model_name}, conf_thresh={self.conf_thresh}, nms_thresh={self.nms_thresh}, "
|
||||
@@ -133,7 +133,7 @@ class RetinaFace(BaseDetector):
|
||||
image: np.ndarray,
|
||||
max_num: int = 0,
|
||||
metric: Literal["default", "max"] = "max",
|
||||
center_weight: float = 2.0
|
||||
center_weight: float = 2.0,
|
||||
) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
Perform face detection on an input image and return bounding boxes and facial landmarks.
|
||||
@@ -178,14 +178,16 @@ class RetinaFace(BaseDetector):
|
||||
|
||||
# Calculate offsets from image center
|
||||
center = (original_height // 2, original_width // 2)
|
||||
offsets = np.vstack([
|
||||
(detections[:, 0] + detections[:, 2]) / 2 - center[1],
|
||||
(detections[:, 1] + detections[:, 3]) / 2 - center[0]
|
||||
])
|
||||
offsets = np.vstack(
|
||||
[
|
||||
(detections[:, 0] + detections[:, 2]) / 2 - center[1],
|
||||
(detections[:, 1] + detections[:, 3]) / 2 - center[0],
|
||||
]
|
||||
)
|
||||
offset_dist_squared = np.sum(np.power(offsets, 2.0), axis=0)
|
||||
|
||||
# Calculate scores based on the chosen metric
|
||||
if metric == 'max':
|
||||
if metric == "max":
|
||||
scores = areas
|
||||
else:
|
||||
scores = areas - offset_dist_squared * center_weight
|
||||
@@ -199,15 +201,17 @@ class RetinaFace(BaseDetector):
|
||||
faces = []
|
||||
for i in range(detections.shape[0]):
|
||||
face_dict = {
|
||||
'bbox': detections[i, :4].astype(float).tolist(),
|
||||
'confidence': detections[i, 4].item(),
|
||||
'landmarks': landmarks[i].astype(float).tolist()
|
||||
"bbox": detections[i, :4].astype(float).tolist(),
|
||||
"confidence": detections[i, 4].item(),
|
||||
"landmarks": landmarks[i].astype(float).tolist(),
|
||||
}
|
||||
faces.append(face_dict)
|
||||
|
||||
return faces
|
||||
|
||||
def postprocess(self, outputs: List[np.ndarray], resize_factor: float, shape: Tuple[int, int]) -> Tuple[np.ndarray, np.ndarray]:
|
||||
def postprocess(
|
||||
self, outputs: List[np.ndarray], resize_factor: float, shape: Tuple[int, int]
|
||||
) -> Tuple[np.ndarray, np.ndarray]:
|
||||
"""
|
||||
Process the model outputs into final detection results.
|
||||
|
||||
@@ -226,7 +230,11 @@ class RetinaFace(BaseDetector):
|
||||
- landmarks (np.ndarray): Array of detected facial landmarks.
|
||||
Shape: (num_detections, 5, 2), where each row contains 5 landmark points (x, y).
|
||||
"""
|
||||
loc, conf, landmarks = outputs[0].squeeze(0), outputs[1].squeeze(0), outputs[2].squeeze(0)
|
||||
loc, conf, landmarks = (
|
||||
outputs[0].squeeze(0),
|
||||
outputs[1].squeeze(0),
|
||||
outputs[2].squeeze(0),
|
||||
)
|
||||
|
||||
# Decode boxes and landmarks
|
||||
boxes = decode_boxes(loc, self._priors)
|
||||
@@ -242,7 +250,7 @@ class RetinaFace(BaseDetector):
|
||||
boxes, landmarks, scores = boxes[mask], landmarks[mask], scores[mask]
|
||||
|
||||
# Sort by scores
|
||||
order = scores.argsort()[::-1][:self.pre_nms_topk]
|
||||
order = scores.argsort()[::-1][: self.pre_nms_topk]
|
||||
boxes, landmarks, scores = boxes[order], landmarks[order], scores[order]
|
||||
|
||||
# Apply NMS
|
||||
@@ -251,13 +259,22 @@ class RetinaFace(BaseDetector):
|
||||
detections, landmarks = detections[keep], landmarks[keep]
|
||||
|
||||
# Keep top-k detections
|
||||
detections, landmarks = detections[:self.post_nms_topk], landmarks[:self.post_nms_topk]
|
||||
detections, landmarks = (
|
||||
detections[: self.post_nms_topk],
|
||||
landmarks[: self.post_nms_topk],
|
||||
)
|
||||
|
||||
landmarks = landmarks.reshape(-1, 5, 2).astype(np.int32)
|
||||
|
||||
return detections, landmarks
|
||||
|
||||
def _scale_detections(self, boxes: np.ndarray, landmarks: np.ndarray, resize_factor: float, shape: Tuple[int, int]) -> Tuple[np.ndarray, np.ndarray]:
|
||||
def _scale_detections(
|
||||
self,
|
||||
boxes: np.ndarray,
|
||||
landmarks: np.ndarray,
|
||||
resize_factor: float,
|
||||
shape: Tuple[int, int],
|
||||
) -> Tuple[np.ndarray, np.ndarray]:
