mirror of
https://github.com/yakhyo/uniface.git
synced 2025-12-30 09:02:25 +00:00
add apple silicon support and update documentation
- add dynamic onnx provider selection for m1/m2/m3/m4 macs - replace mkdocs with simple markdown files - fix model download and scrfd detection issues - update ci/cd workflows
This commit is contained in:
389
scripts/TESTING.md
Normal file
389
scripts/TESTING.md
Normal file
@@ -0,0 +1,389 @@
|
||||
# Testing Scripts Guide
|
||||
|
||||
Complete guide to testing all scripts in the `scripts/` directory.
|
||||
|
||||
---
|
||||
|
||||
## 📁 Available Scripts
|
||||
|
||||
1. **download_model.py** - Download and verify model weights
|
||||
2. **run_detection.py** - Face detection on images
|
||||
3. **run_recognition.py** - Face recognition (extract embeddings)
|
||||
4. **run_face_search.py** - Real-time face matching with webcam
|
||||
5. **sha256_generate.py** - Generate SHA256 checksums for models
|
||||
|
||||
---
|
||||
|
||||
## Testing Each Script
|
||||
|
||||
### 1. Test Model Download
|
||||
|
||||
```bash
|
||||
# Download a specific model
|
||||
python scripts/download_model.py --model MNET_V2
|
||||
|
||||
# Download all RetinaFace models (takes ~5 minutes, ~200MB)
|
||||
python scripts/download_model.py
|
||||
|
||||
# Verify models are cached
|
||||
ls -lh ~/.uniface/models/
|
||||
```
|
||||
|
||||
**Expected Output:**
|
||||
```
|
||||
📥 Downloading model: retinaface_mnet_v2
|
||||
2025-11-08 00:00:00 - INFO - Downloading model 'RetinaFaceWeights.MNET_V2' from https://...
|
||||
Downloading ~/.uniface/models/retinaface_mnet_v2.onnx: 100%|████| 3.5M/3.5M
|
||||
2025-11-08 00:00:05 - INFO - Successfully downloaded 'RetinaFaceWeights.MNET_V2'
|
||||
✅ All requested weights are ready and verified.
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
### 2. Test Face Detection
|
||||
|
||||
```bash
|
||||
# Basic detection
|
||||
python scripts/run_detection.py --image assets/test.jpg
|
||||
|
||||
# With custom settings
|
||||
python scripts/run_detection.py \
|
||||
--image assets/test.jpg \
|
||||
--method scrfd \
|
||||
--threshold 0.7 \
|
||||
--save_dir outputs
|
||||
|
||||
# Benchmark mode (100 iterations)
|
||||
python scripts/run_detection.py \
|
||||
--image assets/test.jpg \
|
||||
--iterations 100
|
||||
```
|
||||
|
||||
**Expected Output:**
|
||||
```
|
||||
Initializing detector: retinaface
|
||||
2025-11-08 00:00:00 - INFO - Initializing RetinaFace with model=RetinaFaceWeights.MNET_V2...
|
||||
2025-11-08 00:00:01 - INFO - CoreML acceleration enabled (Apple Silicon)
|
||||
✅ Output saved at: outputs/test_out.jpg
|
||||
[1/1] ⏱️ Inference time: 0.0234 seconds
|
||||
```
|
||||
|
||||
**Verify Output:**
|
||||
```bash
|
||||
# Check output image was created
|
||||
ls -lh outputs/test_out.jpg
|
||||
|
||||
# View the image (macOS)
|
||||
open outputs/test_out.jpg
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
### 3. Test Face Recognition (Embedding Extraction)
|
||||
|
||||
```bash
|
||||
# Extract embeddings from an image
|
||||
python scripts/run_recognition.py --image assets/test.jpg
|
||||
|
||||
# With different models
|
||||
python scripts/run_recognition.py \
|
||||
--image assets/test.jpg \
|
||||
--detector scrfd \
|
||||
--recognizer mobileface
|
||||
```
|
||||
|
||||
**Expected Output:**
|
||||
```
|
||||
Initializing detector: retinaface
|
||||
Initializing recognizer: arcface
|
||||
2025-11-08 00:00:00 - INFO - Successfully initialized face encoder from ~/.uniface/models/w600k_mbf.onnx
|
||||
Detected 1 face(s). Extracting embeddings for the first face...
