mirror of
https://github.com/yakhyo/uniface.git
synced 2025-12-30 00:52:25 +00:00
feat: Add face blurring for privacy (#39)
* feat: Add face blurring for privacy * chore: Revert back the version
This commit is contained in:
committed by
GitHub
parent
13b518e96d
commit
d085c6a822
@@ -51,6 +51,7 @@ Example notebooks demonstrating library usage:
|
||||
| Face Recognition | [face_analyzer.ipynb](examples/face_analyzer.ipynb) |
|
||||
| Face Verification | [face_verification.ipynb](examples/face_verification.ipynb) |
|
||||
| Face Search | [face_search.ipynb](examples/face_search.ipynb) |
|
||||
| Face Anonymization | [face_anonymization.ipynb](examples/face_anonymization.ipynb) |
|
||||
|
||||
## Questions?
|
||||
|
||||
|
||||
@@ -328,7 +328,86 @@ Detected 12 facial components
|
||||
|
||||
---
|
||||
|
||||
## 9. Batch Processing (3 minutes)
|
||||
## 9. Face Anonymization (2 minutes)
|
||||
|
||||
Automatically blur faces for privacy protection:
|
||||
|
||||
```python
|
||||
from uniface.privacy import anonymize_faces
|
||||
import cv2
|
||||
|
||||
# One-liner: automatic detection and blurring
|
||||
image = cv2.imread("group_photo.jpg")
|
||||
anonymized = anonymize_faces(image, method='pixelate')
|
||||
cv2.imwrite("anonymized.jpg", anonymized)
|
||||
print("Faces anonymized successfully!")
|
||||
```
|
||||
|
||||
**Manual control with custom parameters:**
|
||||
|
||||
```python
|
||||
from uniface import RetinaFace
|
||||
from uniface.privacy import BlurFace
|
||||
|
||||
# Initialize detector and blurrer
|
||||
detector = RetinaFace()
|
||||
blurrer = BlurFace(method='gaussian', blur_strength=5.0)
|
||||
|
||||
# Detect and anonymize
|
||||
faces = detector.detect(image)
|
||||
anonymized = blurrer.anonymize(image, faces)
|
||||
cv2.imwrite("output.jpg", anonymized)
|
||||
```
|
||||
|
||||
**Available blur methods:**
|
||||
|
||||
```python
|
||||
# Pixelation (news media standard)
|
||||
blurrer = BlurFace(method='pixelate', pixel_blocks=8)
|
||||
|
||||
# Gaussian blur (smooth, natural)
|
||||
blurrer = BlurFace(method='gaussian', blur_strength=4.0)
|
||||
|
||||
# Black boxes (maximum privacy)
|
||||
blurrer = BlurFace(method='blackout', color=(0, 0, 0))
|
||||
|
||||
# Elliptical blur (natural face shape)
|
||||
blurrer = BlurFace(method='elliptical', blur_strength=3.0, margin=30)
|
||||
|
||||
# Median blur (edge-preserving)
|
||||
blurrer = BlurFace(method='median', blur_strength=3.0)
|
||||
```
|
||||
|
||||
**Webcam anonymization:**
|
||||
|
||||
```python
|
||||
import cv2
|
||||
from uniface import RetinaFace
|
||||
from uniface.privacy import BlurFace
|
||||
|
||||
detector = RetinaFace()
|
||||
blurrer = BlurFace(method='pixelate')
|
||||
cap = cv2.VideoCapture(0)
|
||||
|
||||
while True:
|
||||
ret, frame = cap.read()
|
||||
if not ret:
|
||||
break
|
||||
|
||||
faces = detector.detect(frame)
|
||||
frame = blurrer.anonymize(frame, faces, inplace=True)
|
||||
|
||||
cv2.imshow('Anonymized', frame)
|
||||
if cv2.waitKey(1) & 0xFF == ord('q'):
|
||||
break
|
||||
|
||||
cap.release()
|
||||
cv2.destroyAllWindows()
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 10. Batch Processing (3 minutes)
|
||||
|
||||
Process multiple images:
|
||||
|
||||
@@ -361,7 +440,7 @@ print("Done!")