|
||||
# Scale bounding boxes and landmarks to the original image size.
|
||||
bbox_scale = np.array([shape[0], shape[1]] * 2)
|
||||
boxes = boxes * bbox_scale / resize_factor
|
||||
@@ -276,12 +293,13 @@ def draw_bbox(frame, bbox, score, color=(0, 255, 0), thickness=2):
|
||||
|
||||
|
||||
def draw_keypoints(frame, points, color=(0, 0, 255), radius=2):
|
||||
for (x, y) in points.astype(np.int32):
|
||||
for x, y in points.astype(np.int32):
|
||||
cv2.circle(frame, (int(x), int(y)), radius, color, -1)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import cv2
|
||||
|
||||
detector = RetinaFace(model_name=RetinaFaceWeights.MNET_050)
|
||||
print(detector.get_info())
|
||||
cap = cv2.VideoCapture(0)
|
||||
@@ -304,9 +322,9 @@ if __name__ == "__main__":
|
||||
# Process each detected face
|
||||
for face in faces:
|
||||
# Extract bbox and landmarks from dictionary
|
||||
bbox = face['bbox'] # [x1, y1, x2, y2]
|
||||
landmarks = face['landmarks'] # [[x1, y1], [x2, y2], ...]
|
||||
confidence = face['confidence']
|
||||
bbox = face["bbox"] # [x1, y1, x2, y2]
|
||||
landmarks = face["landmarks"] # [[x1, y1], [x2, y2], ...]
|
||||
confidence = face["confidence"]
|
||||
|
||||
# Pass bbox and confidence separately
|
||||
draw_bbox(frame, bbox, confidence)
|
||||
@@ -318,8 +336,15 @@ if __name__ == "__main__":
|
||||
draw_keypoints(frame, points)
|
||||
|
||||
# Display face count
|
||||
cv2.putText(frame, f"Faces: {len(faces)}", (10, 30),
|
||||
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2)
|
||||
cv2.putText(
|
||||
frame,
|
||||
f"Faces: {len(faces)}",
|
||||
(10, 30),
|
||||
cv2.FONT_HERSHEY_SIMPLEX,
|
||||
0.7,
|
||||
(255, 255, 255),
|
||||
2,
|
||||
)
|
||||
|
||||
cv2.imshow("FaceDetection", frame)
|
||||
if cv2.waitKey(1) & 0xFF == ord("q"):
|
||||
|
||||
@@ -173,7 +173,11 @@ class SCRFD(BaseDetector):
|
||||
return scores_list, bboxes_list, kpss_list
|
||||
|
||||
def detect(
|
||||
self, image: np.ndarray, max_num: int = 0, metric: Literal["default", "max"] = "max", center_weight: float = 2
|
||||
self,
|
||||
image: np.ndarray,
|
||||
max_num: int = 0,
|
||||
metric: Literal["default", "max"] = "max",
|
||||
center_weight: float = 2,
|
||||
) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
Perform face detection on an input image and return bounding boxes and facial landmarks.
