mirror of
https://github.com/yakhyo/uniface.git
synced 2025-12-30 09:02:25 +00:00
Initial code for facial landmark model
This commit is contained in:
@@ -31,7 +31,7 @@ class AgeGender:
|
|||||||
f"Initializing AgeGender with model={model_name}, "
|
f"Initializing AgeGender with model={model_name}, "
|
||||||
f"input_size={input_size}"
|
f"input_size={input_size}"
|
||||||
)
|
)
|
||||||
|
|
||||||
self.input_size = input_size
|
self.input_size = input_size
|
||||||
self.input_std = 1.0
|
self.input_std = 1.0
|
||||||
self.input_mean = 0.0
|
self.input_mean = 0.0
|
||||||
@@ -80,7 +80,7 @@ class AgeGender:
|
|||||||
"""
|
"""
|
||||||
width, height = bbox[2] - bbox[0], bbox[3] - bbox[1]
|
width, height = bbox[2] - bbox[0], bbox[3] - bbox[1]
|
||||||
center = (bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2
|
center = (bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2
|
||||||
scale = self.input_size[0] / (max(width, height)*1.5)
|
scale = self.input_size[0] / (max(width, height) * 1.5)
|
||||||
rotation = 0.0
|
rotation = 0.0
|
||||||
|
|
||||||
transformed_image, M = bbox_center_alignment(image, center, self.input_size[0], scale, rotation)
|
transformed_image, M = bbox_center_alignment(image, center, self.input_size[0], scale, rotation)
|
||||||
@@ -117,8 +117,6 @@ class AgeGender:
|
|||||||
return gender, age
|
return gender, age
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# TODO: For testing purposes only, remove later
|
# TODO: For testing purposes only, remove later
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
|
|||||||
@@ -144,3 +144,38 @@ def bbox_center_alignment(image, center, output_size, scale, rotation):
|
|||||||
cropped = cv2.warpAffine(image, M, (output_size, output_size), borderValue=0.0)
|
cropped = cv2.warpAffine(image, M, (output_size, output_size), borderValue=0.0)
|
||||||
|
|
||||||
return cropped, M
|
return cropped, M
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def trans_points2d(pts, M):
|
||||||
|
new_pts = np.zeros(shape=pts.shape, dtype=np.float32)
|
||||||
|
for i in range(pts.shape[0]):
|
||||||
|
pt = pts[i]
|
||||||
|
new_pt = np.array([pt[0], pt[1], 1.], dtype=np.float32)
|
||||||
|
new_pt = np.dot(M, new_pt)
|
||||||
|
#print('new_pt', new_pt.shape, new_pt)
|
||||||
|
new_pts[i] = new_pt[0:2]
|
||||||
|
|
||||||
|
return new_pts
|
||||||
|
|
||||||
|
|
||||||
|
def trans_points3d(pts, M):
|
||||||
|
scale = np.sqrt(M[0][0] * M[0][0] + M[0][1] * M[0][1])
|
||||||
|
#print(scale)
|
||||||
|
new_pts = np.zeros(shape=pts.shape, dtype=np.float32)
|
||||||
|
for i in range(pts.shape[0]):
|
||||||
|
pt = pts[i]
|
||||||
|
new_pt = np.array([pt[0], pt[1], 1.], dtype=np.float32)
|
||||||
|
new_pt = np.dot(M, new_pt)
|
||||||
|
#print('new_pt', new_pt.shape, new_pt)
|
||||||
|
new_pts[i][0:2] = new_pt[0:2]
|
||||||
|
new_pts[i][2] = pts[i][2] * scale
|
||||||
|
|
||||||
|
return new_pts
|
||||||
|
|
||||||
|
|
||||||
|
def trans_points(pts, M):
|
||||||
|
if pts.shape[1] == 2:
|
||||||
|
return trans_points2d(pts, M)
|
||||||
|
else:
|
||||||
|
return trans_points3d(pts, M)
|
||||||
99
uniface/landmark/model.py
Normal file
99
uniface/landmark/model.py
Normal file
@@ -0,0 +1,99 @@
|
|||||||
|
import cv2
|
||||||
|
import onnx
|
||||||
|
import onnxruntime
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
|