|
||||
|
||||
---
|
||||
|
||||
## 10. Model Selection
|
||||
## 11. Model Selection
|
||||
|
||||
Choose the right model for your use case:
|
||||
|
||||
|
||||
30
README.md
30
README.md
@@ -23,6 +23,7 @@
|
||||
- **Face Parsing**: BiSeNet-based semantic segmentation with 19 facial component classes
|
||||
- **Gaze Estimation**: Real-time gaze direction prediction with MobileGaze
|
||||
- **Attribute Analysis**: Age, gender, and emotion detection
|
||||
- **Face Anonymization**: Privacy-preserving face blurring with multiple methods
|
||||
- **Face Alignment**: Precise alignment for downstream tasks
|
||||
- **Hardware Acceleration**: ARM64 optimizations (Apple Silicon), CUDA (NVIDIA), CPU fallback
|
||||
- **Simple API**: Intuitive factory functions and clean interfaces
|
||||
@@ -198,6 +199,34 @@ vis_result = vis_parsing_maps(face_rgb, mask, save_image=False)
|
||||
print(f"Unique classes: {len(np.unique(mask))}")
|
||||
```
|
||||
|
||||
### Face Anonymization
|
||||
|
||||
Blur or pixelate faces for privacy protection:
|
||||
|
||||
```python
|
||||
from uniface import RetinaFace
|
||||
from uniface.privacy import BlurFace, anonymize_faces
|
||||
|
||||
# Method 1: One-liner with automatic detection
|
||||
anonymized = anonymize_faces(image, method='pixelate')
|
||||
|
||||
# Method 2: Manual control with custom parameters
|
||||
detector = RetinaFace()
|
||||
blurrer = BlurFace(method='gaussian', blur_strength=4.0)
|
||||
|
||||
faces = detector.detect(image)
|
||||
anonymized = blurrer.anonymize(image, faces)
|
||||
|
||||
# Available methods with examples
|
||||
methods = {
|
||||
'gaussian': BlurFace(method='gaussian', blur_strength=3.0), # Smooth, natural blur
|
||||
'pixelate': BlurFace(method='pixelate', pixel_blocks=10), # Blocky effect (news media)
|
||||
'blackout': BlurFace(method='blackout', color=(0, 0, 0)), # Solid color (max privacy)
|
||||
'elliptical': BlurFace(method='elliptical', margin=20), # Soft oval blur
|
||||
'median': BlurFace(method='median', blur_strength=3.0) # Edge-preserving
|
||||
}
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Documentation
|
||||
@@ -216,6 +245,7 @@ print(f"Unique classes: {len(np.unique(mask))}")
|
||||
from uniface.detection import RetinaFace, SCRFD
|
||||
from uniface.recognition import ArcFace
|
||||
from uniface.landmark import Landmark106
|
||||
from uniface.privacy import BlurFace, anonymize_faces
|
||||
|
||||
from uniface.constants import SCRFDWeights
|
||||
|
||||
|
||||
325
examples/face_anonymization.ipynb
Normal file
325
examples/face_anonymization.ipynb
Normal file
File diff suppressed because one or more lines are too long
@@ -7,6 +7,7 @@ Scripts for testing UniFace features.
|
||||
| Script | Description |
|
||||
|--------|-------------|
|
||||
| `run_detection.py` | Face detection on image or webcam |
|
||||
| `run_anonymization.py` | Face anonymization/blurring for privacy |
|
||||
| `run_age_gender.py` | Age and gender prediction |
|
||||
| `run_emotion.py` | Emotion detection (7 or 8 emotions) |
|
||||
| `run_gaze_estimation.py` | Gaze direction estimation |
|
||||
@@ -26,6 +27,11 @@ Scripts for testing UniFace features.