|
||||
- Embedding shape: (1, 512)
|
||||
- L2 norm of unnormalized embedding: 64.2341
|
||||
- L2 norm of normalized embedding: 1.0000
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
### 4. Test Real-Time Face Search (Webcam)
|
||||
|
||||
**Prerequisites:**
|
||||
- Webcam connected
|
||||
- Reference image with a clear face
|
||||
|
||||
```bash
|
||||
# Basic usage
|
||||
python scripts/run_face_search.py --image assets/test.jpg
|
||||
|
||||
# With custom models
|
||||
python scripts/run_face_search.py \
|
||||
--image assets/test.jpg \
|
||||
--detector scrfd \
|
||||
--recognizer arcface
|
||||
```
|
||||
|
||||
**Expected Behavior:**
|
||||
1. Webcam window opens
|
||||
2. Faces are detected in real-time
|
||||
3. Green box = Match (similarity > 0.4)
|
||||
4. Red box = Unknown (similarity < 0.4)
|
||||
5. Press 'q' to quit
|
||||
|
||||
**Expected Output:**
|
||||
```
|
||||
Initializing models...
|
||||
2025-11-08 00:00:00 - INFO - CoreML acceleration enabled (Apple Silicon)
|
||||
Extracting reference embedding...
|
||||
Webcam started. Press 'q' to quit.
|
||||
```
|
||||
|
||||
**Troubleshooting:**
|
||||
```bash
|
||||
# If webcam doesn't open
|
||||
python -c "import cv2; cap = cv2.VideoCapture(0); print('Webcam OK' if cap.isOpened() else 'Webcam FAIL')"
|
||||
|
||||
# If no faces detected
|
||||
# - Ensure good lighting
|
||||
# - Face should be frontal and clearly visible
|
||||
# - Try lowering threshold: edit script line 29, change 0.4 to 0.3
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
### 5. Test SHA256 Generator (For Developers)
|
||||
|
||||
```bash
|
||||
# Generate checksum for a model file
|
||||
python scripts/sha256_generate.py ~/.uniface/models/retinaface_mnet_v2.onnx
|
||||
|
||||
# Generate for all models
|
||||
for model in ~/.uniface/models/*.onnx; do
|
||||
python scripts/sha256_generate.py "$model"
|
||||
done
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 🔍 Quick Verification Tests
|
||||
|
||||
### Test 1: Imports Work
|
||||
|
||||
```bash
|
||||
python -c "
|
||||
from uniface.detection import create_detector
|
||||
from uniface.recognition import create_recognizer
|
||||
print('✅ Imports successful')
|
||||
"
|
||||
```
|
||||
|
||||
### Test 2: Models Download
|
||||
|
||||
```bash
|
||||
python -c "
|
||||
from uniface import RetinaFace
|
||||
detector = RetinaFace()
|
||||
print('✅ Model downloaded and loaded')
|
||||
"
|
||||
```
|
||||
|
||||
### Test 3: Detection Works
|
||||
|
||||
```bash
|
||||
python -c "
|
||||
import cv2
|
||||
import numpy as np
|
||||
from uniface import RetinaFace
|
||||
|
||||
detector = RetinaFace()
|
||||
image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
|
||||
faces = detector.detect(image)
|
||||
print(f'✅ Detection works, found {len(faces)} faces')
|
||||
"
|
||||
```
|
||||
|
||||
### Test 4: Recognition Works
|
||||
|
||||
```bash
|
||||
python -c "
|
||||
import cv2
|
||||
import numpy as np
|
||||
from uniface import RetinaFace, ArcFace
|
||||
|
||||
detector = RetinaFace()
|
||||
recognizer = ArcFace()
|
||||
image = cv2.imread('assets/test.jpg')
|
||||
faces = detector.detect(image)
|
||||
if faces:
|
||||
landmarks = np.array(faces[0]['landmarks'])
|
||||
embedding = recognizer.get_normalized_embedding(image, landmarks)
|
||||
print(f'✅ Recognition works, embedding shape: {embedding.shape}')
|
||||
else:
|
||||
print('⚠️ No faces detected in test image')
|
||||
"
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## End-to-End Test Workflow
|
||||
|
||||
Run this complete workflow to verify everything works:
|
||||
|
||||
```bash
|
||||
#!/bin/bash
|
||||
# Save as test_all_scripts.sh
|
||||
|
||||
echo "=== Testing UniFace Scripts ==="
|
||||
echo ""
|
||||
|
||||
# Test 1: Download models
|
||||
echo "1️⃣ Testing model download..."
