84 Commits

Author SHA1 Message Date
Yakhyokhuja Valikhujaev
54b769c0f1 feat: Add Face Parsing model BiSeNet model trained on CelebMask dataset (#35)
* Add BiSeNet face parsing implementation

* Add parsing model weights configuration

* Export BiSeNet in main package

* Add face parsing tests

* Add face parsing examples and script

* Bump version to 1.5.0

* Update documentation for face parsing

* Fix face parsing notebook to use lips instead of mouth

* chore: Update the face parsing example

* fix: Fix model argument to use Enum

* ref: Move vis_parsing_map function into visualization.py

* docs: Update README.md
2025-12-14 21:13:53 +09:00
Yakhyokhuja Valikhujaev
4d1921e531 feat: Add 2D Gaze estimation models (#34)
* feat: Add Gaze Estimation, update docs and Add example notebook, inference code

* docs: Update README.md
2025-12-14 14:07:46 +09:00
yakhyo
da8a5cf35b feat: Add yolov5n, update docs and ruff code format 2025-12-11 01:02:18 +09:00
Yakhyokhuja Valikhujaev
3982d677a9 fix: Fix type conversion and remove redundant type conversion (#29)
* ref: Remove type conversion and update face class

* fix: change the type to float32

* chore: Update all examples, testing with latest version

* docs: Update docs reflecting the recent changes
2025-12-10 00:18:11 +09:00
Yakhyokhuja Valikhujaev
f4458f0550 Revise model configurations in README.md
Updated model names and confidence thresholds for SCRFD and YOLOv5Face in the README.
2025-12-08 10:07:30 +09:00
Yakhyokhuja Valikhujaev
637316f077 feat: Update examples and some minor changes to UniFace API (#28)
* chore: Style changes and create jupyter notebook template

* docs: Update docstring for detection

* feat: Keyword only for common parameters: model_name, conf_thresh, nms_thresh, input_size

* chore: Update drawing and let the conf text optional for drawing

* feat: add fancy bbox draw

* docs: Add examples of using UniFace

* feat: Add version to all examples
2025-12-07 19:51:08 +09:00
Yakhyokhuja Valikhujaev
6b1d2a1ce6 feat: Add YOLOv5 face detection support (#26)
* feat: Add YOLOv5 face detection model

* docs: Update docs, add new model information

* feat: Add YOLOv5 face detection model

* test: Add testing and running
2025-12-03 23:35:56 +09:00
Yakhyokhuja Valikhujaev
a5e97ac484 Update README.md 2025-12-01 13:19:25 +09:00
Yakhyokhuja Valikhujaev
0c93598007 feat: Enhace emotion inference speed on ARM and add FaceAnalyzer, Face classes for ease of use. (#25)
* feat: Update linting and type annotations, return types in detect

* feat: add face analyzer and face classes

* chore: Update the format and clean up some docstrings

* docs: Update usage documentation

* feat: Change AgeGender model output to 0, 1 instead of string (Female, Male)

* test: Update testing code

* feat: Add Apple silicon backend for torchscript inference

* feat: Add face analyzer example and add run emotion for testing
2025-11-30 20:32:07 +09:00
Yakhyokhuja Valikhujaev
779952e3f8 Merge pull request #23 from yakhyo/test-files-update
feat: Some minor changes to code style and warning supression
2025-11-26 00:16:49 +09:00
yakhyo
39b50b62bd chore: Update the version 2025-11-26 00:15:45 +09:00
yakhyo
db7532ecf1 feat: Supress the warning and give info about onnx backend 2025-11-26 00:06:39 +09:00
yakhyo
4b8dc2c0f9 feat: Update jupyter notebooks to match the latest version of UniFace 2025-11-26 00:06:13 +09:00
yakhyo
0a2a10e165 docs: Update README.md 2025-11-26 00:05:40 +09:00
yakhyo
84cda5f56c chore: Code style formatting changes 2025-11-26 00:05:24 +09:00
yakhyo
0771a7959a chore: Code style formatting changes 2025-11-25 23:45:50 +09:00
yakhyo
15947eb605 chore: Change import order and style changes by Ruff 2025-11-25 23:35:00 +09:00
yakhyo
1ccc4f6b77 chore: Update print 2025-11-25 23:28:42 +09:00
yakhyo
189755a1a6 ref: Update some refactoring files for testing 2025-11-25 23:19:45 +09:00
Yakhyokhuja Valikhujaev
11363fe0a8 Merge pull request #18 from yakhyo/feat-20251115
ref: Add comprehensive test suite and enhance model functionality
2025-11-15 21:32:10 +09:00
yakhyo
fe3e70a352 release: Update release version to v1.1.0 2025-11-15 21:31:56 +09:00
yakhyo
8e218321a4 fix: Fix test issue where landmark variable name wrongly used 2025-11-15 21:28:21 +09:00
yakhyo
2c78f39e5d ref: Add comprehensive test suite and enhance model functionality
- Add new test files for age_gender, factory, landmark, recognition, scrfd, and utils
- Add new scripts for age_gender, landmarks, and video detection
- Update documentation in README.md, MODELS.md, QUICKSTART.md
- Improve model constants and face utilities
- Update detection models (retinaface, scrfd) with enhanced functionality
- Update project configuration in pyproject.toml
2025-11-15 21:09:37 +09:00
yakhyo
df673c4a3f remove release guide 2025-11-11 21:38:57 +09:00
yakhyo
496de7a491 Release v1.0.0: First stable release with complete feature set
- Added high-level pipeline API (FacePipeline, process_faces, compare_faces)
- Implemented face detection (RetinaFace, SCRFD)
- Implemented face recognition (ArcFace, MobileFace, SphereFace)
- Added landmark detection (106 points)
- Added attribute analysis (age, gender, emotion)
- Comprehensive examples and documentation
- Cleaned up legacy code and simplified documentation structure
2025-11-11 21:38:57 +09:00
yakhyo
89a05e4689 fix ci badge reference 2025-11-08 01:46:28 +09:00
yakhyo
d3c2d959d0 add permissions for github release creation 2025-11-08 01:43:47 +09:00
Yakhyokhuja Valikhujaev
f3d28d5ef5 Merge pull request #17 from yakhyo/develop
merge: Merge develop into main
2025-11-08 01:39:23 +09:00
yakhyo
c9f8215e28 use automatic package discovery for submodules 2025-11-08 01:36:05 +09:00
yakhyo
0aea17d14d make emotion module optional to avoid pytorch dependency 2025-11-08 01:33:42 +09:00
yakhyo
3cf13f70d4 fix package configuration to include all submodules 2025-11-08 01:24:45 +09:00
yakhyo
666438909d improve logging system with verbose flag
- silent by default (only warnings/errors)
- add --verbose flag to all scripts
- add enable_logging() function for library users
- cleaner output for end users
2025-11-08 01:15:25 +09:00
yakhyo
77f14a616a add apple silicon support and update documentation
- add dynamic onnx provider selection for m1/m2/m3/m4 macs
- replace mkdocs with simple markdown files
- fix model download and scrfd detection issues
- update ci/cd workflows
2025-11-08 01:02:14 +09:00
yakhyo
98f8acc51b ref: Update attribute and landmark modules 2025-11-07 23:58:47 +09:00
yakhyo
30a177981d docs: Update documentation 2025-11-07 23:58:47 +09:00
yakhyo
0417f7531f feat: Update recognition, landmark modules 2025-11-07 23:58:47 +09:00
yakhyo
b15504dfc5 feat: Face detection module has been updated 2025-11-07 23:58:47 +09:00
yakhyo
fb29a919b1 ref: Update some modules and remove redundant parts 2025-11-07 23:58:47 +09:00
yakhyo
b35b1a3f7c ref: Several minor updates, does not affect performance 2025-11-07 23:58:47 +09:00
yakhyo
5bd6bb1673 Landmark model add 2025-11-07 23:58:47 +09:00
yakhyo
cf5d06729d Initial code for facial landmark model 2025-11-07 23:58:47 +09:00
yakhyo
29964df259 feat: Age and gender inference code updated 2025-11-07 23:58:47 +09:00
yakhyo
eef4a0624a feat: Use face alignment for emotion detection 2025-11-07 23:58:47 +09:00
yakhyo
6a7ba6fc0a feat: Add face emotion model 2025-11-07 23:58:47 +09:00
yakhyo
282737e0e9 fix: Typing error 2025-11-07 23:58:47 +09:00
yakhyo
597c86f997 feat: Fix and test face recognition 2025-11-07 23:58:47 +09:00
yakhyo
d0446827e9 feat: Add new models 2025-11-07 23:58:47 +09:00
yakhyo
5f88345830 chore: Some minor updates 2025-11-07 23:58:47 +09:00
yakhyo
ab56589f77 chore: Some minor changes 2025-11-07 23:58:47 +09:00
yakhyo
d05e609ddf chore: Some minor changes does not affect functionality 2025-11-07 23:58:47 +09:00
yakhyo
cee2b692ad ref: Some minor changes and additional models 2025-11-07 23:58:47 +09:00
yakhyo
67bb13c082 feat: Add support for different mean/std 2025-11-07 23:58:47 +09:00
yakhyo
f9b4ea492b docs: Create mkdocs 2025-11-07 23:58:47 +09:00
yakhyo
08f79e7d47 chore: Update logo images 2025-11-07 23:57:19 +09:00
yakhyo
3a0b0e21b1 chore: Add logo images 2025-11-07 23:57:19 +09:00
yakhyo
85cf413cb8 feat: Add face attribute detection model 2025-11-07 23:57:19 +09:00
yakhyo
d1830c7058 feat: Add new face recognition models and update existing code 2025-11-07 23:57:19 +09:00
yakhyo
204b1d75e1 feat: Add face recognition, rename and modify some files 2025-11-07 23:57:19 +09:00
Yakhyokhuja Valikhujaev
777333eb2d Merge pull request #16 from yakhyo/fix/install-issue
fix: Fix installation issue with onnxruntime-gpu version
2025-08-30 22:56:16 +09:00
yakhyo
c2d52e305a fix: Fix github actions 2025-08-30 22:50:28 +09:00
yakhyo
cd3ff79c2e fix: Fix installation issue with onnxruntime-gpu version 2025-08-30 22:43:26 +09:00
yakhyo
fbca77e050 Merge pull request #8 from yakhyo/develop
feat: Change to pyproject and model name signature
2025-03-26 11:59:29 +09:00
yakhyo
8dd7f3f101 feat: Add model name signature and several more updates 2025-03-26 11:55:56 +09:00
Yakhyokhuja Valikhujaev
0ae5714f99 Merge pull request #6 from yakhyo/np-adapt
Remove torch dependency and adapt numpy
2025-03-16 17:53:56 +09:00
yakhyo
64c9c2f452 chore: Update README and remove scripts 2025-03-16 17:52:41 +09:00
yakhyo
31f97da783 docs: Update README.md 2025-03-16 14:37:55 +09:00
yakhyo
d586cffb3a feat: Change setup.py to pyproject.toml and remove torch dependency 2025-03-16 14:36:35 +09:00
Yakhyokhuja Valikhujaev
4256407044 Merge pull request #5 from yakhyo/feat-inv
add inverse matrix for face alignment to rotate back
2025-03-13 23:36:57 +09:00
yakhyo
e54607292f Add latest version of python in ci 2025-03-13 23:34:36 +09:00
yakhyo
56ac8af432 chore: Just variable name change 2025-03-13 23:32:02 +09:00
yakhyo
904ba2be83 chore: Add license and remove version.py [skip ci] 2025-01-09 05:29:01 +00:00
yakhyo
ad661da2f3 feat: Update alignment and make transform inverse accessible through alignment function [skip ci] 2025-01-09 05:17:28 +00:00
Yakhyokhuja Valikhujaev
084b1132ad Update README.md [skip ci] 2024-11-28 18:19:27 +09:00
Yakhyokhuja Valikhujaev
f22e8f01fb Merge pull request #4 from yakhyo/feat
feat: Update face alignment and bump version to v0.1.5
2024-11-23 19:26:35 +09:00
yakhyo
da09d7497d docs: Update README.md and add type annotation [skip ci] 2024-11-23 10:25:09 +00:00
yakhyo
7330b4fd6e chore: Add repo badge [skip ci] 2024-11-21 09:38:20 +00:00
yakhyo
fa179c6a7a feat: Update face alignment following insightface style 2024-11-21 09:28:07 +00:00
Yakhyokhuja Valikhujaev
9acc6e344c Merge pull request #3 from yakhyo/feat
chore: Bump to version 0.1.4
2024-11-21 15:19:42 +09:00
yakhyo
9819520d76 chore: Bump to version 0.1.4 2024-11-21 06:17:00 +00:00
Yakhyokhuja Valikhujaev
db544d1a29 Merge pull request #2 from yakhyo/feat
feat: Add facial alignment and face detection examples
2024-11-21 15:02:55 +09:00
yakhyo
12ccac11b7 feat: Add usage examples for face detection and face alignment 2024-11-21 05:55:55 +00:00
yakhyo
a158e47f52 feat: Bump to version v0.1.3, face alignment feature added 2024-11-21 02:34:01 +00:00
Yakhyokhuja Valikhujaev
5b4148f824 Update README.md [skip ci] 2024-11-20 18:07:02 +09:00
yakhyo
6a69739e8e chore: Bump version to v0.1.2 2024-11-20 08:56:46 +00:00
89 changed files with 11103 additions and 864 deletions