|
||||
python scripts/run_detection.py --image assets/test.jpg
|
||||
python scripts/run_detection.py --webcam
|
||||
|
||||
# Face anonymization
|
||||
python scripts/run_anonymization.py --image assets/test.jpg --method pixelate
|
||||
python scripts/run_anonymization.py --webcam --method gaussian
|
||||
python scripts/run_anonymization.py --image photo.jpg --method pixelate --pixel-blocks 5
|
||||
|
||||
# Age and gender
|
||||
python scripts/run_age_gender.py --image assets/test.jpg
|
||||
python scripts/run_age_gender.py --webcam
|
||||
|
||||
207
scripts/run_anonymization.py
Normal file
207
scripts/run_anonymization.py
Normal file
@@ -0,0 +1,207 @@
|
||||
# Face anonymization/blurring for privacy
|
||||
# Usage: python run_anonymization.py --image path/to/image.jpg --method pixelate
|
||||
# python run_anonymization.py --webcam --method gaussian
|
||||
|
||||
import argparse
|
||||
import os
|
||||
|
||||
import cv2
|
||||
|
||||
from uniface import RetinaFace
|
||||
from uniface.privacy import BlurFace
|
||||
|
||||
|
||||
def process_image(
|
||||
detector,
|
||||
blurrer: BlurFace,
|
||||
image_path: str,
|
||||
save_dir: str = 'outputs',
|
||||
show_detections: bool = False,
|
||||
):
|
||||
"""Process a single image."""
|
||||
image = cv2.imread(image_path)
|
||||
if image is None:
|
||||
print(f"Error: Failed to load image from '{image_path}'")
|
||||
return
|
||||
|
||||
# Detect faces
|
||||
faces = detector.detect(image)
|
||||
print(f'Detected {len(faces)} face(s)')
|
||||
|
||||
# Optionally draw detection boxes before blurring
|
||||
if show_detections and faces:
|
||||
from uniface.visualization import draw_detections
|
||||
|
||||
preview = image.copy()
|
||||
bboxes = [face['bbox'] for face in faces]
|
||||
scores = [face['confidence'] for face in faces]
|
||||
landmarks = [face['landmarks'] for face in faces]
|
||||
draw_detections(preview, bboxes, scores, landmarks)
|
||||
|
||||
# Show preview
|
||||
cv2.imshow('Detections (Press any key to continue)', preview)
|
||||
cv2.waitKey(0)
|
||||
cv2.destroyAllWindows()
|
||||
|
||||
# Anonymize faces
|
||||
if faces:
|
||||
anonymized = blurrer.anonymize(image, faces)
|
||||
else:
|
||||
anonymized = image
|
||||
|
||||
# Save output
|
||||
os.makedirs(save_dir, exist_ok=True)
|
||||
basename = os.path.splitext(os.path.basename(image_path))[0]
|
||||
output_path = os.path.join(save_dir, f'{basename}_anonymized.jpg')
|
||||
cv2.imwrite(output_path, anonymized)
|
||||
print(f'Output saved: {output_path}')
|
||||
|
||||
|
||||
def run_webcam(detector, blurrer: BlurFace):
|
||||
"""Run real-time anonymization on webcam."""
|
||||
cap = cv2.VideoCapture(0)
|
||||
if not cap.isOpened():
|
||||
print('Cannot open webcam')
|
||||
return
|
||||
|
||||
print("Press 'q' to quit")
|
||||
|
||||
while True:
|
||||
ret, frame = cap.read()
|
||||
frame = cv2.flip(frame, 1) # mirror for natural interaction
|
||||
if not ret:
|
||||
break
|
||||
|
||||
# Detect and anonymize
|
||||
faces = detector.detect(frame)
|
||||
if faces:
|
||||
frame = blurrer.anonymize(frame, faces, inplace=True)
|
||||
|
||||
# Display info
|
||||
cv2.putText(
|
||||
frame,
|
||||
f'Faces blurred: {len(faces)} | Method: {blurrer.method}',
|
||||
(10, 30),
|
||||
cv2.FONT_HERSHEY_SIMPLEX,