|
||||
@@ -311,7 +315,15 @@ if __name__ == "__main__":
|
||||
draw_keypoints(frame, points)
|
||||
|
||||
# Display face count
|
||||
cv2.putText(frame, f"Faces: {len(faces)}", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2)
|
||||
cv2.putText(
|
||||
frame,
|
||||
f"Faces: {len(faces)}",
|
||||
(10, 30),
|
||||
cv2.FONT_HERSHEY_SIMPLEX,
|
||||
0.7,
|
||||
(255, 255, 255),
|
||||
2,
|
||||
)
|
||||
|
||||
cv2.imshow("FaceDetection", frame)
|
||||
if cv2.waitKey(1) & 0xFF == ord("q"):
|
||||
|
||||
@@ -2,12 +2,12 @@
|
||||
# Author: Yakhyokhuja Valikhujaev
|
||||
# GitHub: https://github.com/yakhyo
|
||||
|
||||
import cv2
|
||||
import math
|
||||
import itertools
|
||||
import numpy as np
|
||||
import math
|
||||
from typing import List, Tuple
|
||||
|
||||
from typing import Tuple, List
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
|
||||
def resize_image(frame, target_shape: Tuple[int, int] = (640, 640)) -> Tuple[np.ndarray, float]:
|
||||
@@ -59,12 +59,7 @@ def generate_anchors(image_size: Tuple[int, int] = (640, 640)) -> np.ndarray:
|
||||
min_sizes = [[16, 32], [64, 128], [256, 512]]
|
||||
|
||||
anchors = []
|
||||
feature_maps = [
|
||||
[
|
||||
math.ceil(image_size[0] / step),
|
||||
math.ceil(image_size[1] / step)
|
||||
] for step in steps
|
||||
]
|
||||
feature_maps = [[math.ceil(image_size[0] / step), math.ceil(image_size[1] / step)] for step in steps]
|
||||
|
||||
for k, (map_height, map_width) in enumerate(feature_maps):
|
||||
step = steps[k]
|
||||
|
||||
@@ -2,13 +2,18 @@
|
||||
# Author: Yakhyokhuja Valikhujaev
|
||||
# GitHub: https://github.com/yakhyo
|
||||
|
||||
from typing import Tuple, Union
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
from skimage.transform import SimilarityTransform
|
||||
from typing import Tuple, Union
|
||||
|
||||
|
||||
__all__ = ["face_alignment", "compute_similarity", "bbox_center_alignment", "transform_points_2d"]
|
||||
__all__ = [
|
||||
"face_alignment",
|
||||
"compute_similarity",
|
||||
"bbox_center_alignment",
|
||||
"transform_points_2d",
|
||||
]
|
||||
|
||||
|
||||
# Reference alignment for facial landmarks (ArcFace)
|
||||
@@ -18,9 +23,9 @@ reference_alignment: np.ndarray = np.array(
|
||||
[73.5318, 51.5014],
|
||||
[56.0252, 71.7366],
|
||||
[41.5493, 92.3655],
|
||||
[70.7299, 92.2041]
|
||||
[70.7299, 92.2041],
|
||||
],
|
||||
dtype=np.float32
|
||||
dtype=np.float32,
|
||||
)
|
||||
|
||||
|
||||
@@ -72,7 +77,11 @@ def estimate_norm(landmark: np.ndarray, image_size: Union[int, Tuple[int, int]]
|
||||
return matrix, inverse_matrix
|
||||
|
||||
|
||||
def face_alignment(image: np.ndarray, landmark: np.ndarray, image_size: Union[int, Tuple[int, int]] = 112) -> Tuple[np.ndarray, np.ndarray]:
|
||||
def face_alignment(
|
||||
image: np.ndarray,
|
||||
landmark: np.ndarray,
|
||||
image_size: Union[int, Tuple[int, int]] = 112,
|
||||
) -> Tuple[np.ndarray, np.ndarray]:
|
||||
"""
|
||||
Align the face in the input image based on the given facial landmarks.
|
||||
|
||||
|
||||
@@ -2,11 +2,11 @@
|
||||
# Author: Yakhyokhuja Valikhujaev
|
||||
# GitHub: https://github.com/yakhyo
|
||||
|
||||
from .models import Landmark106
|
||||
from .base import BaseLandmarker
|
||||
from .models import Landmark106
|
||||
|
||||
|
||||
def create_landmarker(method: str = '2d106det', **kwargs) -> BaseLandmarker:
|
||||
def create_landmarker(method: str = "2d106det", **kwargs) -> BaseLandmarker:
|
||||
"""
|
||||
Factory function to create facial landmark predictors.
|
||||
|
||||
@@ -18,15 +18,11 @@ def create_landmarker(method: str = '2d106det', **kwargs) -> BaseLandmarker:
|
||||
Initialized landmarker instance.
|
||||
"""
|
||||
method = method.lower()
|
||||
if method == '2d106det':
|
||||
if method == "2d106det":
|
||||
return Landmark106(**kwargs)
|
||||
else:
|
||||
available = ['2d106det']
|
||||
available = ["2d106det"]
|
||||
raise ValueError(f"Unsupported method: '{method}'. Available: {available}")
|
||||
|
||||
|
||||
__all__ = [
|
||||
"create_landmarker",
|
||||
"Landmark106",
|
||||
"BaseLandmarker"
|
||||
]
|
||||
__all__ = ["create_landmarker", "Landmark106", "BaseLandmarker"]
|
||||
|
||||
@@ -3,6 +3,7 @@
|
||||
# GitHub: https://github.com/yakhyo
|
||||
|
||||
from abc import ABC, abstractmethod
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
@@ -10,6 +11,7 @@ class BaseLandmarker(ABC):
|
||||
"""
|
||||
Abstract Base Class for all facial landmark models.