BIN
.github/logos/logo_preview.jpg vendored Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 826 KiB

BIN
.github/logos/logo_readme.png vendored Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 563 KiB

BIN
.github/logos/logo_web.webp vendored Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 33 KiB

View File

@@ -1,64 +0,0 @@
name: Build, Test, and Publish
on:
push:
branches:
- main
tags:
- "v*.*.*" # Trigger publish on version tags
pull_request:
branches:
- main
jobs:
build:
runs-on: ubuntu-latest
strategy:
matrix:
python-version: ["3.8", "3.9", "3.10"]
steps:
- name: Checkout code
uses: actions/checkout@v3
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: ${{ matrix.python-version }}
- name: Install dependencies
run: |
python -m pip install --upgrade pip
python -m pip install .[dev] || pip install pytest # Use extras_require if available
- name: Run Tests
run: |
pytest
publish:
runs-on: ubuntu-latest
needs: build # Publish only if tests pass
steps:
- name: Checkout code
uses: actions/checkout@v3
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: "3.10" # Use a single Python version for publishing
- name: Install dependencies
run: |
python -m pip install --upgrade pip
python -m pip install build twine
- name: Build Package
run: python -m build
- name: Publish to PyPI
env:
TWINE_USERNAME: __token__
TWINE_PASSWORD: ${{ secrets.PYPI_API_TOKEN }}
run: twine upload dist/*

87
.github/workflows/ci.yml vendored Normal file
View File

@@ -0,0 +1,87 @@
name: CI
on:
push:
branches:
- main
- develop
pull_request:
branches:
- main
- develop
jobs:
test:
runs-on: ubuntu-latest
strategy:
fail-fast: false
matrix:
python-version: ["3.10", "3.11", "3.12", "3.13"]
steps:
- name: Checkout code
uses: actions/checkout@v4
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v5
with:
python-version: ${{ matrix.python-version }}
cache: 'pip'
- name: Install dependencies
run: |
python -m pip install --upgrade pip
python -m pip install .[dev]
- name: Check ONNX Runtime providers
run: |
python -c "import onnxruntime as ort; print('Available providers:', ort.get_available_providers())"
- name: Lint with ruff (if available)
run: |
pip install ruff || true
ruff check . --exit-zero || true
continue-on-error: true
- name: Run tests
run: pytest -v --tb=short
- name: Test package imports
run: |
python -c "from uniface import RetinaFace, ArcFace, Landmark106, AgeGender; print('All imports successful')"
build:
runs-on: ubuntu-latest
needs: test
steps:
- name: Checkout code
uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.10"
cache: 'pip'
- name: Install build tools
run: |
python -m pip install --upgrade pip
python -m pip install build
- name: Build package
run: python -m build
- name: Check package
run: |
python -m pip install twine
twine check dist/*
- name: Upload build artifacts
uses: actions/upload-artifact@v4
with:
name: dist-python-${{ github.sha }}
path: dist/
retention-days: 7

108
.github/workflows/publish.yml vendored Normal file
View File

@@ -0,0 +1,108 @@
name: Publish to PyPI
on:
push:
tags:
- "v*.*.*" # Trigger only on version tags like v0.1.9
jobs:
validate:
runs-on: ubuntu-latest
outputs:
version: ${{ steps.get_version.outputs.version }}
tag_version: ${{ steps.get_version.outputs.tag_version }}
steps:
- name: Checkout code
uses: actions/checkout@v4
- name: Get version from tag and pyproject.toml
id: get_version
run: |
TAG_VERSION=${GITHUB_REF#refs/tags/v}
echo "tag_version=$TAG_VERSION" >> $GITHUB_OUTPUT
PYPROJECT_VERSION=$(grep -Po '(?<=^version = ")[^"]*' pyproject.toml)
echo "version=$PYPROJECT_VERSION" >> $GITHUB_OUTPUT
echo "Tag version: v$TAG_VERSION"
echo "pyproject.toml version: $PYPROJECT_VERSION"
- name: Verify version match
run: |
if [ "${{ steps.get_version.outputs.tag_version }}" != "${{ steps.get_version.outputs.version }}" ]; then
echo "Error: Tag version (${{ steps.get_version.outputs.tag_version }}) does not match pyproject.toml version (${{ steps.get_version.outputs.version }})"
exit 1
fi
echo "Version validation passed: ${{ steps.get_version.outputs.version }}"
test:
runs-on: ubuntu-latest
needs: validate
strategy:
fail-fast: false
matrix:
python-version: ["3.10", "3.11", "3.12", "3.13"]
steps:
- name: Checkout code
uses: actions/checkout@v4
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v5
with:
python-version: ${{ matrix.python-version }}
cache: 'pip'
- name: Install dependencies
run: |
python -m pip install --upgrade pip
python -m pip install .[dev]
- name: Run tests
run: pytest -v
publish:
runs-on: ubuntu-latest
needs: [validate, test]
permissions:
contents: write
id-token: write
environment:
name: pypi
url: https://pypi.org/project/uniface/
steps:
- name: Checkout code
uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.10"
cache: 'pip'
- name: Install build tools
run: |
python -m pip install --upgrade pip
python -m pip install build twine
- name: Build package
run: python -m build
- name: Check package
run: twine check dist/*
- name: Publish to PyPI
env:
TWINE_USERNAME: __token__
TWINE_PASSWORD: ${{ secrets.PYPI_API_TOKEN }}
run: twine upload dist/*
- name: Create GitHub Release
uses: softprops/action-gh-release@v1
with:
files: dist/*
generate_release_notes: true

2
.gitignore vendored
View File

@@ -1,3 +1,5 @@
tmp_*
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]

63
CONTRIBUTING.md Normal file
View File

@@ -0,0 +1,63 @@
# Contributing to UniFace
Thank you for considering contributing to UniFace! We welcome contributions of all kinds.
## How to Contribute
### Reporting Issues
- Use GitHub Issues to report bugs or suggest features
- Include clear descriptions and reproducible examples
- Check existing issues before creating new ones
### Pull Requests
1. Fork the repository
2. Create a new branch for your feature
3. Write clear, documented code with type hints
4. Add tests for new functionality
5. Ensure all tests pass
6. Submit a pull request with a clear description
### Code Style
- Follow PEP8 guidelines
- Use type hints (Python 3.10+)
- Write docstrings for public APIs
- Keep code simple and readable
## Development Setup
```bash
git clone https://github.com/yakhyo/uniface.git
cd uniface
pip install -e ".[dev]"
```
## Running Tests
```bash
pytest tests/
```
## Examples
Example notebooks demonstrating library usage:
| Example | Notebook |
|---------|----------|
| Face Detection | [face_detection.ipynb](examples/face_detection.ipynb) |
| Face Alignment | [face_alignment.ipynb](examples/face_alignment.ipynb) |
| Face Recognition | [face_analyzer.ipynb](examples/face_analyzer.ipynb) |
| Face Verification | [face_verification.ipynb](examples/face_verification.ipynb) |
| Face Search | [face_search.ipynb](examples/face_search.ipynb) |
## Questions?
Open an issue or start a discussion on GitHub.