|
||||
0.7,
|
||||
(0, 255, 0),
|
||||
2,
|
||||
)
|
||||
|
||||
cv2.imshow('Face Anonymization (Press q to quit)', frame)
|
||||
|
||||
if cv2.waitKey(1) & 0xFF == ord('q'):
|
||||
break
|
||||
|
||||
cap.release()
|
||||
cv2.destroyAllWindows()
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(
|
||||
description='Face anonymization using various blur methods',
|
||||
formatter_class=argparse.RawDescriptionHelpFormatter,
|
||||
epilog="""
|
||||
Examples:
|
||||
# Anonymize image with pixelation (default)
|
||||
python run_anonymization.py --image photo.jpg
|
||||
|
||||
# Use Gaussian blur with custom strength
|
||||
python run_anonymization.py --image photo.jpg --method gaussian --blur-strength 5.0
|
||||
|
||||
# Real-time webcam anonymization
|
||||
python run_anonymization.py --webcam --method pixelate
|
||||
|
||||
# Black boxes for maximum privacy
|
||||
python run_anonymization.py --image photo.jpg --method blackout
|
||||
|
||||
# Custom pixelation intensity
|
||||
python run_anonymization.py --image photo.jpg --method pixelate --pixel-blocks 5
|
||||
""",
|
||||
)
|
||||
|
||||
# Input/output
|
||||
parser.add_argument('--image', type=str, help='Path to input image')
|
||||
parser.add_argument('--webcam', action='store_true', help='Use webcam for real-time anonymization')
|
||||
parser.add_argument('--save-dir', type=str, default='outputs', help='Output directory (default: outputs)')
|
||||
|
||||
# Blur method
|
||||
parser.add_argument(
|
||||
'--method',
|
||||
type=str,
|
||||
default='pixelate',
|
||||
choices=['gaussian', 'pixelate', 'blackout', 'elliptical', 'median'],
|
||||
help='Blur method (default: pixelate)',
|
||||
)
|
||||
|
||||
# Method-specific parameters
|
||||
parser.add_argument(
|
||||
'--blur-strength',
|
||||
type=float,
|
||||
default=3.0,
|
||||
help='Blur strength for gaussian/elliptical/median (default: 3.0)',
|
||||
)
|
||||
parser.add_argument(
|
||||
'--pixel-blocks',
|
||||
type=int,
|
||||
default=20,
|
||||
help='Number of pixel blocks for pixelate (default: 10, lower=more pixelated)',
|
||||
)
|
||||
parser.add_argument(
|
||||
'--color',
|
||||
type=str,
|
||||
default='0,0,0',
|
||||
help='Fill color for blackout as R,G,B (default: 0,0,0 for black)',
|
||||
)
|
||||
parser.add_argument('--margin', type=int, default=20, help='Margin for elliptical blur (default: 20)')
|
||||
|
||||
# Detection
|
||||
parser.add_argument(
|
||||
'--conf-thresh',
|
||||
type=float,
|
||||
default=0.5,
|
||||
help='Detection confidence threshold (default: 0.5)',
|
||||
)
|
||||
|
||||
# Visualization
|
||||
parser.add_argument(
|
||||
'--show-detections',
|
||||
action='store_true',
|
||||
help='Show detection boxes before blurring (image mode only)',
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
# Validate input
|
||||
if not args.image and not args.webcam:
|
||||
parser.error('Either --image or --webcam must be specified')
|
||||
|
||||
# Parse color
|
||||
color_values = [int(x) for x in args.color.split(',')]
|
||||
if len(color_values) != 3:
|
||||
parser.error('--color must be in format R,G,B (e.g., 0,0,0)')
|
||||
color = tuple(color_values)
|
||||
|
||||
# Initialize detector
|
||||
print(f'Initializing face detector (conf_thresh={args.conf_thresh})...')