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
def get_landmarks(self, image: np.ndarray, bbox: np.ndarray) -> np.ndarray:
|
||||
"""
|
||||
|
||||
@@ -2,18 +2,20 @@
|
||||
# Author: Yakhyokhuja Valikhujaev
|
||||
# GitHub: https://github.com/yakhyo
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
from typing import Tuple
|
||||
|
||||
from uniface.log import Logger
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
from uniface.constants import LandmarkWeights
|
||||
from uniface.model_store import verify_model_weights
|
||||
from uniface.face_utils import bbox_center_alignment, transform_points_2d
|
||||
from uniface.log import Logger
|
||||
from uniface.model_store import verify_model_weights
|
||||
from uniface.onnx_utils import create_onnx_session
|
||||
|
||||
from .base import BaseLandmarker
|
||||
|
||||
__all__ = ['Landmark']
|
||||
__all__ = ["Landmark"]
|
||||
|
||||
|
||||
class Landmark106(BaseLandmarker):
|
||||
@@ -40,15 +42,13 @@ class Landmark106(BaseLandmarker):
|
||||
>>> print(landmarks.shape)
|
||||
(106, 2)
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model_name: LandmarkWeights = LandmarkWeights.DEFAULT,
|
||||
input_size: Tuple[int, int] = (192, 192)
|
||||
input_size: Tuple[int, int] = (192, 192),
|
||||
) -> None:
|
||||
Logger.info(
|
||||
f"Initializing Facial Landmark with model={model_name}, "
|
||||
f"input_size={input_size}"
|
||||
)
|
||||
Logger.info(f"Initializing Facial Landmark with model={model_name}, input_size={input_size}")
|
||||
self.input_size = input_size
|
||||
self.input_std = 1.0
|
||||
self.input_mean = 0.0
|
||||
@@ -83,7 +83,7 @@ class Landmark106(BaseLandmarker):
|
||||
|
||||
except Exception as e:
|
||||
Logger.error(f"Failed to load landmark model from '{self.model_path}'", exc_info=True)
|
||||
raise RuntimeError(f"Failed to initialize landmark model: {e}")
|
||||
raise RuntimeError(f"Failed to initialize landmark model: {e}") from e
|
||||
|
||||
def preprocess(self, image: np.ndarray, bbox: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
|
||||
"""Prepares a face crop for inference.
|
||||
@@ -108,8 +108,11 @@ class Landmark106(BaseLandmarker):
|
||||
aligned_face, transform_matrix = bbox_center_alignment(image, center, self.input_size[0], scale, 0.0)
|
||||
|
||||
face_blob = cv2.dnn.blobFromImage(
|
||||
aligned_face, 1.0 / self.input_std, self.input_size,
|
||||
(self.input_mean, self.input_mean, self.input_mean), swapRB=True
|
||||
aligned_face,
|
||||
1.0 / self.input_std,
|
||||
self.input_size,
|
||||
(self.input_mean, self.input_mean, self.input_mean),
|
||||
swapRB=True,
|
||||
)
|
||||
return face_blob, transform_matrix
|
||||
|
||||
@@ -129,7 +132,7 @@ class Landmark106(BaseLandmarker):
|
||||
"""
|
||||
landmarks = predictions.reshape((-1, 2))
|
||||
landmarks[:, 0:2] += 1
|
||||
landmarks[:, 0:2] *= (self.input_size[0] // 2)
|
||||
landmarks[:, 0:2] *= self.input_size[0] // 2
|
||||
|
||||
inverse_matrix = cv2.invertAffineTransform(transform_matrix)
|
||||
landmarks = transform_points_2d(landmarks, inverse_matrix)
|
||||
@@ -149,14 +152,11 @@ class Landmark106(BaseLandmarker):
|
||||
np.ndarray: An array of predicted landmark points with shape (106, 2).