457
MODELS.md Normal file
View File

@@ -0,0 +1,457 @@
# UniFace Model Zoo
Complete guide to all available models, their performance characteristics, and selection criteria.
---
## Face Detection Models
### RetinaFace Family
RetinaFace models are trained on the WIDER FACE dataset and provide excellent accuracy-speed tradeoffs.
| Model Name | Params | Size | Easy | Medium | Hard | Use Case |
| -------------- | ------ | ----- | ------ | ------ | ------ | ----------------------------- |
| `MNET_025` | 0.4M | 1.7MB | 88.48% | 87.02% | 80.61% | Mobile/Edge devices |
| `MNET_050` | 1.0M | 2.6MB | 89.42% | 87.97% | 82.40% | Mobile/Edge devices |
| `MNET_V1` | 3.5M | 3.8MB | 90.59% | 89.14% | 84.13% | Balanced mobile |
| `MNET_V2` ⭐ | 3.2M | 3.5MB | 91.70% | 91.03% | 86.60% | **Recommended default** |
| `RESNET18` | 11.7M | 27MB | 92.50% | 91.02% | 86.63% | Server/High accuracy |
| `RESNET34` | 24.8M | 56MB | 94.16% | 93.12% | 88.90% | Maximum accuracy |
**Accuracy**: WIDER FACE validation set (Easy/Medium/Hard subsets) - from [RetinaFace paper](https://arxiv.org/abs/1905.00641)
**Speed**: Benchmark on your own hardware using `scripts/run_detection.py --iterations 100`
#### Usage
```python
from uniface import RetinaFace
from uniface.constants import RetinaFaceWeights
# Default (recommended)
detector = RetinaFace() # Uses MNET_V2
# Specific model
detector = RetinaFace(
model_name=RetinaFaceWeights.MNET_025, # Fastest
conf_thresh=0.5,
nms_thresh=0.4,
input_size=(640, 640)
)
```
---
### SCRFD Family
SCRFD (Sample and Computation Redistribution for Efficient Face Detection) models offer state-of-the-art speed-accuracy tradeoffs.
| Model Name | Params | Size | Easy | Medium | Hard | Use Case |
| ---------------- | ------ | ----- | ------ | ------ | ------ | ------------------------------- |
| `SCRFD_500M` | 0.6M | 2.5MB | 90.57% | 88.12% | 68.51% | Real-time applications |
| `SCRFD_10G` ⭐ | 4.2M | 17MB | 95.16% | 93.87% | 83.05% | **High accuracy + speed** |
**Accuracy**: WIDER FACE validation set - from [SCRFD paper](https://arxiv.org/abs/2105.04714)
**Speed**: Benchmark on your own hardware using `scripts/run_detection.py --iterations 100`
#### Usage
```python
from uniface import SCRFD
from uniface.constants import SCRFDWeights
# Fast real-time detection
detector = SCRFD(
model_name=SCRFDWeights.SCRFD_500M_KPS,
conf_thresh=0.5,
input_size=(640, 640)
)
# High accuracy
detector = SCRFD(
model_name=SCRFDWeights.SCRFD_10G_KPS,
conf_thresh=0.5
)
```
---
### YOLOv5-Face Family
YOLOv5-Face models provide excellent detection accuracy with 5-point facial landmarks, optimized for real-time applications.
| Model Name | Size | Easy | Medium | Hard | Use Case |
| -------------- | ---- | ------ | ------ | ------ | ------------------------------ |
| `YOLOV5N` | 11MB | 93.61% | 91.52% | 80.53% | Lightweight/Mobile |
| `YOLOV5S` ⭐ | 28MB | 94.33% | 92.61% | 83.15% | **Real-time + accuracy** |
| `YOLOV5M` | 82MB | 95.30% | 93.76% | 85.28% | High accuracy |
**Accuracy**: WIDER FACE validation set - from [YOLOv5-Face paper](https://arxiv.org/abs/2105.12931)
**Speed**: Benchmark on your own hardware using `scripts/run_detection.py --iterations 100`
**Note**: Fixed input size of 640×640. Models exported to ONNX from [deepcam-cn/yolov5-face](https://github.com/deepcam-cn/yolov5-face)
#### Usage
```python
from uniface import YOLOv5Face
from uniface.constants import YOLOv5FaceWeights
# Lightweight/Mobile
detector = YOLOv5Face(
model_name=YOLOv5FaceWeights.YOLOV5N,
conf_thresh=0.6,
nms_thresh=0.5
)
# Real-time detection (recommended)
detector = YOLOv5Face(
model_name=YOLOv5FaceWeights.YOLOV5S,
conf_thresh=0.6,
nms_thresh=0.5
)
# High accuracy
detector = YOLOv5Face(
model_name=YOLOv5FaceWeights.YOLOV5M,
conf_thresh=0.6
)
# Detect faces with landmarks
faces = detector.detect(image)
for face in faces:
bbox = face['bbox'] # [x1, y1, x2, y2]
confidence = face['confidence']
landmarks = face['landmarks'] # 5-point landmarks (5, 2)
```
---
## Face Recognition Models
### ArcFace
State-of-the-art face recognition using additive angular margin loss.
| Model Name | Backbone | Params | Size | Use Case |
| ----------- | --------- | ------ | ----- | -------------------------------- |
| `MNET` ⭐ | MobileNet | 2.0M | 8MB | **Balanced (recommended)** |
| `RESNET` | ResNet50 | 43.6M | 166MB | Maximum accuracy |
**Dataset**: Trained on MS1M-V2 (5.8M images, 85K identities)
**Accuracy**: Benchmark on your own dataset or use standard face verification benchmarks
#### Usage
```python
from uniface import ArcFace
from uniface.constants import ArcFaceWeights
# Default (MobileNet backbone)
recognizer = ArcFace()
# High accuracy (ResNet50 backbone)
recognizer = ArcFace(model_name=ArcFaceWeights.RESNET)
# Extract embedding
embedding = recognizer.get_normalized_embedding(image, landmarks)
# Returns: (1, 512) normalized embedding vector
```
---
### MobileFace
Lightweight face recognition optimized for mobile devices.
| Model Name | Backbone | Params | Size | LFW | CALFW | CPLFW | AgeDB-30 | Use Case |
| ----------------- | ---------------- | ------ | ---- | ------ | ------ | ------ | -------- | --------------------- |
| `MNET_025` | MobileNetV1 0.25 | 0.36M | 1MB | 98.76% | 92.02% | 82.37% | 90.02% | Ultra-lightweight |
| `MNET_V2` ⭐ | MobileNetV2 | 2.29M | 4MB | 99.55% | 94.87% | 86.89% | 95.16% | **Mobile/Edge** |
| `MNET_V3_SMALL` | MobileNetV3-S | 1.25M | 3MB | 99.30% | 93.77% | 85.29% | 92.79% | Mobile optimized |
| `MNET_V3_LARGE` | MobileNetV3-L | 3.52M | 10MB | 99.53% | 94.56% | 86.79% | 95.13% | Balanced mobile |
**Dataset**: Trained on MS1M-V2 (5.8M images, 85K identities)
**Accuracy**: Evaluated on LFW, CALFW, CPLFW, and AgeDB-30 benchmarks
**Note**: These models are lightweight alternatives to ArcFace for resource-constrained environments
#### Usage
```python
from uniface import MobileFace
from uniface.constants import MobileFaceWeights
# Lightweight
recognizer = MobileFace(model_name=MobileFaceWeights.MNET_V2)
```
---
### SphereFace
Face recognition using angular softmax loss.
| Model Name | Backbone | Params | Size | LFW | CALFW | CPLFW | AgeDB-30 | Use Case |
| ------------ | -------- | ------ | ---- | ------ | ------ | ------ | -------- | ------------------- |
| `SPHERE20` | Sphere20 | 24.5M | 50MB | 99.67% | 95.61% | 88.75% | 96.58% | Research/Comparison |
| `SPHERE36` | Sphere36 | 34.6M | 92MB | 99.72% | 95.64% | 89.92% | 96.83% | Research/Comparison |
**Dataset**: Trained on MS1M-V2 (5.8M images, 85K identities)
**Accuracy**: Evaluated on LFW, CALFW, CPLFW, and AgeDB-30 benchmarks
**Note**: SphereFace uses angular softmax loss, an earlier approach before ArcFace. These models provide good accuracy with moderate resource requirements.
#### Usage
```python
from uniface import SphereFace
from uniface.constants import SphereFaceWeights
recognizer = SphereFace(model_name=SphereFaceWeights.SPHERE20)
```
---
## Facial Landmark Models
### 106-Point Landmark Detection
High-precision facial landmark localization.
| Model Name | Points | Params | Size | Use Case |
| ---------- | ------ | ------ | ---- | ------------------------ |
| `2D106` | 106 | 3.7M | 14MB | Face alignment, analysis |
**Note**: Provides 106 facial keypoints for detailed face analysis and alignment
#### Usage
```python
from uniface import Landmark106
landmarker = Landmark106()
landmarks = landmarker.get_landmarks(image, bbox)
# Returns: (106, 2) array of (x, y) coordinates
```
**Landmark Groups:**
- Face contour: 0-32 (33 points)
- Eyebrows: 33-50 (18 points)
- Nose: 51-62 (12 points)
- Eyes: 63-86 (24 points)
- Mouth: 87-105 (19 points)
---
## Attribute Analysis Models
### Age & Gender Detection
| Model Name | Attributes | Params | Size | Use Case |
| ----------- | ----------- | ------ | ---- | --------------- |
| `DEFAULT` | Age, Gender | 2.1M | 8MB | General purpose |
**Dataset**: Trained on CelebA
**Note**: Accuracy varies by demographic and image quality. Test on your specific use case.
#### Usage
```python
from uniface import AgeGender
predictor = AgeGender()
gender, age = predictor.predict(image, bbox)
# Returns: (gender, age_in_years)
# gender: 0 for Female, 1 for Male
```
---
### Emotion Detection
| Model Name | Classes | Params | Size | Use Case |
| ------------- | ------- | ------ | ---- | --------------- |
| `AFFECNET7` | 7 | 0.5M | 2MB | 7-class emotion |
| `AFFECNET8` | 8 | 0.5M | 2MB | 8-class emotion |
**Classes (7)**: Neutral, Happy, Sad, Surprise, Fear, Disgust, Anger
**Classes (8)**: Above + Contempt
**Dataset**: Trained on AffectNet
**Note**: Emotion detection accuracy depends heavily on facial expression clarity and cultural context
#### Usage
```python
from uniface import Emotion
from uniface.constants import DDAMFNWeights
predictor = Emotion(model_name=DDAMFNWeights.AFFECNET7)
emotion, confidence = predictor.predict(image, landmarks)
```
---
## Gaze Estimation Models
### MobileGaze Family
Real-time gaze direction prediction models trained on Gaze360 dataset. Returns pitch (vertical) and yaw (horizontal) angles in radians.
| Model Name | Params | Size | MAE* | Use Case |
| -------------- | ------ | ------- | ----- | ----------------------------- |
| `RESNET18` | 11.7M | 43 MB | 12.84 | Balanced accuracy/speed |
| `RESNET34` ⭐ | 24.8M | 81.6 MB | 11.33 | **Recommended default** |
| `RESNET50` | 25.6M | 91.3 MB | 11.34 | High accuracy |
| `MOBILENET_V2` | 3.5M | 9.59 MB | 13.07 | Mobile/Edge devices |
| `MOBILEONE_S0` | 2.1M | 4.8 MB | 12.58 | Lightweight/Real-time |
*MAE (Mean Absolute Error) in degrees on Gaze360 test set - lower is better
**Dataset**: Trained on Gaze360 (indoor/outdoor scenes with diverse head poses)
**Training**: 200 epochs with classification-based approach (binned angles)
#### Usage
```python
from uniface import MobileGaze
from uniface.constants import GazeWeights
import numpy as np
# Default (recommended)
gaze_estimator = MobileGaze() # Uses RESNET34
# Lightweight model
gaze_estimator = MobileGaze(model_name=GazeWeights.MOBILEONE_S0)
# Estimate gaze from face crop
pitch, yaw = gaze_estimator.estimate(face_crop)
print(f"Pitch: {np.degrees(pitch):.1f}°, Yaw: {np.degrees(yaw):.1f}°")
```
**Note**: Requires face crop as input. Use face detection first to obtain bounding boxes.
---
## Face Parsing Models
### BiSeNet Family
BiSeNet (Bilateral Segmentation Network) models for semantic face parsing. Segments face images into 19 facial component classes.
| Model Name | Params | Size | Classes | Use Case |
| -------------- | ------ | ------- | ------- | ----------------------------- |
| `RESNET18` ⭐ | 13.3M | 50.7 MB | 19 | **Recommended default** |
| `RESNET34` | 24.1M | 89.2 MB | 19 | Higher accuracy |
**19 Facial Component Classes:**
1. Background
2. Skin
3. Left Eyebrow
4. Right Eyebrow
5. Left Eye
6. Right Eye
7. Eye Glasses
8. Left Ear
9. Right Ear
10. Ear Ring
11. Nose
12. Mouth
13. Upper Lip
14. Lower Lip
15. Neck
16. Neck Lace
17. Cloth
18. Hair
19. Hat
**Dataset**: Trained on CelebAMask-HQ
**Architecture**: BiSeNet with ResNet backbone
**Input Size**: 512×512 (automatically resized)
#### Usage
```python
from uniface.parsing import BiSeNet
from uniface.constants import ParsingWeights
from uniface.visualization import vis_parsing_maps
import cv2
# Default (recommended)
parser = BiSeNet() # Uses RESNET18
# Higher accuracy model
parser = BiSeNet(model_name=ParsingWeights.RESNET34)
# Parse face image (already cropped)
mask = parser.parse(face_image)
# Visualize with overlay
face_rgb = cv2.cvtColor(face_image, cv2.COLOR_BGR2RGB)
vis_result = vis_parsing_maps(face_rgb, mask, save_image=False)
# mask shape: (H, W) with values 0-18 representing classes
print(f"Detected {len(np.unique(mask))} facial components")
```
**Applications:**
- Face makeup and beauty applications
- Virtual try-on systems
- Face editing and manipulation
- Facial feature extraction
- Portrait segmentation
**Note**: Input should be a cropped face image. For full pipeline, use face detection first to obtain face crops.
---
## Model Updates
Models are automatically downloaded and cached on first use. Cache location: `~/.uniface/models/`
### Manual Model Management
```python
from uniface.model_store import verify_model_weights
from uniface.constants import RetinaFaceWeights
# Download specific model
model_path = verify_model_weights(
RetinaFaceWeights.MNET_V2,
root='./custom_cache'
)
# Models are verified with SHA-256 checksums
```
### Download All Models
```bash
# Using the provided script
python scripts/download_model.py
# Download specific model
python scripts/download_model.py --model MNET_V2
```
---
## References
### Model Training & Architectures
- **RetinaFace Training**: [yakhyo/retinaface-pytorch](https://github.com/yakhyo/retinaface-pytorch) - PyTorch implementation and training code
- **YOLOv5-Face Original**: [deepcam-cn/yolov5-face](https://github.com/deepcam-cn/yolov5-face) - Original PyTorch implementation
- **YOLOv5-Face ONNX**: [yakhyo/yolov5-face-onnx-inference](https://github.com/yakhyo/yolov5-face-onnx-inference) - ONNX inference implementation
- **Face Recognition Training**: [yakhyo/face-recognition](https://github.com/yakhyo/face-recognition) - ArcFace, MobileFace, SphereFace training code
- **Gaze Estimation Training**: [yakhyo/gaze-estimation](https://github.com/yakhyo/gaze-estimation) - MobileGaze training code and pretrained weights
- **Face Parsing Training**: [yakhyo/face-parsing](https://github.com/yakhyo/face-parsing) - BiSeNet training code and pretrained weights
- **InsightFace**: [deepinsight/insightface](https://github.com/deepinsight/insightface) - Model architectures and pretrained weights
### Papers
- **RetinaFace**: [Single-Shot Multi-Level Face Localisation in the Wild](https://arxiv.org/abs/1905.00641)
- **SCRFD**: [Sample and Computation Redistribution for Efficient Face Detection](https://arxiv.org/abs/2105.04714)
- **YOLOv5-Face**: [YOLO5Face: Why Reinventing a Face Detector](https://arxiv.org/abs/2105.12931)
- **ArcFace**: [Additive Angular Margin Loss for Deep Face Recognition](https://arxiv.org/abs/1801.07698)
- **SphereFace**: [Deep Hypersphere Embedding for Face Recognition](https://arxiv.org/abs/1704.08063)
- **BiSeNet**: [Bilateral Segmentation Network for Real-time Semantic Segmentation](https://arxiv.org/abs/1808.00897)