|
||||
detector = RetinaFace(conf_thresh=args.conf_thresh)
|
||||
|
||||
# Initialize blurrer
|
||||
print(f'Initializing blur method: {args.method}')
|
||||
blurrer = BlurFace(
|
||||
method=args.method,
|
||||
blur_strength=args.blur_strength,
|
||||
pixel_blocks=args.pixel_blocks,
|
||||
color=color,
|
||||
margin=args.margin,
|
||||
)
|
||||
|
||||
# Run
|
||||
if args.webcam:
|
||||
run_webcam(detector, blurrer)
|
||||
else:
|
||||
process_image(detector, blurrer, args.image, args.save_dir, args.show_detections)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
@@ -40,6 +40,7 @@ from .detection import (
|
||||
from .gaze import MobileGaze, create_gaze_estimator
|
||||
from .landmark import Landmark106, create_landmarker
|
||||
from .parsing import BiSeNet, create_face_parser
|
||||
from .privacy import BlurFace, anonymize_faces
|
||||
from .recognition import ArcFace, MobileFace, SphereFace, create_recognizer
|
||||
|
||||
__all__ = [
|
||||
@@ -74,6 +75,9 @@ __all__ = [
|
||||
# Attribute models
|
||||
'AgeGender',
|
||||
'Emotion',
|
||||
# Privacy
|
||||
'BlurFace',
|
||||
'anonymize_faces',
|
||||
# Utilities
|
||||
'compute_similarity',
|
||||
'draw_detections',
|
||||
|
||||
@@ -51,8 +51,4 @@ def create_gaze_estimator(method: str = 'mobilegaze', **kwargs) -> BaseGazeEstim
|
||||
raise ValueError(f"Unsupported gaze estimation method: '{method}'. Available: {available}")
|
||||
|
||||
|
||||
__all__ = [
|
||||
'create_gaze_estimator',
|
||||
'MobileGaze',
|
||||
'BaseGazeEstimator',
|
||||
]
|
||||
__all__ = ['create_gaze_estimator', 'MobileGaze', 'BaseGazeEstimator']
|
||||
|
||||
52
uniface/privacy/__init__.py
Normal file
52
uniface/privacy/__init__.py
Normal file
@@ -0,0 +1,52 @@
|
||||
# Copyright 2025 Yakhyokhuja Valikhujaev
|
||||
# Author: Yakhyokhuja Valikhujaev
|
||||
# GitHub: https://github.com/yakhyo
|
||||
|
||||
from typing import Optional
|
||||
|
||||
import numpy as np
|
||||
|
||||
from .blur import BlurFace
|
||||
|
||||
|
||||
def anonymize_faces(
|
||||
image: np.ndarray,
|
||||
detector: Optional[object] = None,
|
||||
method: str = 'pixelate',
|
||||
blur_strength: float = 3.0,
|
||||
pixel_blocks: int = 10,
|
||||
conf_thresh: float = 0.5,
|
||||
**kwargs,
|
||||
) -> np.ndarray:
|
||||
"""One-line face anonymization with automatic detection.
|
||||
|
||||
Args:
|
||||
image (np.ndarray): Input image (BGR format).
|
||||
detector: Face detector instance. Creates RetinaFace if None.
|
||||
method (str): Blur method name. Defaults to 'pixelate'.
|
||||
blur_strength (float): Blur intensity. Defaults to 3.0.
|
||||
pixel_blocks (int): Block count for pixelate. Defaults to 10.
|
||||
conf_thresh (float): Detection confidence threshold. Defaults to 0.5.
|
||||
**kwargs: Additional detector arguments.
|
||||
|
||||
Returns:
|
||||
np.ndarray: Anonymized image.
|
||||
|
||||
Example:
|
||||
>>> from uniface.privacy import anonymize_faces
|
||||
>>> anonymized = anonymize_faces(image, method='pixelate')
|
||||
"""
|
||||
if detector is None:
|
||||
try:
|
||||
from uniface import RetinaFace
|
||||
|
||||
detector = RetinaFace(conf_thresh=conf_thresh, **kwargs)
|
||||
except ImportError as err:
|
||||
raise ImportError('Could not import RetinaFace. Please ensure UniFace is properly installed.') from err
|
||||
|
||||
faces = detector.detect(image)
|
||||
blurrer = BlurFace(method=method, blur_strength=blur_strength, pixel_blocks=pixel_blocks)
|
||||
return blurrer.anonymize(image, faces)
|
||||
|
||||
|
||||
__all__ = ['BlurFace', 'anonymize_faces']
|
||||
193
uniface/privacy/blur.py
Normal file
193
uniface/privacy/blur.py
Normal file
@@ -0,0 +1,193 @@
|
||||
# Copyright 2025 Yakhyokhuja Valikhujaev
|
||||
# Author: Yakhyokhuja Valikhujaev
|
||||
# GitHub: https://github.com/yakhyo
|
||||
|
||||
from typing import Dict, List, Tuple, Union
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
__all__ = ['BlurFace']
|
||||
|
||||
|
||||
def _gaussian_blur(region: np.ndarray, strength: float = 3.0) -> np.ndarray:
|
||||
"""Apply Gaussian blur to a region."""
|
||||
h, w = region.shape[:2]
|
||||
kernel_size = max(3, int((min(h, w) / 7) * strength)) | 1
|
||||
return cv2.GaussianBlur(region, (kernel_size, kernel_size), 0)
|
||||
|
||||
|
||||
def _median_blur(region: np.ndarray, strength: float = 3.0) -> np.ndarray:
|
||||
"""Apply median blur to a region."""