|
||||
"""
|
||||
face_blob, transform_matrix = self.preprocess(image, bbox)
|
||||
raw_predictions = self.session.run(
|
||||
self.output_names, {self.input_names[0]: face_blob}
|
||||
)[0][0]
|
||||
raw_predictions = self.session.run(self.output_names, {self.input_names[0]: face_blob})[0][0]
|
||||
landmarks = self.postprocess(raw_predictions, transform_matrix)
|
||||
return landmarks
|
||||
|
||||
|
||||
|
||||
# Testing code
|
||||
if __name__ == "__main__":
|
||||
from uniface.detection import RetinaFace
|
||||
@@ -183,21 +183,21 @@ if __name__ == "__main__":
|
||||
|
||||
if not faces:
|
||||
cv2.imshow("Facial Landmark Detection", frame)
|
||||
if cv2.waitKey(1) & 0xFF == ord('q'):
|
||||
if cv2.waitKey(1) & 0xFF == ord("q"):
|
||||
break
|
||||
continue
|
||||
|
||||
# 3. Loop through the list of face dictionaries
|
||||
for face in faces:
|
||||
# Extract the bounding box
|
||||
bbox = face['bbox']
|
||||
bbox = face["bbox"]
|
||||
|
||||
# 4. Get landmarks for the current face using its bounding box
|
||||
landmarks = landmarker.get_landmarks(frame, bbox)
|
||||
|
||||
# --- Drawing Logic ---
|
||||
# Draw the landmarks
|
||||
for (x, y) in landmarks.astype(int):
|
||||
for x, y in landmarks.astype(int):
|
||||
cv2.circle(frame, (x, y), 2, (0, 255, 0), -1)
|
||||
|
||||
# Draw the bounding box
|
||||
@@ -205,7 +205,7 @@ if __name__ == "__main__":
|
||||
cv2.rectangle(frame, (x1, y1), (x2, y2), (255, 0, 0), 2)
|
||||
|
||||
cv2.imshow("Facial Landmark Detection", frame)
|
||||
if cv2.waitKey(1) & 0xFF == ord('q'):
|
||||
if cv2.waitKey(1) & 0xFF == ord("q"):
|
||||
break
|
||||
|
||||
cap.release()
|
||||
|
||||
@@ -19,10 +19,7 @@ def enable_logging(level=logging.INFO):
|
||||
"""
|
||||
Logger.handlers.clear()
|
||||
handler = logging.StreamHandler()
|
||||
handler.setFormatter(logging.Formatter(
|
||||
"%(asctime)s - %(levelname)s - %(message)s",
|
||||
datefmt="%Y-%m-%d %H:%M:%S"
|
||||
))
|
||||
handler.setFormatter(logging.Formatter("%(asctime)s - %(levelname)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S"))
|
||||
Logger.addHandler(handler)
|
||||
Logger.setLevel(level)
|
||||
Logger.propagate = False
|
||||
|
||||
@@ -2,19 +2,19 @@
|
||||
# Author: Yakhyokhuja Valikhujaev
|
||||
# GitHub: https://github.com/yakhyo
|
||||
|
||||
import os
|
||||
import hashlib
|
||||
import os
|
||||
|
||||
import requests
|
||||
from tqdm import tqdm
|
||||
|
||||
from uniface.log import Logger
|
||||
import uniface.constants as const
|
||||
from uniface.log import Logger
|
||||
|
||||
__all__ = ["verify_model_weights"]
|
||||
|
||||
|
||||
__all__ = ['verify_model_weights']
|
||||
|
||||
|
||||
def verify_model_weights(model_name: str, root: str = '~/.uniface/models') -> str:
|
||||
def verify_model_weights(model_name: str, root: str = "~/.uniface/models") -> str:
|
||||
"""
|
||||
Ensure model weights are present, downloading and verifying them using SHA-256 if necessary.