522
QUICKSTART.md Normal file
View File

@@ -0,0 +1,522 @@
# UniFace Quick Start Guide
Get up and running with UniFace in 5 minutes! This guide covers the most common use cases.
---
## Installation
```bash
# macOS (Apple Silicon) - automatically includes ARM64 optimizations
pip install uniface
# Linux/Windows with NVIDIA GPU
pip install uniface[gpu]
# CPU-only (all platforms)
pip install uniface
```
---
## 1. Face Detection (30 seconds)
Detect faces in an image:
```python
import cv2
from uniface import RetinaFace
# Load image
image = cv2.imread("photo.jpg")
# Initialize detector (models auto-download on first use)
detector = RetinaFace()
# Detect faces
faces = detector.detect(image)
# Print results
for i, face in enumerate(faces):
print(f"Face {i+1}:")
print(f" Confidence: {face['confidence']:.2f}")
print(f" BBox: {face['bbox']}")
print(f" Landmarks: {len(face['landmarks'])} points")
```
**Output:**
```
Face 1:
Confidence: 0.99
BBox: [120.5, 85.3, 245.8, 210.6]
Landmarks: 5 points
```
---
## 2. Visualize Detections (1 minute)
Draw bounding boxes and landmarks:
```python
import cv2
from uniface import RetinaFace
from uniface.visualization import draw_detections
# Detect faces
detector = RetinaFace()
image = cv2.imread("photo.jpg")
faces = detector.detect(image)
# Extract visualization data
bboxes = [f['bbox'] for f in faces]
scores = [f['confidence'] for f in faces]
landmarks = [f['landmarks'] for f in faces]
# Draw on image
draw_detections(
image=image,
bboxes=bboxes,
scores=scores,
landmarks=landmarks,
vis_threshold=0.6,
)
# Save result
cv2.imwrite("output.jpg", image)
print("Saved output.jpg")
```
---
## 3. Face Recognition (2 minutes)
Compare two faces:
```python
import cv2
import numpy as np
from uniface import RetinaFace, ArcFace
# Initialize models
detector = RetinaFace()
recognizer = ArcFace()
# Load two images
image1 = cv2.imread("person1.jpg")
image2 = cv2.imread("person2.jpg")
# Detect faces
faces1 = detector.detect(image1)
faces2 = detector.detect(image2)
if faces1 and faces2:
# Extract embeddings
emb1 = recognizer.get_normalized_embedding(image1, faces1[0]['landmarks'])
emb2 = recognizer.get_normalized_embedding(image2, faces2[0]['landmarks'])
# Compute similarity (cosine similarity)
similarity = np.dot(emb1, emb2.T)[0][0]
# Interpret result
if similarity > 0.6:
print(f"Same person (similarity: {similarity:.3f})")
else:
print(f"Different people (similarity: {similarity:.3f})")
else:
print("No faces detected")
```
**Similarity thresholds:**
- `> 0.6`: Same person (high confidence)
- `0.4 - 0.6`: Uncertain (manual review)
- `< 0.4`: Different people
---
## 4. Webcam Demo (2 minutes)
Real-time face detection:
```python
import cv2
from uniface import RetinaFace
from uniface.visualization import draw_detections
detector = RetinaFace()
cap = cv2.VideoCapture(0)
print("Press 'q' to quit")
while True:
ret, frame = cap.read()
if not ret:
break
# Detect faces
faces = detector.detect(frame)
# Draw results
bboxes = [f['bbox'] for f in faces]
scores = [f['confidence'] for f in faces]
landmarks = [f['landmarks'] for f in faces]
draw_detections(
image=frame,
bboxes=bboxes,
scores=scores,
landmarks=landmarks,
)
# Show frame
cv2.imshow("UniFace - Press 'q' to quit", frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
```
---
## 5. Age & Gender Detection (2 minutes)
Detect age and gender:
```python
import cv2
from uniface import RetinaFace, AgeGender
# Initialize models
detector = RetinaFace()
age_gender = AgeGender()
# Load image
image = cv2.imread("photo.jpg")
faces = detector.detect(image)
# Predict attributes
for i, face in enumerate(faces):
gender, age = age_gender.predict(image, face['bbox'])
gender_str = 'Female' if gender == 0 else 'Male'
print(f"Face {i+1}: {gender_str}, {age} years old")
```
**Output:**
```
Face 1: Male, 32 years old
Face 2: Female, 28 years old
```
---
## 6. Facial Landmarks (2 minutes)
Detect 106 facial landmarks:
```python
import cv2
from uniface import RetinaFace, Landmark106
# Initialize models
detector = RetinaFace()
landmarker = Landmark106()
# Detect face and landmarks
image = cv2.imread("photo.jpg")
faces = detector.detect(image)
if faces:
landmarks = landmarker.get_landmarks(image, faces[0]['bbox'])
print(f"Detected {len(landmarks)} landmarks")
# Draw landmarks
for x, y in landmarks.astype(int):
cv2.circle(image, (x, y), 2, (0, 255, 0), -1)
cv2.imwrite("landmarks.jpg", image)
```
---
## 7. Gaze Estimation (2 minutes)
Estimate where a person is looking:
```python
import cv2
import numpy as np
from uniface import RetinaFace, MobileGaze
from uniface.visualization import draw_gaze
# Initialize models
detector = RetinaFace()
gaze_estimator = MobileGaze()
# Load image
image = cv2.imread("photo.jpg")
faces = detector.detect(image)
# Estimate gaze for each face
for i, face in enumerate(faces):
bbox = face['bbox']
x1, y1, x2, y2 = map(int, bbox[:4])
face_crop = image[y1:y2, x1:x2]
if face_crop.size > 0:
pitch, yaw = gaze_estimator.estimate(face_crop)
print(f"Face {i+1}: pitch={np.degrees(pitch):.1f}°, yaw={np.degrees(yaw):.1f}°")
# Draw gaze direction
draw_gaze(image, bbox, pitch, yaw)
cv2.imwrite("gaze_output.jpg", image)
```
**Output:**
```
Face 1: pitch=5.2°, yaw=-12.3°
Face 2: pitch=-8.1°, yaw=15.7°
```
---
## 8. Face Parsing (2 minutes)
Segment face into semantic components (skin, eyes, nose, mouth, hair, etc.):
```python
import cv2
import numpy as np
from uniface.parsing import BiSeNet
from uniface.visualization import vis_parsing_maps
# Initialize parser
parser = BiSeNet() # Uses ResNet18 by default
# Load face image (already cropped)
face_image = cv2.imread("face.jpg")
# Parse face into 19 components
mask = parser.parse(face_image)
# Visualize with overlay
face_rgb = cv2.cvtColor(face_image, cv2.COLOR_BGR2RGB)
vis_result = vis_parsing_maps(face_rgb, mask, save_image=False)
# Convert back to BGR for saving
vis_bgr = cv2.cvtColor(vis_result, cv2.COLOR_RGB2BGR)
cv2.imwrite("parsed_face.jpg", vis_bgr)
print(f"Detected {len(np.unique(mask))} facial components")
```
**Output:**
```
Detected 12 facial components
```
**19 Facial Component Classes:**
- Background, Skin, Eyebrows (L/R), Eyes (L/R), Eye Glasses
- Ears (L/R), Ear Ring, Nose, Mouth, Lips (Upper/Lower)
- Neck, Neck Lace, Cloth, Hair, Hat
---
## 9. Batch Processing (3 minutes)
Process multiple images:
```python
import cv2
from pathlib import Path
from uniface import RetinaFace
detector = RetinaFace()
# Process all images in a folder
image_dir = Path("images/")
output_dir = Path("output/")
output_dir.mkdir(exist_ok=True)
for image_path in image_dir.glob("*.jpg"):
print(f"Processing {image_path.name}...")
image = cv2.imread(str(image_path))
faces = detector.detect(image)
print(f" Found {len(faces)} face(s)")
# Save results
output_path = output_dir / image_path.name
# ... draw and save ...
print("Done!")
```
---
## 10. Model Selection
Choose the right model for your use case:
### Detection Models
```python
from uniface.detection import RetinaFace, SCRFD, YOLOv5Face
from uniface.constants import RetinaFaceWeights, SCRFDWeights, YOLOv5FaceWeights
# Fast detection (mobile/edge devices)
detector = RetinaFace(
model_name=RetinaFaceWeights.MNET_025,
conf_thresh=0.7
)
# Balanced (recommended)
detector = RetinaFace(
model_name=RetinaFaceWeights.MNET_V2
)
# Real-time with high accuracy
detector = YOLOv5Face(
model_name=YOLOv5FaceWeights.YOLOV5S,
conf_thresh=0.6,
nms_thresh=0.5
)
# High accuracy (server/GPU)
detector = SCRFD(
model_name=SCRFDWeights.SCRFD_10G_KPS,
conf_thresh=0.5
)
```
### Recognition Models
```python
from uniface import ArcFace, MobileFace, SphereFace
from uniface.constants import MobileFaceWeights, SphereFaceWeights
# ArcFace (recommended for most use cases)
recognizer = ArcFace() # Best accuracy
# MobileFace (lightweight for mobile/edge)
recognizer = MobileFace(model_name=MobileFaceWeights.MNET_V2) # Fast, small size
# SphereFace (angular margin approach)
recognizer = SphereFace(model_name=SphereFaceWeights.SPHERE20) # Alternative method
```
### Gaze Estimation Models
```python
from uniface import MobileGaze
from uniface.constants import GazeWeights
# Default (recommended)
gaze_estimator = MobileGaze() # Uses RESNET34
# Lightweight (mobile/edge devices)
gaze_estimator = MobileGaze(model_name=GazeWeights.MOBILEONE_S0)
# High accuracy
gaze_estimator = MobileGaze(model_name=GazeWeights.RESNET50)
```
### Face Parsing Models
```python
from uniface.parsing import BiSeNet
from uniface.constants import ParsingWeights
# Default (recommended, 50.7 MB)
parser = BiSeNet() # Uses RESNET18
# Higher accuracy (89.2 MB)
parser = BiSeNet(model_name=ParsingWeights.RESNET34)
```
---
## Common Issues
### 1. Models Not Downloading
```python
# Manually download a model
from uniface.model_store import verify_model_weights
from uniface.constants import RetinaFaceWeights
model_path = verify_model_weights(RetinaFaceWeights.MNET_V2)
print(f"Model downloaded to: {model_path}")
```
### 2. Check Hardware Acceleration
```python
import onnxruntime as ort
print("Available providers:", ort.get_available_providers())
# macOS M-series should show: ['CoreMLExecutionProvider', ...]
# NVIDIA GPU should show: ['CUDAExecutionProvider', ...]
```
### 3. Slow Performance on Mac
The standard installation includes ARM64 optimizations for Apple Silicon. If performance is slow, verify you're using the ARM64 build of Python:
```bash
python -c "import platform; print(platform.machine())"
# Should show: arm64 (not x86_64)
```
### 4. Import Errors
```python
# Correct imports
from uniface.detection import RetinaFace
from uniface.recognition import ArcFace
from uniface.landmark import Landmark106
# Wrong imports
from uniface import retinaface # Module, not class
```
---
## Next Steps
### Jupyter Notebook Examples
Explore interactive examples for common tasks:
| Example | Description | Notebook |
|---------|-------------|----------|
| **Face Detection** | Detect faces and facial landmarks | [face_detection.ipynb](examples/face_detection.ipynb) |
| **Face Alignment** | Align and crop faces for recognition | [face_alignment.ipynb](examples/face_alignment.ipynb) |
| **Face Recognition** | Extract face embeddings and compare faces | [face_analyzer.ipynb](examples/face_analyzer.ipynb) |
| **Face Verification** | Compare two faces to verify identity | [face_verification.ipynb](examples/face_verification.ipynb) |
| **Face Search** | Find a person in a group photo | [face_search.ipynb](examples/face_search.ipynb) |
| **Face Parsing** | Segment face into semantic components | [face_parsing.ipynb](examples/face_parsing.ipynb) |
| **Gaze Estimation** | Estimate gaze direction | [gaze_estimation.ipynb](examples/gaze_estimation.ipynb) |
### Additional Resources
- **Model Benchmarks**: See [MODELS.md](MODELS.md) for performance comparisons
- **Full Documentation**: Read [README.md](README.md) for complete API reference
---
## References
- **RetinaFace Training**: [yakhyo/retinaface-pytorch](https://github.com/yakhyo/retinaface-pytorch)
- **YOLOv5-Face ONNX**: [yakhyo/yolov5-face-onnx-inference](https://github.com/yakhyo/yolov5-face-onnx-inference)
- **Face Recognition Training**: [yakhyo/face-recognition](https://github.com/yakhyo/face-recognition)
- **Gaze Estimation Training**: [yakhyo/gaze-estimation](https://github.com/yakhyo/gaze-estimation)
- **Face Parsing Training**: [yakhyo/face-parsing](https://github.com/yakhyo/face-parsing)
- **InsightFace**: [deepinsight/insightface](https://github.com/deepinsight/insightface)

