mirror of
https://github.com/yakhyo/uniface.git
synced 2025-12-30 09:02:25 +00:00
add apple silicon support and update documentation
- add dynamic onnx provider selection for m1/m2/m3/m4 macs - replace mkdocs with simple markdown files - fix model download and scrfd detection issues - update ci/cd workflows
This commit is contained in:
@@ -1,7 +1,8 @@
|
||||
import pytest
|
||||
import numpy as np
|
||||
from uniface import RetinaFace
|
||||
import pytest
|
||||
|
||||
from uniface.constants import RetinaFaceWeights
|
||||
from uniface.detection import RetinaFace
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
@@ -32,20 +33,27 @@ def test_inference_on_640x640_image(retinaface_model):
|
||||
# Generate a mock 640x640 BGR image
|
||||
mock_image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
|
||||
|
||||
# Run inference
|
||||
detections, landmarks = retinaface_model.detect(mock_image)
|
||||
# Run inference - returns list of dictionaries
|
||||
faces = retinaface_model.detect(mock_image)
|
||||
|
||||
# Check output types
|
||||
assert isinstance(detections, np.ndarray), "Detections should be a numpy array."
|
||||
assert isinstance(landmarks, np.ndarray), "Landmarks should be a numpy array."
|
||||
# Check output type
|
||||
assert isinstance(faces, list), "Detections should be a list."
|
||||
|
||||
# Check that detections have the expected shape
|
||||
if detections.size > 0: # If faces are detected
|
||||
assert detections.shape[1] == 5, "Each detection should have 5 values (x1, y1, x2, y2, score)."
|
||||
# Check that each face has the expected structure
|
||||
for face in faces:
|
||||
assert isinstance(face, dict), "Each detection should be a dictionary."
|
||||
assert "bbox" in face, "Each detection should have a 'bbox' key."
|
||||
assert "confidence" in face, "Each detection should have a 'confidence' key."
|
||||
assert "landmarks" in face, "Each detection should have a 'landmarks' key."
|
||||
|
||||
# Check landmarks shape
|
||||
if landmarks.size > 0:
|
||||
assert landmarks.shape[1:] == (5, 2), "Landmarks should have shape (N, 5, 2)."
|
||||
# Check bbox format
|
||||
bbox = face["bbox"]
|
||||
assert len(bbox) == 4, "BBox should have 4 values (x1, y1, x2, y2)."
|
||||
|
||||
# Check landmarks format
|
||||
landmarks = face["landmarks"]
|
||||
assert len(landmarks) == 5, "Should have 5 landmark points."
|
||||
assert all(len(pt) == 2 for pt in landmarks), "Each landmark should be (x, y)."
|
||||
|
||||
|
||||
def test_confidence_threshold(retinaface_model):
|
||||
@@ -56,12 +64,12 @@ def test_confidence_threshold(retinaface_model):
|
||||
mock_image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
|
||||
|
||||
# Run inference
|
||||
detections, _ = retinaface_model.detect(mock_image)
|
||||
faces = retinaface_model.detect(mock_image)
|
||||
|
||||
# Ensure all detections have confidence scores above the threshold
|
||||
if detections.size > 0: # If faces are detected
|
||||
confidence_scores = detections[:, 4]
|
||||
assert (confidence_scores >= 0.5).all(), "Some detections have confidence below the threshold."
|
||||
for face in faces:
|
||||
confidence = face["confidence"]
|
||||
assert confidence >= 0.5, f"Detection has confidence {confidence} below threshold 0.5"
|
||||
|
||||
|
||||
def test_no_faces_detected(retinaface_model):
|
||||
@@ -72,8 +80,7 @@ def test_no_faces_detected(retinaface_model):
|
||||
empty_image = np.zeros((640, 640, 3), dtype=np.uint8)
|
||||
|
||||
# Run inference
|
||||
detections, landmarks = retinaface_model.detect(empty_image)
|
||||
faces = retinaface_model.detect(empty_image)
|
||||
|
||||
# Ensure no detections or landmarks are found
|
||||
assert detections.size == 0, "Detections should be empty for a blank image."
|
||||
assert landmarks.size == 0, "Landmarks should be empty for a blank image."
|
||||
# Ensure no detections are found
|
||||
assert len(faces) == 0, "Should detect no faces in a blank image."
|
||||
|
||||
Reference in New Issue
Block a user