|
||||
|
||||
@@ -53,7 +53,7 @@ def verify_model_weights(model_name: str, root: str = '~/.uniface/models') -> st
|
||||
raise ValueError(f"No URL found for model '{model_name}'")
|
||||
|
||||
file_ext = os.path.splitext(url)[1]
|
||||
model_path = os.path.normpath(os.path.join(root, f'{model_name.value}{file_ext}'))
|
||||
model_path = os.path.normpath(os.path.join(root, f"{model_name.value}{file_ext}"))
|
||||
|
||||
if not os.path.exists(model_path):
|
||||
Logger.info(f"Downloading model '{model_name}' from {url}")
|
||||
@@ -62,7 +62,7 @@ def verify_model_weights(model_name: str, root: str = '~/.uniface/models') -> st
|
||||
Logger.info(f"Successfully downloaded '{model_name}' to {model_path}")
|
||||
except Exception as e:
|
||||
Logger.error(f"Failed to download model '{model_name}': {e}")
|
||||
raise ConnectionError(f"Download failed for '{model_name}'")
|
||||
raise ConnectionError(f"Download failed for '{model_name}'") from e
|
||||
|
||||
expected_hash = const.MODEL_SHA256.get(model_name)
|
||||
if expected_hash and not verify_file_hash(model_path, expected_hash):
|
||||
@@ -78,18 +78,21 @@ def download_file(url: str, dest_path: str) -> None:
|
||||
try:
|
||||
response = requests.get(url, stream=True)
|
||||
response.raise_for_status()
|
||||
with open(dest_path, "wb") as file, tqdm(
|
||||
desc=f"Downloading {dest_path}",
|
||||
unit='B',
|
||||
unit_scale=True,
|
||||
unit_divisor=1024
|
||||
) as progress:
|
||||
with (
|
||||
open(dest_path, "wb") as file,
|
||||
tqdm(
|
||||
desc=f"Downloading {dest_path}",
|
||||
unit="B",
|
||||
unit_scale=True,
|
||||
unit_divisor=1024,
|
||||
) as progress,
|
||||
):
|
||||
for chunk in response.iter_content(chunk_size=const.CHUNK_SIZE):
|
||||
if chunk:
|
||||
file.write(chunk)
|
||||
progress.update(len(chunk))
|
||||
except requests.RequestException as e:
|
||||
raise ConnectionError(f"Failed to download file from {url}. Error: {e}")
|
||||
raise ConnectionError(f"Failed to download file from {url}. Error: {e}") from e
|
||||
|
||||
|
||||
def verify_file_hash(file_path: str, expected_hash: str) -> bool:
|
||||
|
||||
@@ -77,10 +77,25 @@ def create_onnx_session(model_path: str, providers: List[str] = None) -> ort.Inf
|
||||
if providers is None:
|
||||
providers = get_available_providers()
|
||||
|
||||
# Suppress ONNX Runtime warnings (e.g., CoreML partition warnings)
|
||||
# Log levels: 0=VERBOSE, 1=INFO, 2=WARNING, 3=ERROR, 4=FATAL
|
||||
sess_options = ort.SessionOptions()
|
||||
sess_options.log_severity_level = 3 # Only show ERROR and FATAL
|
||||
|
||||
try:
|
||||
session = ort.InferenceSession(model_path, providers=providers)
|
||||
session = ort.InferenceSession(model_path, sess_options=sess_options, providers=providers)
|
||||
active_provider = session.get_providers()[0]
|
||||
Logger.debug(f"Session created with provider: {active_provider}")
|
||||
|
||||
# Show user-friendly message about which provider is being used
|
||||
provider_names = {
|
||||
"CoreMLExecutionProvider": "CoreML (Apple Silicon)",
|
||||
"CUDAExecutionProvider": "CUDA (NVIDIA GPU)",
|
||||
"CPUExecutionProvider": "CPU",
|
||||
}
|
||||
provider_display = provider_names.get(active_provider, active_provider)
|
||||
print(f"Model loaded ({provider_display})")
|
||||
|
||||
return session
|
||||
except Exception as e:
|
||||
Logger.error(f"Failed to create ONNX session: {e}", exc_info=True)
|
||||
|
||||
@@ -2,12 +2,12 @@
|
||||
# Author: Yakhyokhuja Valikhujaev
|
||||
# GitHub: https://github.com/yakhyo
|
||||
|
||||
from typing import Dict
|
||||
from .models import ArcFace, MobileFace, SphereFace
|
||||
from .base import BaseRecognizer
|
||||
from uniface.constants import ArcFaceWeights, MobileFaceWeights, SphereFaceWeights
|
||||
|
||||
def create_recognizer(method: str = 'arcface', **kwargs) -> BaseRecognizer:
|
||||
from .base import BaseRecognizer
|
||||
from .models import ArcFace, MobileFace, SphereFace
|
||||
|
||||
|
||||
def create_recognizer(method: str = "arcface", **kwargs) -> BaseRecognizer:
|
||||
"""
|
||||
Factory function to create face recognizers.