644
README.md
View File

@@ -1,239 +1,575 @@
# UniFace: All-in-One Face Analysis Library
<div align="center">
[![License](https://img.shields.io/badge/License-MIT-blue.svg)](https://opensource.org/licenses/MIT)
![Python](https://img.shields.io/badge/Python-3.8%2B-blue)
[![PyPI Version](https://img.shields.io/pypi/v/uniface.svg)](https://pypi.org/project/uniface/)
[![Build Status](https://github.com/yakhyo/uniface/actions/workflows/build.yml/badge.svg)](https://github.com/yakhyo/uniface/actions)
[![Python](https://img.shields.io/badge/Python-3.10%2B-blue)](https://www.python.org/)
[![PyPI](https://img.shields.io/pypi/v/uniface.svg)](https://pypi.org/project/uniface/)
[![CI](https://github.com/yakhyo/uniface/actions/workflows/ci.yml/badge.svg)](https://github.com/yakhyo/uniface/actions)
[![Downloads](https://pepy.tech/badge/uniface)](https://pepy.tech/project/uniface)
[![Code Style: PEP8](https://img.shields.io/badge/code%20style-PEP8-green.svg)](https://www.python.org/dev/peps/pep-0008/)
[![GitHub Release Downloads](https://img.shields.io/github/downloads/yakhyo/uniface/total.svg?label=Model%20Downloads)](https://github.com/yakhyo/uniface/releases)
[![DeepWiki](https://img.shields.io/badge/DeepWiki-yakhyo%2Funiface-blue.svg?logo=)](https://deepwiki.com/yakhyo/uniface)
<div align="center">
<img src=".github/logos/logo_web.webp" width=75%>
</div>
**uniface** is a lightweight face detection library designed for high-performance face localization and landmark detection. The library supports ONNX models and provides utilities for bounding box visualization and landmark plotting. To train RetinaFace model, see https://github.com/yakhyo/retinaface-pytorch.
**UniFace** is a lightweight, production-ready face analysis library built on ONNX Runtime. It provides high-performance face detection, recognition, landmark detection, face parsing, gaze estimation, and attribute analysis with hardware acceleration support across platforms.
---
## Features
- [ ] Age and gender detection (Planned).
- [ ] Face recognition (Planned).
- [x] High-speed face detection using ONNX models (Added: 2024-11-20).
- [x] Accurate facial landmark localization (e.g., eyes, nose, and mouth) (Added: 2024-11-20).
- [x] Easy-to-use API for inference and visualization (Added: 2024-11-20).
- **High-Speed Face Detection**: ONNX-optimized RetinaFace, SCRFD, and YOLOv5-Face models
- **Facial Landmark Detection**: Accurate 106-point landmark localization
- **Face Recognition**: ArcFace, MobileFace, and SphereFace embeddings
- **Face Parsing**: BiSeNet-based semantic segmentation with 19 facial component classes
- **Gaze Estimation**: Real-time gaze direction prediction with MobileGaze
- **Attribute Analysis**: Age, gender, and emotion detection
- **Face Alignment**: Precise alignment for downstream tasks
- **Hardware Acceleration**: ARM64 optimizations (Apple Silicon), CUDA (NVIDIA), CPU fallback
- **Simple API**: Intuitive factory functions and clean interfaces
- **Production-Ready**: Type hints, comprehensive logging, PEP8 compliant
---
## Installation
### Using pip
### Quick Install (All Platforms)
```bash
pip install uniface
```
### Local installation using pip
### Platform-Specific Installation
**Clone the repository**
#### macOS (Apple Silicon - M1/M2/M3/M4)
For Apple Silicon Macs, the standard installation automatically includes optimized ARM64 support:
```bash
pip install uniface
```
The base `onnxruntime` package (included with uniface) has native Apple Silicon support with ARM64 optimizations built-in since version 1.13+.
#### Linux/Windows with NVIDIA GPU
For CUDA acceleration on NVIDIA GPUs:
```bash
pip install uniface[gpu]
```
**Requirements:**
- CUDA 11.x or 12.x
- cuDNN 8.x
- See [ONNX Runtime GPU requirements](https://onnxruntime.ai/docs/execution-providers/CUDA-ExecutionProvider.html)
#### CPU-Only (All Platforms)
```bash
pip install uniface
```
### Install from Source
```bash
git clone https://github.com/yakhyo/uniface.git
cd uniface
```
**Install using pip**
```bash
pip install .
pip install -e .
```
---
## Quick Start
### Initialize the Model
### Face Detection
```python
import cv2
from uniface import RetinaFace
# Initialize the RetinaFace model
uniface_inference = RetinaFace(
model="retinaface_mnet_v2", # Model name
conf_thresh=0.5, # Confidence threshold
pre_nms_topk=5000, # Pre-NMS Top-K detections
nms_thresh=0.4, # NMS IoU threshold
post_nms_topk=750 # Post-NMS Top-K detections
# Initialize detector
detector = RetinaFace()
# Load image
image = cv2.imread("image.jpg")
# Detect faces
faces = detector.detect(image)
# Process results
for face in faces:
bbox = face['bbox'] # [x1, y1, x2, y2]
confidence = face['confidence']
landmarks = face['landmarks'] # 5-point landmarks
print(f"Face detected with confidence: {confidence:.2f}")
```
### Face Recognition
```python
from uniface import ArcFace, RetinaFace
from uniface import compute_similarity
# Initialize models
detector = RetinaFace()
recognizer = ArcFace()
# Detect and extract embeddings
faces1 = detector.detect(image1)
faces2 = detector.detect(image2)
embedding1 = recognizer.get_normalized_embedding(image1, faces1[0]['landmarks'])
embedding2 = recognizer.get_normalized_embedding(image2, faces2[0]['landmarks'])
# Compare faces
similarity = compute_similarity(embedding1, embedding2)
print(f"Similarity: {similarity:.4f}")
```
### Facial Landmarks
```python
from uniface import RetinaFace, Landmark106
detector = RetinaFace()
landmarker = Landmark106()
faces = detector.detect(image)
landmarks = landmarker.get_landmarks(image, faces[0]['bbox'])
# Returns 106 (x, y) landmark points
```
### Age & Gender Detection
```python
from uniface import RetinaFace, AgeGender
detector = RetinaFace()
age_gender = AgeGender()
faces = detector.detect(image)
gender, age = age_gender.predict(image, faces[0]['bbox'])
gender_str = 'Female' if gender == 0 else 'Male'
print(f"{gender_str}, {age} years old")
```
### Gaze Estimation
```python
from uniface import RetinaFace, MobileGaze
from uniface.visualization import draw_gaze
import numpy as np
detector = RetinaFace()
gaze_estimator = MobileGaze()
faces = detector.detect(image)
for face in faces:
bbox = face['bbox']
x1, y1, x2, y2 = map(int, bbox[:4])
face_crop = image[y1:y2, x1:x2]
pitch, yaw = gaze_estimator.estimate(face_crop)
print(f"Gaze: pitch={np.degrees(pitch):.1f}°, yaw={np.degrees(yaw):.1f}°")
# Visualize
draw_gaze(image, bbox, pitch, yaw)
```
### Face Parsing
```python
from uniface.parsing import BiSeNet
from uniface.visualization import vis_parsing_maps
# Initialize parser
parser = BiSeNet() # Uses ResNet18 by default
# Parse face image (already cropped)
mask = parser.parse(face_image)
# Visualize with overlay
import cv2
face_rgb = cv2.cvtColor(face_image, cv2.COLOR_BGR2RGB)
vis_result = vis_parsing_maps(face_rgb, mask, save_image=False)
# mask contains 19 classes: skin, eyes, nose, mouth, hair, etc.
print(f"Unique classes: {len(np.unique(mask))}")
```
---
## Documentation
- [**QUICKSTART.md**](QUICKSTART.md) - 5-minute getting started guide
- [**MODELS.md**](MODELS.md) - Model zoo, benchmarks, and selection guide
- [**Examples**](examples/) - Jupyter notebooks with detailed examples
---
## API Overview
### Factory Functions (Recommended)
```python
from uniface.detection import RetinaFace, SCRFD
from uniface.recognition import ArcFace
from uniface.landmark import Landmark106
from uniface.constants import SCRFDWeights
# Create detector with default settings
detector = RetinaFace()
# Create with custom config
detector = SCRFD(
model_name=SCRFDWeights.SCRFD_10G_KPS, # SCRFDWeights.SCRFD_500M_KPS
conf_thresh=0.4,
input_size=(640, 640)
)
# Or with defaults settings: detector = SCRFD()
# Recognition and landmarks
recognizer = ArcFace()
landmarker = Landmark106()
```
### Run Inference
### Direct Model Instantiation
Inference on image:
```python
from uniface import RetinaFace, SCRFD, YOLOv5Face, ArcFace, MobileFace, SphereFace
from uniface.constants import RetinaFaceWeights, YOLOv5FaceWeights
# Detection
detector = RetinaFace(
model_name=RetinaFaceWeights.MNET_V2,
conf_thresh=0.5,
nms_thresh=0.4
)
# Or detector = RetinaFace()
# YOLOv5-Face detection
detector = YOLOv5Face(
model_name=YOLOv5FaceWeights.YOLOV5S,
conf_thresh=0.6,
nms_thresh=0.5
)
# Or detector = YOLOv5Face
# Recognition
recognizer = ArcFace() # Uses default weights
recognizer = MobileFace() # Lightweight alternative
recognizer = SphereFace() # Angular softmax alternative
```
### High-Level Detection API
```python
from uniface import detect_faces
# One-line face detection
faces = detect_faces(image, method='retinaface', conf_thresh=0.8) # methods: retinaface, scrfd, yolov5face
```
### Key Parameters (quick reference)
**Detection**
| Class | Key params (defaults) | Notes |
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------ | ---------------------------------------------- |
| `RetinaFace` | `model_name=RetinaFaceWeights.MNET_V2`, `conf_thresh=0.5`, `nms_thresh=0.4`, `input_size=(640, 640)`, `dynamic_size=False` | Supports 5-point landmarks |
| `SCRFD` | `model_name=SCRFDWeights.SCRFD_10G_KPS`, `conf_thresh=0.5`, `nms_thresh=0.4`, `input_size=(640, 640)` | Supports 5-point landmarks |
| `YOLOv5Face` | `model_name=YOLOv5FaceWeights.YOLOV5S`, `conf_thresh=0.6`, `nms_thresh=0.5`, `input_size=640` (fixed) | Supports 5-point landmarks; models: YOLOV5N/S/M; `input_size` must be 640 |
**Recognition**
| Class | Key params (defaults) | Notes |
| -------------- | ----------------------------------------- | ------------------------------------- |
| `ArcFace` | `model_name=ArcFaceWeights.MNET` | Returns 512-dim normalized embeddings |
| `MobileFace` | `model_name=MobileFaceWeights.MNET_V2` | Lightweight embeddings |
| `SphereFace` | `model_name=SphereFaceWeights.SPHERE20` | Angular softmax variant |
**Landmark & Attributes**
| Class | Key params (defaults) | Notes |
| --------------- | --------------------------------------------------------------------- | --------------------------------------- |
| `Landmark106` | No required params | 106-point landmarks |
| `AgeGender` | `model_name=AgeGenderWeights.DEFAULT`; `input_size` auto-detected | Requires bbox; ONNXRuntime |
| `Emotion` | `model_weights=DDAMFNWeights.AFFECNET7`, `input_size=(112, 112)` | Requires 5-point landmarks; TorchScript |
**Gaze Estimation**
| Class | Key params (defaults) | Notes |
| ------------- | ------------------------------------------ | ------------------------------------ |
| `MobileGaze` | `model_name=GazeWeights.RESNET34` | Returns (pitch, yaw) angles in radians; trained on Gaze360 |
**Face Parsing**
| Class | Key params (defaults) | Notes |
| ---------- | ---------------------------------------- | ------------------------------------ |
| `BiSeNet` | `model_name=ParsingWeights.RESNET18`, `input_size=(512, 512)` | 19 facial component classes; BiSeNet architecture with ResNet backbone |
---
## Model Performance
### Face Detection (WIDER FACE Dataset)
| Model | Easy | Medium | Hard | Use Case |
| ------------------ | ------ | ------ | ------ | ---------------------- |
| retinaface_mnet025 | 88.48% | 87.02% | 80.61% | Mobile/Edge devices |
| retinaface_mnet_v2 | 91.70% | 91.03% | 86.60% | Balanced (recommended) |
| retinaface_r34 | 94.16% | 93.12% | 88.90% | High accuracy |
| scrfd_500m | 90.57% | 88.12% | 68.51% | Real-time applications |
| scrfd_10g | 95.16% | 93.87% | 83.05% | Best accuracy/speed |
| yolov5n_face | 93.61% | 91.52% | 80.53% | Lightweight/Mobile |
| yolov5s_face | 94.33% | 92.61% | 83.15% | Real-time + accuracy |
| yolov5m_face | 95.30% | 93.76% | 85.28% | High accuracy |
_Accuracy values from original papers: [RetinaFace](https://arxiv.org/abs/1905.00641), [SCRFD](https://arxiv.org/abs/2105.04714), [YOLOv5-Face](https://arxiv.org/abs/2105.12931)_
**Benchmark on your hardware:**
```bash
python scripts/run_detection.py --image assets/test.jpg --iterations 100
```
See [MODELS.md](MODELS.md) for detailed model information and selection guide.
<div align="center">
<img src="assets/test_result.png">
</div>
---
## Examples
### Jupyter Notebooks
Interactive examples covering common face analysis tasks:
| Example | Description | Notebook |
|---------|-------------|----------|
| **Face Detection** | Detect faces and facial landmarks | [face_detection.ipynb](examples/face_detection.ipynb) |
| **Face Alignment** | Align and crop faces for recognition | [face_alignment.ipynb](examples/face_alignment.ipynb) |
| **Face Recognition** | Extract face embeddings and compare faces | [face_analyzer.ipynb](examples/face_analyzer.ipynb) |
| **Face Verification** | Compare two faces to verify identity | [face_verification.ipynb](examples/face_verification.ipynb) |
| **Face Search** | Find a person in a group photo | [face_search.ipynb](examples/face_search.ipynb) |
| **Face Parsing** | Segment face into semantic components | [face_parsing.ipynb](examples/face_parsing.ipynb) |
| **Gaze Estimation** | Estimate gaze direction from face images | [gaze_estimation.ipynb](examples/gaze_estimation.ipynb) |
### Webcam Face Detection
```python
import cv2
from uniface import RetinaFace
from uniface.visualization import draw_detections
# Load an image
image_path = "assets/test.jpg"
original_image = cv2.imread(image_path)