|
||||
python scripts/download_model.py --model MNET_V2
|
||||
if [ $? -eq 0 ]; then
|
||||
echo "✅ Model download: PASS"
|
||||
else
|
||||
echo "❌ Model download: FAIL"
|
||||
exit 1
|
||||
fi
|
||||
echo ""
|
||||
|
||||
# Test 2: Face detection
|
||||
echo "2️⃣ Testing face detection..."
|
||||
python scripts/run_detection.py --image assets/test.jpg --save_dir /tmp/uniface_test
|
||||
if [ $? -eq 0 ] && [ -f /tmp/uniface_test/test_out.jpg ]; then
|
||||
echo "✅ Face detection: PASS"
|
||||
else
|
||||
echo "❌ Face detection: FAIL"
|
||||
exit 1
|
||||
fi
|
||||
echo ""
|
||||
|
||||
# Test 3: Face recognition
|
||||
echo "3️⃣ Testing face recognition..."
|
||||
python scripts/run_recognition.py --image assets/test.jpg > /tmp/uniface_recognition.log
|
||||
if [ $? -eq 0 ] && grep -q "Embedding shape" /tmp/uniface_recognition.log; then
|
||||
echo "✅ Face recognition: PASS"
|
||||
else
|
||||
echo "❌ Face recognition: FAIL"
|
||||
exit 1
|
||||
fi
|
||||
echo ""
|
||||
|
||||
echo "=== All Tests Passed! 🎉 ==="
|
||||
```
|
||||
|
||||
**Run the test suite:**
|
||||
```bash
|
||||
chmod +x test_all_scripts.sh
|
||||
./test_all_scripts.sh
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Performance Benchmarking
|
||||
|
||||
### Benchmark Detection Speed
|
||||
|
||||
```bash
|
||||
# Test different models
|
||||
for model in retinaface scrfd; do
|
||||
echo "Testing $model..."
|
||||
python scripts/run_detection.py \
|
||||
--image assets/test.jpg \
|
||||
--method $model \
|
||||
--iterations 50
|
||||
done
|
||||
```
|
||||
|
||||
### Benchmark Recognition Speed
|
||||
|
||||
```bash
|
||||
# Test different recognizers
|
||||
for recognizer in arcface mobileface; do
|
||||
echo "Testing $recognizer..."
|
||||
time python scripts/run_recognition.py \
|
||||
--image assets/test.jpg \
|
||||
--recognizer $recognizer
|
||||
done
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 🐛 Common Issues
|
||||
|
||||
### Issue: "No module named 'uniface'"
|
||||
|
||||
```bash
|
||||
# Solution: Install in editable mode
|
||||
pip install -e .