|
||||
|
||||
@@ -44,20 +44,21 @@ def create_recognizer(method: str = 'arcface', **kwargs) -> BaseRecognizer:
|
||||
"""
|
||||
method = method.lower()
|
||||
|
||||
if method == 'arcface':
|
||||
if method == "arcface":
|
||||
return ArcFace(**kwargs)
|
||||
elif method == 'mobileface':
|
||||
elif method == "mobileface":
|
||||
return MobileFace(**kwargs)
|
||||
elif method == 'sphereface':
|
||||
elif method == "sphereface":
|
||||
return SphereFace(**kwargs)
|
||||
else:
|
||||
available = ['arcface', 'mobileface', 'sphereface']
|
||||
available = ["arcface", "mobileface", "sphereface"]
|
||||
raise ValueError(f"Unsupported method: '{method}'. Available: {available}")
|
||||
|
||||
|
||||
__all__ = [
|
||||
"create_recognizer",
|
||||
"ArcFace",
|
||||
"MobileFace",
|
||||
"SphereFace",
|
||||
"BaseRecognizer",
|
||||
]
|
||||
]
|
||||
|
||||
@@ -3,13 +3,14 @@
|
||||
# GitHub: https://github.com/yakhyo
|
||||
|
||||
from abc import ABC, abstractmethod
|
||||
from dataclasses import dataclass
|
||||
from typing import List, Tuple, Union
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
from dataclasses import dataclass
|
||||
from typing import Tuple, Union, List
|
||||
|
||||
from uniface.log import Logger
|
||||
from uniface.face_utils import face_alignment
|
||||
from uniface.log import Logger
|
||||
from uniface.onnx_utils import create_onnx_session
|
||||
|
||||
|
||||
@@ -18,6 +19,7 @@ class PreprocessConfig:
|
||||
"""
|
||||
Configuration for preprocessing images before feeding them into the model.
|
||||
"""
|
||||
|
||||
input_mean: Union[float, List[float]] = 127.5
|
||||
input_std: Union[float, List[float]] = 127.5
|
||||
input_size: Tuple[int, int] = (112, 112)
|
||||
@@ -28,6 +30,7 @@ class BaseRecognizer(ABC):
|
||||
Abstract Base Class for all face recognition models.
|
||||
It provides the core functionality for preprocessing, inference, and embedding extraction.
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
def __init__(self, model_path: str, preprocessing: PreprocessConfig) -> None:
|
||||
"""
|
||||
@@ -73,7 +76,10 @@ class BaseRecognizer(ABC):
|
||||
Logger.info(f"Successfully initialized face encoder from {self.model_path}")
|
||||
|
||||
except Exception as e:
|
||||
Logger.error(f"Failed to load face encoder model from '{self.model_path}'", exc_info=True)
|
||||
Logger.error(
|
||||
f"Failed to load face encoder model from '{self.model_path}'",
|
||||
exc_info=True,
|
||||
)
|
||||
raise RuntimeError(f"Failed to initialize model session for '{self.model_path}'") from e
|
||||
|
||||
def preprocess(self, face_img: np.ndarray) -> np.ndarray:
|
||||
@@ -91,8 +97,9 @@ class BaseRecognizer(ABC):
|
||||
if isinstance(self.input_std, (list, tuple)):
|
||||
# Per-channel normalization
|
||||
rgb_img = cv2.cvtColor(resized_img, cv2.COLOR_BGR2RGB).astype(np.float32)
|
||||
normalized_img = (rgb_img - np.array(self.input_mean, dtype=np.float32)) / \
|
||||
np.array(self.input_std, dtype=np.float32)
|
||||
normalized_img = (rgb_img - np.array(self.input_mean, dtype=np.float32)) / np.array(
|
||||
self.input_std, dtype=np.float32
|
||||
)
|
||||
|
||||
# Change to NCHW (batch, channels, height, width)
|
||||
blob = np.transpose(normalized_img, (2, 0, 1)) # CHW
|
||||
@@ -104,7 +111,7 @@ class BaseRecognizer(ABC):
|
||||
scalefactor=1.0 / self.input_std,
|
||||
size=self.input_size,
|
||||
mean=(self.input_mean, self.input_mean, self.input_mean),
|
||||
swapRB=True # Convert BGR to RGB
|
||||
swapRB=True, # Convert BGR to RGB
|
||||
)
|
||||
|
||||
return blob
|
||||
|
||||
@@ -6,6 +6,7 @@ from typing import Optional
|
||||