# Perform inference
boxes, landmarks = uniface_inference.detect(original_image)
# Visualize results
draw_detections(original_image, (boxes, landmarks), vis_threshold=0.6)
# Save the output image
output_path = "output.jpg"
cv2.imwrite(output_path, original_image)
print(f"Saved output image to {output_path}")
```
Inference on video:
```python
import cv2
from uniface.visualization import draw_detections
# Initialize the webcam
detector = RetinaFace()
cap = cv2.VideoCapture(0)
if not cap.isOpened():
print("Error: Unable to access the webcam.")
exit()
while True:
# Capture a frame from the webcam
ret, frame = cap.read()
if not ret:
print("Error: Failed to read frame.")
break
# Perform inference
boxes, landmarks = uniface_inference.detect(frame)
faces = detector.detect(frame)
# Draw detections on the frame
draw_detections(frame, (boxes, landmarks), vis_threshold=0.6)
# Extract data for visualization
bboxes = [f['bbox'] for f in faces]
scores = [f['confidence'] for f in faces]
landmarks = [f['landmarks'] for f in faces]
# Display the output
cv2.imshow("Webcam Inference", frame)
draw_detections(
image=frame,
bboxes=bboxes,
scores=scores,
landmarks=landmarks,
vis_threshold=0.6,
)
# Exit if 'q' is pressed
cv2.imshow("Face Detection", frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# Release the webcam and close all OpenCV windows
cap.release()
cv2.destroyAllWindows()
```
### Face Search System
```python
import numpy as np
from uniface import RetinaFace, ArcFace
detector = RetinaFace()
recognizer = ArcFace()
# Build face database
database = {}
for person_id, image_path in person_images.items():
image = cv2.imread(image_path)
faces = detector.detect(image)
if faces:
embedding = recognizer.get_normalized_embedding(
image, faces[0]['landmarks']
)
database[person_id] = embedding
# Search for a face
query_image = cv2.imread("query.jpg")
query_faces = detector.detect(query_image)
if query_faces:
query_embedding = recognizer.get_normalized_embedding(
query_image, query_faces[0]['landmarks']
)
# Find best match
best_match = None
best_similarity = -1
for person_id, db_embedding in database.items():
similarity = np.dot(query_embedding, db_embedding.T)[0][0]
if similarity > best_similarity:
best_similarity = similarity
best_match = person_id
print(f"Best match: {best_match} (similarity: {best_similarity:.4f})")
```
More examples in the [examples/](examples/) directory.
---
### Evaluation results of available models on WiderFace
## Advanced Configuration
| RetinaFace Models | Easy | Medium | Hard |
| ------------------ | ---------- | ---------- | ---------- |
| retinaface_mnet025 | 88.48% | 87.02% | 80.61% |
| retinaface_mnet050 | 89.42% | 87.97% | 82.40% |
| retinaface_mnet_v1 | 90.59% | 89.14% | 84.13% |
| retinaface_mnet_v2 | 91.70% | 91.03% | 86.60% |
| retinaface_r18 | 92.50% | 91.02% | 86.63% |
| retinaface_r34 | **94.16%** | **93.12%** | **88.90%** |
### Custom ONNX Runtime Providers
## API Reference
### `RetinaFace` Class
#### Initialization
```python
RetinaFace(
model: str,
conf_thresh: float = 0.5,
pre_nms_topk: int = 5000,
nms_thresh: float = 0.4,
post_nms_topk: int = 750
from uniface.onnx_utils import get_available_providers, create_onnx_session
# Check available providers
providers = get_available_providers()
print(f"Available: {providers}")
# Force CPU-only execution
from uniface import RetinaFace
detector = RetinaFace()
# Internally uses create_onnx_session() which auto-selects best provider
```
### Model Download and Caching
Models are automatically downloaded on first use and cached in `~/.uniface/models/`.
```python
from uniface.model_store import verify_model_weights
from uniface.constants import RetinaFaceWeights
# Manually download and verify a model
model_path = verify_model_weights(
RetinaFaceWeights.MNET_V2,
root='./custom_models' # Custom cache directory
)
```
**Parameters**:
- `model` *(str)*: Name of the model to use. Supported models:
- `retinaface_mnet025`, `retinaface_mnet050`, `retinaface_mnet_v1`, `retinaface_mnet_v2`
- `retinaface_r18`, `retinaface_r34`
- `conf_thresh` *(float, default=0.5)*: Minimum confidence score for detections.
- `pre_nms_topk` *(int, default=5000)*: Max detections to keep before NMS.
- `nms_thresh` *(float, default=0.4)*: IoU threshold for Non-Maximum Suppression.
- `post_nms_topk` *(int, default=750)*: Max detections to keep after NMS.
### Logging Configuration
---
### `detect` Method
```python
detect(
image: np.ndarray,
max_num: int = 0,
metric: str = "default",
center_weight: float = 2.0
) -> Tuple[np.ndarray, np.ndarray]
from uniface import Logger
import logging
# Set logging level
Logger.setLevel(logging.DEBUG) # DEBUG, INFO, WARNING, ERROR
# Disable logging
Logger.setLevel(logging.CRITICAL)
```
**Description**:
Detects faces in the given image and returns bounding boxes and landmarks.
**Parameters**:
- `image` *(np.ndarray)*: Input image in BGR format.
- `max_num` *(int, default=0)*: Maximum number of faces to return. `0` means return all.
- `metric` *(str, default="default")*: Metric for prioritizing detections:
- `"default"`: Prioritize detections closer to the image center.
- `"max"`: Prioritize larger bounding box areas.
- `center_weight` *(float, default=2.0)*: Weight for prioritizing center-aligned faces.
**Returns**:
- `bounding_boxes` *(np.ndarray)*: Array of detections as `[x_min, y_min, x_max, y_max, confidence]`.
- `landmarks` *(np.ndarray)*: Array of landmarks as `[(x1, y1), ..., (x5, y5)]`.
---
### Visualization Utilities
## Testing
#### `draw_detections`
```python
draw_detections(
image: np.ndarray,
detections: Tuple[np.ndarray, np.ndarray],
vis_threshold: float
) -> None
```bash
# Run all tests
pytest
# Run with coverage
pytest --cov=uniface --cov-report=html
# Run specific test file
pytest tests/test_retinaface.py -v
```
**Description**:
Draws bounding boxes and landmarks on the given image.
---
**Parameters**:
- `image` *(np.ndarray)*: The input image in BGR format.
- `detections` *(Tuple[np.ndarray, np.ndarray])*: A tuple of bounding boxes and landmarks.
- `vis_threshold` *(float)*: Minimum confidence score for visualization.
## Development
### Setup Development Environment
```bash
git clone https://github.com/yakhyo/uniface.git
cd uniface
# Install in editable mode with dev dependencies
pip install -e ".[dev]"
# Run tests
pytest
```
### Code Formatting
This project uses [Ruff](https://docs.astral.sh/ruff/) for linting and formatting.
```bash
# Format code
ruff format .
# Check for linting errors
ruff check .
# Auto-fix linting errors
ruff check . --fix
```
Ruff configuration is in `pyproject.toml`. Key settings:
- Line length: 120
- Python target: 3.10+
- Import sorting: `uniface` as first-party
### Project Structure
```
uniface/
├── uniface/
│ ├── detection/ # Face detection models
│ ├── recognition/ # Face recognition models
│ ├── landmark/ # Landmark detection
│ ├── parsing/ # Face parsing
│ ├── gaze/ # Gaze estimation
│ ├── attribute/ # Age, gender, emotion
│ ├── onnx_utils.py # ONNX Runtime utilities
│ ├── model_store.py # Model download & caching
│ └── visualization.py # Drawing utilities
├── tests/ # Unit tests
├── examples/ # Example notebooks
└── scripts/ # Utility scripts
```
---
## References
- **RetinaFace Training**: [yakhyo/retinaface-pytorch](https://github.com/yakhyo/retinaface-pytorch) - PyTorch implementation and training code
- **YOLOv5-Face ONNX**: [yakhyo/yolov5-face-onnx-inference](https://github.com/yakhyo/yolov5-face-onnx-inference) - ONNX inference implementation
- **Face Recognition Training**: [yakhyo/face-recognition](https://github.com/yakhyo/face-recognition) - ArcFace, MobileFace, SphereFace training code
- **Face Parsing Training**: [yakhyo/face-parsing](https://github.com/yakhyo/face-parsing) - BiSeNet face parsing training code and pretrained weights
- **Gaze Estimation Training**: [yakhyo/gaze-estimation](https://github.com/yakhyo/gaze-estimation) - MobileGaze training code and pretrained weights
- **InsightFace**: [deepinsight/insightface](https://github.com/deepinsight/insightface) - Model architectures and pretrained weights
## Contributing
We welcome contributions to enhance the library! Feel free to:
- Submit bug reports or feature requests.
- Fork the repository and create a pull request.
---
## License
This project is licensed under the MIT License. See the [LICENSE](LICENSE) file for details.
---
## Acknowledgments
- Based on the RetinaFace model for face detection ([https://github.com/yakhyo/retinaface-pytorch](https://github.com/yakhyo/retinaface-pytorch)).
- Inspired by InsightFace and other face detection projects.
---
Contributions are welcome! Please open an issue or submit a pull request on [GitHub](https://github.com/yakhyo/uniface).

BIN
assets/alignment_result.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 996 KiB

BIN
assets/einstien.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.3 MiB

BIN
assets/scientists.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.9 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 26 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.6 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 9.1 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 9.8 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 11 KiB

BIN
assets/test_result.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.1 MiB

0
examples/.gitkeep Normal file
View File

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

387
examples/face_parsing.ipynb Normal file

File diff suppressed because one or more lines are too long

368
examples/face_search.ipynb Normal file

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

102
pyproject.toml Normal file
View File

@@ -0,0 +1,102 @@
[project]
name = "uniface"
version = "1.5.0"
description = "UniFace: A Comprehensive Library for Face Detection, Recognition, Landmark Analysis, Face Parsing, Gaze Estimation, Age, and Gender Detection"
readme = "README.md"
license = { text = "MIT" }
authors = [{ name = "Yakhyokhuja Valikhujaev", email = "yakhyo9696@gmail.com" }]
maintainers = [
{ name = "Yakhyokhuja Valikhujaev", email = "yakhyo9696@gmail.com" },
]
requires-python = ">=3.10,<3.14"
keywords = [
"face-detection",
"face-recognition",
"facial-landmarks",
"face-parsing",
"face-segmentation",
"gaze-estimation",
"age-detection",
"gender-detection",
"computer-vision",
"deep-learning",
"onnx",
"onnxruntime",
"face-analysis",
"bisenet",
]
classifiers = [
"Development Status :: 4 - Beta",
"Intended Audience :: Developers",
"Intended Audience :: Science/Research",
"License :: OSI Approved :: MIT License",
"Operating System :: OS Independent",
"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3.10",
"Programming Language :: Python :: 3.11",
"Programming Language :: Python :: 3.12",
"Programming Language :: Python :: 3.13",
]
dependencies = [
"numpy>=1.21.0",
"opencv-python>=4.5.0",
"onnx>=1.12.0",
"onnxruntime>=1.16.0",
"scikit-image>=0.19.0",
"requests>=2.28.0",
"tqdm>=4.64.0",
]
[project.optional-dependencies]
dev = ["pytest>=7.0.0", "ruff>=0.4.0"]
gpu = ["onnxruntime-gpu>=1.16.0"]
[project.urls]
Homepage = "https://github.com/yakhyo/uniface"
Repository = "https://github.com/yakhyo/uniface"
Documentation = "https://github.com/yakhyo/uniface/blob/main/README.md"
"Quick Start" = "https://github.com/yakhyo/uniface/blob/main/QUICKSTART.md"
"Model Zoo" = "https://github.com/yakhyo/uniface/blob/main/MODELS.md"
[build-system]
requires = ["setuptools>=64", "wheel"]
build-backend = "setuptools.build_meta"
[tool.setuptools]
packages = { find = { where = ["."], include = ["uniface*"] } }
[tool.setuptools.package-data]
uniface = ["py.typed"]
[tool.ruff]
line-length = 120
target-version = "py310"
exclude = [
".git",
".ruff_cache",
"__pycache__",
"build",
"dist",
"*.egg-info",
".venv",
"venv",
".pytest_cache",
".mypy_cache",
"*.ipynb",
]
[tool.ruff.format]
quote-style = "single"
[tool.ruff.lint]
select = ["E", "F", "I", "W"]
[tool.ruff.lint.flake8-quotes]
docstring-quotes = "double"
[tool.ruff.lint.isort]
known-first-party = ["uniface"]

View File

@@ -1,8 +1,8 @@
pytest
numpy
opencv-python
opencv-python-headless
onnx
onnxruntime
requests
torch
numpy>=1.21.0
opencv-python>=4.5.0
onnx>=1.12.0
onnxruntime>=1.16.0
scikit-image>=0.19.0
requests>=2.28.0
pytest>=7.0.0
tqdm>=4.64.0

79
scripts/README.md Normal file
View File

@@ -0,0 +1,79 @@
# Scripts
Scripts for testing UniFace features.
## Available Scripts
| Script | Description |
|--------|-------------|
| `run_detection.py` | Face detection on image or webcam |
| `run_age_gender.py` | Age and gender prediction |
| `run_emotion.py` | Emotion detection (7 or 8 emotions) |
| `run_gaze_estimation.py` | Gaze direction estimation |
| `run_landmarks.py` | 106-point facial landmark detection |
| `run_recognition.py` | Face embedding extraction and comparison |
| `run_face_analyzer.py` | Complete face analysis (detection + recognition + attributes) |
| `run_face_search.py` | Real-time face matching against reference |
| `run_video_detection.py` | Face detection on video files |
| `batch_process.py` | Batch process folder of images |
| `download_model.py` | Download model weights |
| `sha256_generate.py` | Generate SHA256 hash for model files |
## Usage Examples
```bash
# Face detection
python scripts/run_detection.py --image assets/test.jpg