|
||||
h, w = region.shape[:2]
|
||||
kernel_size = max(3, int((min(h, w) / 7) * strength)) | 1
|
||||
return cv2.medianBlur(region, kernel_size)
|
||||
|
||||
|
||||
def _pixelate_blur(region: np.ndarray, blocks: int = 10) -> np.ndarray:
|
||||
"""Apply pixelation to a region."""
|
||||
h, w = region.shape[:2]
|
||||
temp_h, temp_w = max(1, h // blocks), max(1, w // blocks)
|
||||
temp = cv2.resize(region, (temp_w, temp_h), interpolation=cv2.INTER_LINEAR)
|
||||
return cv2.resize(temp, (w, h), interpolation=cv2.INTER_NEAREST)
|
||||
|
||||
|
||||
def _blackout_blur(region: np.ndarray, color: Tuple[int, int, int] = (0, 0, 0)) -> np.ndarray:
|
||||
"""Replace region with solid color."""
|
||||
return np.full_like(region, color)
|
||||
|
||||
|
||||
class EllipticalBlur:
|
||||
"""Elliptical blur with soft, feathered edges.
|
||||
|
||||
This blur applies Gaussian blur within an elliptical mask that follows
|
||||
the natural oval shape of faces, requiring full image context for proper blending.
|
||||
|
||||
Args:
|
||||
blur_strength (float): Blur intensity multiplier. Defaults to 3.0.
|
||||
margin (int): Extra pixels to extend ellipse beyond bbox. Defaults to 20.
|
||||
"""
|
||||
|
||||
def __init__(self, blur_strength: float = 3.0, margin: int = 20):
|
||||
self.blur_strength = blur_strength
|
||||
self.margin = margin
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
bboxes: List[Union[Tuple, List]],
|
||||
inplace: bool = False,
|
||||
) -> np.ndarray:
|
||||
if not inplace:
|
||||
image = image.copy()
|
||||
|
||||
h, w = image.shape[:2]
|
||||
|
||||
for bbox in bboxes:
|
||||
x1, y1, x2, y2 = map(int, bbox)
|
||||
center_x, center_y = (x1 + x2) // 2, (y1 + y2) // 2
|
||||
axes_x = (x2 - x1) // 2 + self.margin
|
||||
axes_y = (y2 - y1) // 2 + self.margin
|
||||
|
||||
# Create soft elliptical mask
|
||||
mask = np.zeros((h, w), dtype=np.float32)
|
||||
cv2.ellipse(mask, (center_x, center_y), (axes_x, axes_y), 0, 0, 360, 255, -1)
|
||||
mask = cv2.GaussianBlur(mask, (51, 51), 0) / 255.0
|
||||
mask = mask[:, :, np.newaxis]
|
||||
|
||||
kernel_size = max(3, int((min(axes_y, axes_x) * 2 / 7) * self.blur_strength)) | 1
|
||||
blurred = cv2.GaussianBlur(image, (kernel_size, kernel_size), 0)
|
||||
image = (blurred * mask + image * (1 - mask)).astype(np.uint8)
|
||||
|
||||
return image
|
||||
|
||||
|
||||
class BlurFace:
|
||||
"""Face blurring with multiple anonymization methods.
|
||||
|
||||
Args:
|
||||
method (str): Blur method - 'gaussian', 'pixelate', 'blackout', 'elliptical', or 'median'.
|
||||
Defaults to 'pixelate'.
|
||||
blur_strength (float): Intensity for gaussian/elliptical/median. Defaults to 3.0.
|
||||
pixel_blocks (int): Block count for pixelate. Defaults to 10.
|
||||
color (Tuple[int, int, int]): Fill color (BGR) for blackout. Defaults to (0, 0, 0).
|
||||
margin (int): Edge margin for elliptical. Defaults to 20.