|
||||
from uniface.constants import ArcFaceWeights, MobileFaceWeights, SphereFaceWeights
|
||||
from uniface.model_store import verify_model_weights
|
||||
|
||||
from .base import BaseRecognizer, PreprocessConfig
|
||||
|
||||
__all__ = ["ArcFace", "MobileFace", "SphereFace"]
|
||||
@@ -33,14 +34,10 @@ class ArcFace(BaseRecognizer):
|
||||
def __init__(
|
||||
self,
|
||||
model_name: ArcFaceWeights = ArcFaceWeights.MNET,
|
||||
preprocessing: Optional[PreprocessConfig] = None
|
||||
preprocessing: Optional[PreprocessConfig] = None,
|
||||
) -> None:
|
||||
if preprocessing is None:
|
||||
preprocessing = PreprocessConfig(
|
||||
input_mean=127.5,
|
||||
input_std=127.5,
|
||||
input_size=(112, 112)
|
||||
)
|
||||
preprocessing = PreprocessConfig(input_mean=127.5, input_std=127.5, input_size=(112, 112))
|
||||
model_path = verify_model_weights(model_name)
|
||||
super().__init__(model_path=model_path, preprocessing=preprocessing)
|
||||
|
||||
@@ -67,14 +64,10 @@ class MobileFace(BaseRecognizer):
|
||||
def __init__(
|
||||
self,
|
||||
model_name: MobileFaceWeights = MobileFaceWeights.MNET_V2,
|
||||
preprocessing: Optional[PreprocessConfig] = None
|
||||
preprocessing: Optional[PreprocessConfig] = None,
|
||||
) -> None:
|
||||
if preprocessing is None:
|
||||
preprocessing = PreprocessConfig(
|
||||
input_mean=127.5,
|
||||
input_std=127.5,
|
||||
input_size=(112, 112)
|
||||
)
|
||||
preprocessing = PreprocessConfig(input_mean=127.5, input_std=127.5, input_size=(112, 112))
|
||||
model_path = verify_model_weights(model_name)
|
||||
super().__init__(model_path=model_path, preprocessing=preprocessing)
|
||||
|
||||
@@ -101,14 +94,10 @@ class SphereFace(BaseRecognizer):
|
||||
def __init__(
|
||||
self,
|
||||
model_name: SphereFaceWeights = SphereFaceWeights.SPHERE20,
|
||||
preprocessing: Optional[PreprocessConfig] = None
|
||||
preprocessing: Optional[PreprocessConfig] = None,
|
||||
) -> None:
|
||||
if preprocessing is None:
|
||||
preprocessing = PreprocessConfig(
|
||||
input_mean=127.5,
|
||||
input_std=127.5,
|
||||
input_size=(112, 112)
|
||||
)
|
||||
preprocessing = PreprocessConfig(input_mean=127.5, input_std=127.5, input_size=(112, 112))
|
||||
|
||||
model_path = verify_model_weights(model_name)
|
||||
super().__init__(model_path=model_path, preprocessing=preprocessing)
|
||||
|
||||
@@ -2,9 +2,10 @@
|
||||
# Author: Yakhyokhuja Valikhujaev
|
||||
# GitHub: https://github.com/yakhyo
|
||||
|
||||
from typing import List, Union
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
from typing import List, Union
|
||||
|
||||
|
||||
def draw_detections(
|
||||
@@ -12,7 +13,7 @@ def draw_detections(
|
||||
bboxes: Union[np.ndarray, List[List[float]]],
|
||||
scores: Union[np.ndarray, List[float]],
|
||||
landmarks: Union[np.ndarray, List[List[List[float]]]],
|
||||
vis_threshold: float = 0.6
|
||||
vis_threshold: float = 0.6,
|
||||
):
|
||||
"""
|
||||
Draws bounding boxes, scores, and landmarks from separate lists onto an image.
|
||||
@@ -42,8 +43,15 @@ def draw_detections(
|
||||
cv2.rectangle(image, tuple(bbox[:2]), tuple(bbox[2:]), (0, 0, 255), thickness)
|
||||
|
||||
# Draw score
|
||||
cv2.putText(image, f"{score:.2f}", (bbox[0], bbox[1] - 10),
|
||||
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), thickness)
|
||||
cv2.putText(
|
||||
image,
|
||||
f"{score:.2f}",
|
||||
(bbox[0], bbox[1] - 10),
|
||||
cv2.FONT_HERSHEY_SIMPLEX,
|
||||
0.5,
|
||||
(255, 255, 255),
|
||||
thickness,
|
||||
)
|
||||
|
||||
# Draw landmarks
|
||||
for j, point in enumerate(landmark_set):
|
||||
|
||||
Reference in New Issue
Block a user