python scripts/run_detection.py --webcam
# Age and gender
python scripts/run_age_gender.py --image assets/test.jpg
python scripts/run_age_gender.py --webcam
# Emotion detection
python scripts/run_emotion.py --image assets/test.jpg
python scripts/run_emotion.py --webcam
# Gaze estimation
python scripts/run_gaze_estimation.py --image assets/test.jpg
python scripts/run_gaze_estimation.py --webcam
# Landmarks
python scripts/run_landmarks.py --image assets/test.jpg
python scripts/run_landmarks.py --webcam
# Face recognition (extract embedding)
python scripts/run_recognition.py --image assets/test.jpg
# Face comparison
python scripts/run_recognition.py --image1 face1.jpg --image2 face2.jpg
# Face search (match webcam against reference)
python scripts/run_face_search.py --image reference.jpg
# Video processing
python scripts/run_video_detection.py --input video.mp4 --output output.mp4
# Batch processing
python scripts/batch_process.py --input images/ --output results/
# Download models
python scripts/download_model.py --model-type retinaface
python scripts/download_model.py # downloads all
```
## Common Options
| Option | Description |
|--------|-------------|
| `--image` | Path to input image |
| `--webcam` | Use webcam instead of image |
| `--method` | Choose detector: `retinaface`, `scrfd`, `yolov5face` |
| `--threshold` | Visualization confidence threshold (default: 0.25) |
| `--save_dir` | Output directory (default: `outputs`) |
## Quick Test
```bash
python scripts/run_detection.py --image assets/test.jpg
```

98
scripts/batch_process.py Normal file
View File

@@ -0,0 +1,98 @@
# Batch face detection on a folder of images
# Usage: python batch_process.py --input images/ --output results/
import argparse
from pathlib import Path
import cv2
from tqdm import tqdm
from uniface import SCRFD, RetinaFace
from uniface.visualization import draw_detections
def get_image_files(input_dir: Path, extensions: tuple) -> list:
files = []
for ext in extensions:
files.extend(input_dir.glob(f'*.{ext}'))
files.extend(input_dir.glob(f'*.{ext.upper()}'))
return sorted(files)
def process_image(detector, image_path: Path, output_path: Path, threshold: float) -> int:
"""Process single image. Returns face count or -1 on error."""
image = cv2.imread(str(image_path))
if image is None:
return -1
faces = detector.detect(image)
# unpack face data for visualization
bboxes = [f['bbox'] for f in faces]
scores = [f['confidence'] for f in faces]
landmarks = [f['landmarks'] for f in faces]
draw_detections(
image=image, bboxes=bboxes, scores=scores, landmarks=landmarks, vis_threshold=threshold, fancy_bbox=True
)
cv2.putText(
image,
f'Faces: {len(faces)}',
(10, 30),
cv2.FONT_HERSHEY_SIMPLEX,
1,
(0, 255, 0),
2,
)
cv2.imwrite(str(output_path), image)
return len(faces)
def main():
parser = argparse.ArgumentParser(description='Batch process images with face detection')
parser.add_argument('--input', type=str, required=True, help='Input directory')
parser.add_argument('--output', type=str, required=True, help='Output directory')
parser.add_argument('--detector', type=str, default='retinaface', choices=['retinaface', 'scrfd'])
parser.add_argument('--threshold', type=float, default=0.6, help='Visualization threshold')
parser.add_argument('--extensions', type=str, default='jpg,jpeg,png,bmp', help='Image extensions')
args = parser.parse_args()
input_path = Path(args.input)
output_path = Path(args.output)
if not input_path.exists():
print(f"Error: Input directory '{args.input}' does not exist")
return
output_path.mkdir(parents=True, exist_ok=True)
extensions = tuple(ext.strip() for ext in args.extensions.split(','))
image_files = get_image_files(input_path, extensions)
if not image_files:
print(f'No images found with extensions {extensions}')
return
print(f'Found {len(image_files)} images')
detector = RetinaFace() if args.detector == 'retinaface' else SCRFD()
success, errors, total_faces = 0, 0, 0
for img_path in tqdm(image_files, desc='Processing', unit='img'):
out_path = output_path / f'{img_path.stem}_detected{img_path.suffix}'
result = process_image(detector, img_path, out_path, args.threshold)
if result >= 0:
success += 1
total_faces += result
else:
errors += 1
print(f'\nFailed: {img_path.name}')
print(f'\nDone! {success} processed, {errors} errors, {total_faces} faces total')
if __name__ == '__main__':
main()

60
scripts/download_model.py Normal file
View File

@@ -0,0 +1,60 @@
import argparse
from uniface.constants import (
AgeGenderWeights,
ArcFaceWeights,
DDAMFNWeights,
LandmarkWeights,
MobileFaceWeights,
RetinaFaceWeights,
SCRFDWeights,
SphereFaceWeights,
)
from uniface.model_store import verify_model_weights
MODEL_TYPES = {
'retinaface': RetinaFaceWeights,
'sphereface': SphereFaceWeights,
'mobileface': MobileFaceWeights,
'arcface': ArcFaceWeights,
'scrfd': SCRFDWeights,
'ddamfn': DDAMFNWeights,
'agegender': AgeGenderWeights,
'landmark': LandmarkWeights,
}
def download_models(model_enum):
for weight in model_enum:
print(f'Downloading: {weight.value}')
try:
verify_model_weights(weight)
print(f' Done: {weight.value}')
except Exception as e:
print(f' Failed: {e}')
def main():
parser = argparse.ArgumentParser(description='Download model weights')
parser.add_argument(
'--model-type',
type=str,
choices=list(MODEL_TYPES.keys()),
help='Model type to download. If not specified, downloads all.',
)
args = parser.parse_args()
if args.model_type:
print(f'Downloading {args.model_type} models...')
download_models(MODEL_TYPES[args.model_type])
else:
print('Downloading all models...')
for name, model_enum in MODEL_TYPES.items():
print(f'\n{name}:')
download_models(model_enum)
print('\nDone!')
if __name__ == '__main__':
main()

View File

@@ -1,23 +0,0 @@
#!/bin/bash
# Exit on errors
set -e
cd "$(dirname "$0")"/..
echo "Deleting existing release-related files..."
rm -rf dist/ build/ *.egg-info
pip install --upgrade pip
pip install twine
echo "Creating a package for the current release (PyPI compatible)..."
python3 setup.py sdist bdist_wheel
echo "Release package created successfully in the 'dist/' folder."
echo "Uploading the package to PyPI..."
twine upload dist/*
echo "Release uploaded successfully!"

130
scripts/run_age_gender.py Normal file
View File

@@ -0,0 +1,130 @@
# Age and gender prediction on detected faces
# Usage: python run_age_gender.py --image path/to/image.jpg
# python run_age_gender.py --webcam
import argparse
import os
from pathlib import Path
import cv2
from uniface import SCRFD, AgeGender, RetinaFace
from uniface.visualization import draw_detections
def draw_age_gender_label(image, bbox, gender_id: int, age: int):
"""Draw age/gender label above the bounding box."""
x1, y1 = int(bbox[0]), int(bbox[1])
gender_str = 'Female' if gender_id == 0 else 'Male'
text = f'{gender_str}, {age}y'
(tw, th), _ = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, 0.6, 2)
cv2.rectangle(image, (x1, y1 - th - 10), (x1 + tw + 10, y1), (0, 255, 0), -1)
cv2.putText(image, text, (x1 + 5, y1 - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 0), 2)
def process_image(
detector,
age_gender,
image_path: str,
save_dir: str = 'outputs',
threshold: float = 0.6,
):
image = cv2.imread(image_path)
if image is None:
print(f"Error: Failed to load image from '{image_path}'")
return
faces = detector.detect(image)
print(f'Detected {len(faces)} face(s)')
if not faces:
return
bboxes = [f['bbox'] for f in faces]
scores = [f['confidence'] for f in faces]
landmarks = [f['landmarks'] for f in faces]
draw_detections(
image=image, bboxes=bboxes, scores=scores, landmarks=landmarks, vis_threshold=threshold, fancy_bbox=True
)
for i, face in enumerate(faces):
gender_id, age = age_gender.predict(image, face['bbox'])
gender_str = 'Female' if gender_id == 0 else 'Male'
print(f' Face {i + 1}: {gender_str}, {age} years old')
draw_age_gender_label(image, face['bbox'], gender_id, age)
os.makedirs(save_dir, exist_ok=True)
output_path = os.path.join(save_dir, f'{Path(image_path).stem}_age_gender.jpg')
cv2.imwrite(output_path, image)
print(f'Output saved: {output_path}')
def run_webcam(detector, age_gender, threshold: float = 0.6):
cap = cv2.VideoCapture(0) # 0 = default webcam
if not cap.isOpened():
print('Cannot open webcam')
return
print("Press 'q' to quit")
while True:
ret, frame = cap.read()
frame = cv2.flip(frame, 1) # mirror for natural interaction
if not ret:
break
faces = detector.detect(frame)
# unpack face data for visualization
bboxes = [f['bbox'] for f in faces]
scores = [f['confidence'] for f in faces]
landmarks = [f['landmarks'] for f in faces]
draw_detections(
image=frame, bboxes=bboxes, scores=scores, landmarks=landmarks, vis_threshold=threshold, fancy_bbox=True
)
for face in faces:
gender_id, age = age_gender.predict(frame, face['bbox']) # predict per face
draw_age_gender_label(frame, face['bbox'], gender_id, age)
cv2.putText(
frame,
f'Faces: {len(faces)}',
(10, 30),
cv2.FONT_HERSHEY_SIMPLEX,
1,
(0, 255, 0),
2,
)
cv2.imshow('Age & Gender Detection', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
def main():
parser = argparse.ArgumentParser(description='Run age and gender detection')
parser.add_argument('--image', type=str, help='Path to input image')
parser.add_argument('--webcam', action='store_true', help='Use webcam')
parser.add_argument('--detector', type=str, default='retinaface', choices=['retinaface', 'scrfd'])
parser.add_argument('--threshold', type=float, default=0.6, help='Visualization threshold')
parser.add_argument('--save_dir', type=str, default='outputs')
args = parser.parse_args()
if not args.image and not args.webcam:
parser.error('Either --image or --webcam must be specified')
detector = RetinaFace() if args.detector == 'retinaface' else SCRFD()
age_gender = AgeGender()
if args.webcam:
run_webcam(detector, age_gender, args.threshold)
else:
process_image(detector, age_gender, args.image, args.save_dir, args.threshold)
if __name__ == '__main__':
main()

110
scripts/run_detection.py Normal file
View File

@@ -0,0 +1,110 @@
# Face detection on image or webcam
# Usage: python run_detection.py --image path/to/image.jpg
# python run_detection.py --webcam
import argparse
import os
import cv2
from uniface.detection import SCRFD, RetinaFace, YOLOv5Face
from uniface.visualization import draw_detections
def process_image(detector, image_path: str, threshold: float = 0.6, save_dir: str = 'outputs'):
image = cv2.imread(image_path)
if image is None:
print(f"Error: Failed to load image from '{image_path}'")
return
faces = detector.detect(image)
if faces:
bboxes = [face['bbox'] for face in faces]
scores = [face['confidence'] for face in faces]
landmarks = [face['landmarks'] for face in faces]
draw_detections(image, bboxes, scores, landmarks, vis_threshold=threshold)
os.makedirs(save_dir, exist_ok=True)
output_path = os.path.join(save_dir, f'{os.path.splitext(os.path.basename(image_path))[0]}_out.jpg')
cv2.imwrite(output_path, image)
print(f'Output saved: {output_path}')
def run_webcam(detector, threshold: float = 0.6):
cap = cv2.VideoCapture(0) # 0 = default webcam
if not cap.isOpened():
print('Cannot open webcam')
return
print("Press 'q' to quit")
while True:
ret, frame = cap.read()
frame = cv2.flip(frame, 1) # mirror for natural interaction
if not ret:
break
faces = detector.detect(frame)
# unpack face data for visualization
bboxes = [f['bbox'] for f in faces]
scores = [f['confidence'] for f in faces]
landmarks = [f['landmarks'] for f in faces]
draw_detections(
image=frame,
bboxes=bboxes,
scores=scores,
landmarks=landmarks,
vis_threshold=threshold,
draw_score=True,
fancy_bbox=True,
)
cv2.putText(
frame,
f'Faces: {len(faces)}',
(10, 30),
cv2.FONT_HERSHEY_SIMPLEX,
1,
(0, 255, 0),
2,
)
cv2.imshow('Face Detection', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
def main():
parser = argparse.ArgumentParser(description='Run face detection')
parser.add_argument('--image', type=str, help='Path to input image')
parser.add_argument('--webcam', action='store_true', help='Use webcam')
parser.add_argument('--method', type=str, default='retinaface', choices=['retinaface', 'scrfd', 'yolov5face'])
parser.add_argument('--threshold', type=float, default=0.25, help='Visualization threshold')
parser.add_argument('--save_dir', type=str, default='outputs')
args = parser.parse_args()
if not args.image and not args.webcam:
parser.error('Either --image or --webcam must be specified')
if args.method == 'retinaface':
detector = RetinaFace()
elif args.method == 'scrfd':
detector = SCRFD()
else:
from uniface.constants import YOLOv5FaceWeights
detector = YOLOv5Face(model_name=YOLOv5FaceWeights.YOLOV5M)
if args.webcam:
run_webcam(detector, args.threshold)
else:
process_image(detector, args.image, args.threshold, args.save_dir)
if __name__ == '__main__':
main()

126
scripts/run_emotion.py Normal file
View File

@@ -0,0 +1,126 @@
# Emotion detection on detected faces
# Usage: python run_emotion.py --image path/to/image.jpg
# python run_emotion.py --webcam
import argparse
import os
from pathlib import Path
import cv2
from uniface import SCRFD, Emotion, RetinaFace
from uniface.visualization import draw_detections
def draw_emotion_label(image, bbox, emotion: str, confidence: float):
"""Draw emotion label above the bounding box."""
x1, y1 = int(bbox[0]), int(bbox[1])
