mirror of
https://github.com/yakhyo/uniface.git
synced 2025-12-30 09:02:25 +00:00
docs: Update README.md and add type annotation [skip ci]
This commit is contained in:
16
README.md
16
README.md
@@ -72,7 +72,9 @@ uniface_inference = RetinaFace(
|
||||
conf_thresh=0.5, # Confidence threshold
|
||||
pre_nms_topk=5000, # Pre-NMS Top-K detections
|
||||
nms_thresh=0.4, # NMS IoU threshold
|
||||
post_nms_topk=750 # Post-NMS Top-K detections
|
||||
post_nms_topk=750, # Post-NMS Top-K detections
|
||||
dynamic_size=False, # Arbitrary image size inference
|
||||
input_size=(640, 640) # Pre-defined input image size
|
||||
)
|
||||
```
|
||||
|
||||
@@ -158,12 +160,16 @@ cv2.destroyAllWindows()
|
||||
#### Initialization
|
||||
|
||||
```python
|
||||
from typings import Tuple
|
||||
|
||||
RetinaFace(
|
||||
model: str,
|
||||
conf_thresh: float = 0.5,
|
||||
pre_nms_topk: int = 5000,
|
||||
nms_thresh: float = 0.4,
|
||||
post_nms_topk: int = 750
|
||||
post_nms_topk: int = 750,
|
||||
dynamic_size: bool = False,
|
||||
input_size: Tuple[int, int] = (640, 640)
|
||||
)
|
||||
```
|
||||
|
||||
@@ -176,6 +182,8 @@ RetinaFace(
|
||||
- `pre_nms_topk` _(int, default=5000)_: Max detections to keep before NMS.
|
||||
- `nms_thresh` _(float, default=0.4)_: IoU threshold for Non-Maximum Suppression.
|
||||
- `post_nms_topk` _(int, default=750)_: Max detections to keep after NMS.
|
||||
- `dynamic_size` _(Optional[bool], default=False)_: Use dynamic input size.
|
||||
- `input_size` _(Optional[Tuple[int, int]], default=(640, 640))_: Static input size for the model (width, height).
|
||||
|
||||
---
|
||||
|
||||
@@ -217,7 +225,7 @@ Detects faces in the given image and returns bounding boxes and landmarks.
|
||||
draw_detections(
|
||||
image: np.ndarray,
|
||||
detections: Tuple[np.ndarray, np.ndarray],
|
||||
vis_threshold: float
|
||||
vis_threshold: float = 0.6
|
||||
) -> None
|
||||
```
|
||||
|
||||
@@ -228,7 +236,7 @@ Draws bounding boxes and landmarks on the given image.
|
||||
|
||||
- `image` _(np.ndarray)_: The input image in BGR format.
|
||||
- `detections` _(Tuple[np.ndarray, np.ndarray])_: A tuple of bounding boxes and landmarks.
|
||||
- `vis_threshold` _(float)_: Minimum confidence score for visualization.
|
||||
- `vis_threshold` _(float, default=0.6)_: Minimum confidence score for visualization.
|
||||
|
||||
---
|
||||
|
||||
|
||||
@@ -6,7 +6,7 @@ import cv2
|
||||
import numpy as np
|
||||
|
||||
|
||||
def draw_detections(image, detections, vis_threshold=0.6):
|
||||
def draw_detections(image, detections, vis_threshold: float = 0.6):
|
||||
"""
|
||||
Draw bounding boxes and landmarks on the image.
|
||||
|
||||
|
||||
Reference in New Issue
Block a user