|
||||
|
||||
Example:
|
||||
>>> blurrer = BlurFace(method='pixelate')
|
||||
>>> anonymized = blurrer.anonymize(image, faces)
|
||||
"""
|
||||
|
||||
VALID_METHODS = {'gaussian', 'pixelate', 'blackout', 'elliptical', 'median'}
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
method: str = 'pixelate',
|
||||
blur_strength: float = 3.0,
|
||||
pixel_blocks: int = 15,
|
||||
color: Tuple[int, int, int] = (0, 0, 0),
|
||||
margin: int = 20,
|
||||
):
|
||||
self.method = method.lower()
|
||||
self._blur_strength = blur_strength
|
||||
self._pixel_blocks = pixel_blocks
|
||||
self._color = color
|
||||
self._margin = margin
|
||||
|
||||
if self.method not in self.VALID_METHODS:
|
||||
raise ValueError(f"Invalid blur method: '{method}'. Choose from: {sorted(self.VALID_METHODS)}")
|
||||
|
||||
if self.method == 'elliptical':
|
||||
self._elliptical = EllipticalBlur(blur_strength, margin)
|
||||
|
||||
def _blur_region(self, region: np.ndarray) -> np.ndarray:
|
||||
if self.method == 'gaussian':
|
||||
return _gaussian_blur(region, self._blur_strength)
|
||||
elif self.method == 'median':
|
||||
return _median_blur(region, self._blur_strength)
|
||||
elif self.method == 'pixelate':
|
||||
return _pixelate_blur(region, self._pixel_blocks)
|
||||
elif self.method == 'blackout':
|
||||
return _blackout_blur(region, self._color)
|
||||
|
||||
def anonymize(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
faces: List[Dict],
|
||||
inplace: bool = False,
|
||||
) -> np.ndarray:
|
||||
"""Anonymize faces in an image.
|
||||
|
||||
Args:
|
||||
image (np.ndarray): Input image (BGR format).
|
||||
faces (List[Dict]): Face detections with 'bbox' key containing [x1, y1, x2, y2].
|
||||
inplace (bool): Modify image in-place if True. Defaults to False.
|
||||
|
||||
Returns:
|
||||
np.ndarray: Image with anonymized faces.
|
||||
"""
|
||||
if not faces:
|
||||
return image if inplace else image.copy()
|
||||
|
||||
bboxes = [face['bbox'] for face in faces]
|
||||
return self.blur_regions(image, bboxes, inplace)
|
||||
|
||||
def blur_regions(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
bboxes: List[Union[Tuple, List]],
|
||||
inplace: bool = False,
|
||||
) -> np.ndarray:
|
||||
"""Blur specific rectangular regions in an image.
|
||||
|
||||
Args:
|
||||
image (np.ndarray): Input image (BGR format).
|
||||
bboxes (List): Bounding boxes as [x1, y1, x2, y2].
|
||||
inplace (bool): Modify image in-place if True. Defaults to False.
|
||||
|
||||
Returns:
|
||||
np.ndarray: Image with blurred regions.
|
||||
"""
|
||||
if not bboxes:
|
||||
return image if inplace else image.copy()
|
||||
|
||||
if self.method == 'elliptical':
|
||||
return self._elliptical(image, bboxes, inplace)
|
||||
|
||||
if not inplace:
|
||||
image = image.copy()
|
||||
|
||||
h, w = image.shape[:2]
|
||||
|
||||
for bbox in bboxes:
|
||||
x1, y1, x2, y2 = map(int, bbox)
|
||||
x1, y1 = max(0, x1), max(0, y1)
|
||||
x2, y2 = min(w, x2), min(h, y2)
|
||||
|
||||
if x2 > x1 and y2 > y1:
|
||||
image[y1:y2, x1:x2] = self._blur_region(image[y1:y2, x1:x2])
|
||||
|
||||
return image
|
||||
|
||||
def __repr__(self) -> str:
|
||||
return f"BlurFace(method='{self.method}')"
|
||||
@@ -55,10 +55,4 @@ def create_recognizer(method: str = 'arcface', **kwargs) -> BaseRecognizer:
|
||||
raise ValueError(f"Unsupported method: '{method}'. Available: {available}")
|
||||
|
||||
|
||||
__all__ = [
|
||||
'create_recognizer',
|
||||
'ArcFace',
|
||||
'MobileFace',
|
||||
'SphereFace',
|
||||
'BaseRecognizer',
|
||||
]
|
||||
__all__ = ['create_recognizer', 'BaseRecognizer', 'ArcFace', 'MobileFace', 'SphereFace']
|
||||
|
||||
Reference in New Issue
Block a user