|
||||
```
|
||||
|
||||
### Issue: "Failed to load image"
|
||||
|
||||
```bash
|
||||
# Check image exists
|
||||
ls -lh assets/test.jpg
|
||||
|
||||
# Try with absolute path
|
||||
python scripts/run_detection.py --image $(pwd)/assets/test.jpg
|
||||
```
|
||||
|
||||
### Issue: "No faces detected"
|
||||
|
||||
```bash
|
||||
# Lower confidence threshold
|
||||
python scripts/run_detection.py \
|
||||
--image assets/test.jpg \
|
||||
--threshold 0.3
|
||||
```
|
||||
|
||||
### Issue: Models downloading slowly
|
||||
|
||||
```bash
|
||||
# Check internet connection
|
||||
curl -I https://github.com/yakhyo/uniface/releases
|
||||
|
||||
# Or download manually
|
||||
wget https://github.com/yakhyo/uniface/releases/download/v0.1.2/retinaface_mv2.onnx \
|
||||
-O ~/.uniface/models/retinaface_mnet_v2.onnx
|
||||
```
|
||||
|
||||
### Issue: CoreML not available on Mac
|
||||
|
||||
```bash
|
||||
# Install CoreML-enabled ONNX Runtime
|
||||
pip uninstall onnxruntime
|
||||
pip install onnxruntime-silicon
|
||||
|
||||
# Verify
|
||||
python -c "import onnxruntime as ort; print(ort.get_available_providers())"
|
||||
# Should show: ['CoreMLExecutionProvider', 'CPUExecutionProvider']
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## ✅ Script Status Summary
|
||||
|
||||
| Script | Status | API Updated | Tested |
|
||||
|-----------------------|--------|-------------|--------|
|
||||
| download_model.py | ✅ | ✅ | ✅ |
|
||||
| run_detection.py | ✅ | ✅ | ✅ |
|
||||
| run_recognition.py | ✅ | ✅ | ✅ |
|
||||
| run_face_search.py | ✅ | ✅ | ✅ |
|
||||
| sha256_generate.py | ✅ | N/A | ✅ |
|
||||
|
||||
All scripts are updated and working with the new dict-based API! 🎉
|
||||
|
||||
---
|
||||
|
||||
## 📝 Notes
|
||||
|
||||
- All scripts now use the factory functions (`create_detector`, `create_recognizer`)
|
||||
- Scripts work with the new dict-based detection API
|
||||
- Model download bug is fixed (enum vs string issue)
|
||||
- CoreML acceleration is automatically detected on Apple Silicon
|
||||
- All scripts include proper error handling
|
||||
|
||||
---
|
||||
|
||||
Need help with a specific script? Check the main [README.md](../README.md) or [QUICKSTART.md](../QUICKSTART.md)!
|
||||
|
||||
@@ -16,11 +16,11 @@ def main():
|
||||
if args.model:
|
||||
weight = RetinaFaceWeights[args.model]
|
||||
print(f"📥 Downloading model: {weight.value}")
|
||||
verify_model_weights(weight.value)
|
||||
verify_model_weights(weight) # Pass enum, not string
|
||||
else:
|
||||
print("📥 Downloading all models...")
|
||||
for weight in RetinaFaceWeights:
|
||||
verify_model_weights(weight.value)
|
||||
verify_model_weights(weight) # Pass enum, not string
|
||||
|
||||
print("✅ All requested weights are ready and verified.")
|
||||
|
||||
|
||||
@@ -6,9 +6,6 @@ import numpy as np
|
||||
from uniface.detection import create_detector
|
||||
from uniface.recognition import create_recognizer
|
||||
|
||||
# Import enums for argument choices
|
||||
from uniface.constants import RetinaFaceWeights, ArcFaceWeights, MobileFaceWeights, SphereFaceWeights
|
||||
|
||||
|
||||
def run_inference(detector, recognizer, image_path: str):
|
||||
"""
|
||||
@@ -67,7 +64,7 @@ def main():
|
||||
args = parser.parse_args()
|
||||
|
||||
print(f"Initializing detector: {args.detector}")
|
||||
detector = create_detector(method=args.detector, model_name=RetinaFaceWeights.MNET_V2)
|
||||
detector = create_detector(method=args.detector)
|
||||
|
||||
print(f"Initializing recognizer: {args.recognizer}")
|
||||
recognizer = create_recognizer(method=args.recognizer)
|
||||
|
||||
Reference in New Issue
Block a user