# from ..data import get_object
|
||||||
|
|
||||||
|
from uniface.face_utils import bbox_center_alignment, trans_points
|
||||||
|
|
||||||
|
__all__ = [
|
||||||
|
'Landmark',
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
|
class Landmark:
|
||||||
|
def __init__(self, model_file=None, session=None):
|
||||||
|
assert model_file is not None
|
||||||
|
self.model_file = model_file
|
||||||
|
self.session = session
|
||||||
|
|
||||||
|
model = onnx.load(self.model_file)
|
||||||
|
|
||||||
|
input_mean = 0.0
|
||||||
|
input_std = 1.0
|
||||||
|
|
||||||
|
self.input_mean = input_mean
|
||||||
|
self.input_std = input_std
|
||||||
|
# print('input mean and std:', model_file, self.input_mean, self.input_std)
|
||||||
|
|
||||||
|
if self.session is None:
|
||||||
|
self.session = onnxruntime.InferenceSession(self.model_file, None)
|
||||||
|
input_cfg = self.session.get_inputs()[0]
|
||||||
|
input_shape = input_cfg.shape
|
||||||
|
input_name = input_cfg.name
|
||||||
|
|
||||||
|
self.input_size = tuple(input_shape[2:4][::-1])
|
||||||
|
self.input_shape = input_shape
|
||||||
|
|
||||||
|
outputs = self.session.get_outputs()
|
||||||
|
output_names = []
|
||||||
|
for out in outputs:
|
||||||
|
output_names.append(out.name)
|
||||||
|
|
||||||
|
self.input_name = input_name
|
||||||
|
self.output_names = output_names
|
||||||
|
|
||||||
|
assert len(self.output_names) == 1
|
||||||
|
|
||||||
|
output_shape = outputs[0].shape
|
||||||
|
self.require_pose = False
|
||||||
|
|
||||||
|
self.lmk_dim = 2
|
||||||
|
self.lmk_num = output_shape[1]//self.lmk_dim
|
||||||
|
self.taskname = 'landmark_%dd_%d' % (self.lmk_dim, self.lmk_num)
|
||||||
|
|
||||||
|
def prepare(self, ctx_id, **kwargs):
|
||||||
|
if ctx_id < 0:
|
||||||
|
self.session.set_providers(['CPUExecutionProvider'])
|
||||||
|
|
||||||
|
def get(self, img, bbox):
|
||||||
|
|
||||||
|
w, h = (bbox[2] - bbox[0]), (bbox[3] - bbox[1])
|
||||||
|
center = (bbox[2] + bbox[0]) / 2, (bbox[3] + bbox[1]) / 2
|
||||||
|
rotate = 0
|
||||||
|
_scale = self.input_size[0] / (max(w, h)*1.5)
|
||||||
|
# print('param:', img.shape, bbox, center, self.input_size, _scale, rotate)
|
||||||
|
|
||||||
|
aimg, M = bbox_center_alignment(img, center, self.input_size[0], _scale, rotate)
|
||||||
|
input_size = tuple(aimg.shape[0:2][::-1])
|
||||||
|
|
||||||
|
# assert input_size==self.input_size
|
||||||
|
blob = cv2.dnn.blobFromImage(
|
||||||
|
aimg,
|
||||||
|
1.0/self.input_std,
|
||||||
|
input_size,
|
||||||
|
(self.input_mean, self.input_mean, self.input_mean),
|
||||||
|
swapRB=True
|
||||||
|
)
|
||||||
|
pred = self.session.run(self.output_names, {self.input_name: blob})[0][0]
|
||||||
|
if pred.shape[0] >= 3000:
|
||||||
|
pred = pred.reshape((-1, 3))
|
||||||
|
else:
|
||||||
|
pred = pred.reshape((-1, 2))
|
||||||
|
if self.lmk_num < pred.shape[0]:
|
||||||
|
pred = pred[self.lmk_num*-1:, :]
|
||||||
|
pred[:, 0:2] += 1
|
||||||
|
pred[:, 0:2] *= (self.input_size[0] // 2)
|
||||||
|
if pred.shape[1] == 3:
|
||||||
|
pred[:, 2] *= (self.input_size[0] // 2)
|
||||||
|
|
||||||
|
IM = cv2.invertAffineTransform(M)
|
||||||
|
pred = trans_points(pred, IM)
|
||||||
|
|
||||||
|
return pred
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
model = Landmark("2d106det.onnx")
|
||||||
Reference in New Issue
Block a user