text = f'{emotion} ({confidence:.2f})'
(tw, th), _ = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, 0.6, 2)
cv2.rectangle(image, (x1, y1 - th - 10), (x1 + tw + 10, y1), (255, 0, 0), -1)
cv2.putText(image, text, (x1 + 5, y1 - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
def process_image(
detector,
emotion_predictor,
image_path: str,
save_dir: str = 'outputs',
threshold: float = 0.6,
):
image = cv2.imread(image_path)
if image is None:
print(f"Error: Failed to load image from '{image_path}'")
return
faces = detector.detect(image)
print(f'Detected {len(faces)} face(s)')
if not faces:
return
bboxes = [f['bbox'] for f in faces]
scores = [f['confidence'] for f in faces]
landmarks = [f['landmarks'] for f in faces]
draw_detections(
image=image, bboxes=bboxes, scores=scores, landmarks=landmarks, vis_threshold=threshold, fancy_bbox=True
)
for i, face in enumerate(faces):
emotion, confidence = emotion_predictor.predict(image, face['landmarks'])
print(f' Face {i + 1}: {emotion} (confidence: {confidence:.3f})')
draw_emotion_label(image, face['bbox'], emotion, confidence)
os.makedirs(save_dir, exist_ok=True)
output_path = os.path.join(save_dir, f'{Path(image_path).stem}_emotion.jpg')
cv2.imwrite(output_path, image)
print(f'Output saved: {output_path}')
def run_webcam(detector, emotion_predictor, threshold: float = 0.6):
cap = cv2.VideoCapture(0) # 0 = default webcam
if not cap.isOpened():
print('Cannot open webcam')
return
print("Press 'q' to quit")
while True:
ret, frame = cap.read()
frame = cv2.flip(frame, 1) # mirror for natural interaction
if not ret:
break
faces = detector.detect(frame)
# unpack face data for visualization
bboxes = [f['bbox'] for f in faces]
scores = [f['confidence'] for f in faces]
landmarks = [f['landmarks'] for f in faces]
draw_detections(frame, bboxes, scores, landmarks, vis_threshold=threshold)
for face in faces:
emotion, confidence = emotion_predictor.predict(frame, face['landmarks'])
draw_emotion_label(frame, face['bbox'], emotion, confidence)
cv2.putText(
frame,
f'Faces: {len(faces)}',
(10, 30),
cv2.FONT_HERSHEY_SIMPLEX,
1,
(0, 255, 0),
2,
)
cv2.imshow('Emotion Detection', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
def main():
parser = argparse.ArgumentParser(description='Run emotion detection')
parser.add_argument('--image', type=str, help='Path to input image')
parser.add_argument('--webcam', action='store_true', help='Use webcam')
parser.add_argument('--detector', type=str, default='retinaface', choices=['retinaface', 'scrfd'])
parser.add_argument('--threshold', type=float, default=0.6, help='Visualization threshold')
parser.add_argument('--save_dir', type=str, default='outputs')
args = parser.parse_args()
if not args.image and not args.webcam:
parser.error('Either --image or --webcam must be specified')
detector = RetinaFace() if args.detector == 'retinaface' else SCRFD()
emotion_predictor = Emotion()
if args.webcam:
run_webcam(detector, emotion_predictor, args.threshold)
else:
process_image(detector, emotion_predictor, args.image, args.save_dir, args.threshold)
if __name__ == '__main__':
main()

View File

@@ -0,0 +1,116 @@
# Face analysis using FaceAnalyzer
# Usage: python run_face_analyzer.py --image path/to/image.jpg
import argparse
import os
from pathlib import Path
import cv2
import numpy as np
from uniface import AgeGender, ArcFace, FaceAnalyzer, RetinaFace
from uniface.visualization import draw_detections
def draw_face_info(image, face, face_id):
"""Draw face ID and attributes above bounding box."""
x1, y1, x2, y2 = map(int, face.bbox)
lines = [f'ID: {face_id}', f'Conf: {face.confidence:.2f}']
if face.age and face.sex:
lines.append(f'{face.sex}, {face.age}y')
for i, line in enumerate(lines):
y_pos = y1 - 10 - (len(lines) - 1 - i) * 25
if y_pos < 20:
y_pos = y2 + 20 + i * 25
(tw, th), _ = cv2.getTextSize(line, cv2.FONT_HERSHEY_SIMPLEX, 0.6, 2)
cv2.rectangle(image, (x1, y_pos - th - 5), (x1 + tw + 10, y_pos + 5), (0, 255, 0), -1)
cv2.putText(image, line, (x1 + 5, y_pos), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 0), 2)
def process_image(analyzer, image_path: str, save_dir: str = 'outputs', show_similarity: bool = True):
image = cv2.imread(image_path)
if image is None:
print(f"Error: Failed to load image from '{image_path}'")
return
faces = analyzer.analyze(image)
print(f'Detected {len(faces)} face(s)')
if not faces:
return
for i, face in enumerate(faces, 1):
info = f' Face {i}: {face.sex}, {face.age}y' if face.age and face.sex else f' Face {i}'
if face.embedding is not None:
info += f' (embedding: {face.embedding.shape})'
print(info)
if show_similarity and len(faces) >= 2:
print('\nSimilarity Matrix:')
n = len(faces)
sim_matrix = np.zeros((n, n))
for i in range(n):
for j in range(i, n):
if i == j:
sim_matrix[i][j] = 1.0
else:
sim = faces[i].compute_similarity(faces[j])
sim_matrix[i][j] = sim
sim_matrix[j][i] = sim
print(' ', end='')
for i in range(n):
print(f' F{i + 1:2d} ', end='')
print('\n ' + '-' * (7 * n))
for i in range(n):
print(f'F{i + 1:2d} | ', end='')
for j in range(n):
print(f'{sim_matrix[i][j]:6.3f} ', end='')
print()
pairs = [(i, j, sim_matrix[i][j]) for i in range(n) for j in range(i + 1, n)]
pairs.sort(key=lambda x: x[2], reverse=True)
print('\nTop matches (>0.4 = same person):')
for i, j, sim in pairs[:3]:
status = 'Same' if sim > 0.4 else 'Different'
print(f' Face {i + 1} ↔ Face {j + 1}: {sim:.3f} ({status})')
bboxes = [f.bbox for f in faces]
scores = [f.confidence for f in faces]
landmarks = [f.landmarks for f in faces]
draw_detections(image=image, bboxes=bboxes, scores=scores, landmarks=landmarks, fancy_bbox=True)
for i, face in enumerate(faces, 1):
draw_face_info(image, face, i)
os.makedirs(save_dir, exist_ok=True)
output_path = os.path.join(save_dir, f'{Path(image_path).stem}_analysis.jpg')
cv2.imwrite(output_path, image)
print(f'Output saved: {output_path}')
def main():
parser = argparse.ArgumentParser(description='Face analysis with detection, recognition, and attributes')
parser.add_argument('--image', type=str, required=True, help='Path to input image')
parser.add_argument('--save_dir', type=str, default='outputs', help='Output directory')
parser.add_argument('--no-similarity', action='store_true', help='Skip similarity matrix computation')
args = parser.parse_args()
if not os.path.exists(args.image):
print(f'Error: Image not found: {args.image}')
return
detector = RetinaFace()
recognizer = ArcFace()
age_gender = AgeGender()
analyzer = FaceAnalyzer(detector, recognizer, age_gender)
process_image(analyzer, args.image, args.save_dir, show_similarity=not args.no_similarity)
if __name__ == '__main__':
main()

126
scripts/run_face_parsing.py Normal file
View File

@@ -0,0 +1,126 @@
# Face parsing on detected faces
# Usage: python run_face_parsing.py --image path/to/image.jpg
# python run_face_parsing.py --webcam
import argparse
import os
from pathlib import Path
import cv2
from uniface import RetinaFace
from uniface.constants import ParsingWeights
from uniface.parsing import BiSeNet
from uniface.visualization import vis_parsing_maps
def process_image(detector, parser, image_path: str, save_dir: str = 'outputs'):
image = cv2.imread(image_path)
if image is None:
print(f"Error: Failed to load image from '{image_path}'")
return
faces = detector.detect(image)
print(f'Detected {len(faces)} face(s)')
result_image = image.copy()
for i, face in enumerate(faces):
bbox = face['bbox']
x1, y1, x2, y2 = map(int, bbox[:4])
face_crop = image[y1:y2, x1:x2]
if face_crop.size == 0:
continue
# Parse the face
mask = parser.parse(face_crop)
print(f' Face {i + 1}: parsed with {len(set(mask.flatten()))} unique classes')
# Visualize the parsing result
face_crop_rgb = cv2.cvtColor(face_crop, cv2.COLOR_BGR2RGB)
vis_result = vis_parsing_maps(face_crop_rgb, mask, save_image=False)
# Place the visualization back on the original image
result_image[y1:y2, x1:x2] = vis_result
# Draw bounding box
cv2.rectangle(result_image, (x1, y1), (x2, y2), (0, 255, 0), 2)
os.makedirs(save_dir, exist_ok=True)
output_path = os.path.join(save_dir, f'{Path(image_path).stem}_parsing.jpg')
cv2.imwrite(output_path, result_image)
print(f'Output saved: {output_path}')
def run_webcam(detector, parser):
cap = cv2.VideoCapture(0)
if not cap.isOpened():
print('Cannot open webcam')
return
print("Press 'q' to quit")
while True:
ret, frame = cap.read()
if not ret:
break
frame = cv2.flip(frame, 1)
faces = detector.detect(frame)
for face in faces:
bbox = face['bbox']
x1, y1, x2, y2 = map(int, bbox[:4])
face_crop = frame[y1:y2, x1:x2]
if face_crop.size == 0:
continue
# Parse the face
mask = parser.parse(face_crop)
# Visualize the parsing result
face_crop_rgb = cv2.cvtColor(face_crop, cv2.COLOR_BGR2RGB)
vis_result = vis_parsing_maps(face_crop_rgb, mask, save_image=False)
# Place the visualization back on the frame
frame[y1:y2, x1:x2] = vis_result
# Draw bounding box
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
cv2.putText(frame, f'Faces: {len(faces)}', (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
cv2.imshow('Face Parsing', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
def main():
parser_arg = argparse.ArgumentParser(description='Run face parsing')
parser_arg.add_argument('--image', type=str, help='Path to input image')
parser_arg.add_argument('--webcam', action='store_true', help='Use webcam')
parser_arg.add_argument('--save_dir', type=str, default='outputs')
parser_arg.add_argument(
'--model', type=str, default=ParsingWeights.RESNET18, choices=[ParsingWeights.RESNET18, ParsingWeights.RESNET34]
)
args = parser_arg.parse_args()
if not args.image and not args.webcam:
parser_arg.error('Either --image or --webcam must be specified')
detector = RetinaFace()
parser = BiSeNet(model_name=ParsingWeights.RESNET34)
if args.webcam:
run_webcam(detector, parser)
else:
process_image(detector, parser, args.image, args.save_dir)
if __name__ == '__main__':
main()

View File

@@ -0,0 +1,97 @@
# Real-time face search: match webcam faces against a reference image
# Usage: python run_face_search.py --image reference.jpg
import argparse
import cv2
import numpy as np
from uniface.detection import SCRFD, RetinaFace
from uniface.face_utils import compute_similarity
from uniface.recognition import ArcFace, MobileFace, SphereFace
def get_recognizer(name: str):
if name == 'arcface':
return ArcFace()
elif name == 'mobileface':
return MobileFace()
else:
return SphereFace()
def extract_reference_embedding(detector, recognizer, image_path: str) -> np.ndarray:
image = cv2.imread(image_path)
if image is None:
raise RuntimeError(f'Failed to load image: {image_path}')
faces = detector.detect(image)
if not faces:
raise RuntimeError('No faces found in reference image.')
landmarks = faces[0]['landmarks']
return recognizer.get_normalized_embedding(image, landmarks)
def run_webcam(detector, recognizer, ref_embedding: np.ndarray, threshold: float = 0.4):
cap = cv2.VideoCapture(0) # 0 = default webcam
if not cap.isOpened():
raise RuntimeError('Webcam could not be opened.')
print("Press 'q' to quit")
while True:
ret, frame = cap.read()
frame = cv2.flip(frame, 1) # mirror for natural interaction
if not ret:
break
faces = detector.detect(frame)
for face in faces:
bbox = face['bbox']
landmarks = face['landmarks']
x1, y1, x2, y2 = map(int, bbox)
embedding = recognizer.get_normalized_embedding(frame, landmarks)
sim = compute_similarity(ref_embedding, embedding) # compare with reference
# green = match, red = unknown
label = f'Match ({sim:.2f})' if sim > threshold else f'Unknown ({sim:.2f})'
color = (0, 255, 0) if sim > threshold else (0, 0, 255)
cv2.rectangle(frame, (x1, y1), (x2, y2), color, 2)
cv2.putText(frame, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 2)
cv2.imshow('Face Recognition', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
def main():
parser = argparse.ArgumentParser(description='Face search using a reference image')
parser.add_argument('--image', type=str, required=True, help='Reference face image')
parser.add_argument('--threshold', type=float, default=0.4, help='Match threshold')
parser.add_argument('--detector', type=str, default='scrfd', choices=['retinaface', 'scrfd'])
parser.add_argument(
'--recognizer',
type=str,
default='arcface',
choices=['arcface', 'mobileface', 'sphereface'],
)
args = parser.parse_args()
detector = RetinaFace() if args.detector == 'retinaface' else SCRFD()
recognizer = get_recognizer(args.recognizer)
print(f'Loading reference: {args.image}')
ref_embedding = extract_reference_embedding(detector, recognizer, args.image)
run_webcam(detector, recognizer, ref_embedding, args.threshold)
if __name__ == '__main__':
main()

View File

@@ -0,0 +1,104 @@
# Gaze estimation on detected faces
# Usage: python run_gaze_estimation.py --image path/to/image.jpg
# python run_gaze_estimation.py --webcam
import argparse
import os
from pathlib import Path
import cv2
import numpy as np
from uniface import RetinaFace
from uniface.gaze import MobileGaze
from uniface.visualization import draw_gaze
def process_image(detector, gaze_estimator, image_path: str, save_dir: str = 'outputs'):
image = cv2.imread(image_path)
if image is None:
print(f"Error: Failed to load image from '{image_path}'")
return
faces = detector.detect(image)
print(f'Detected {len(faces)} face(s)')
for i, face in enumerate(faces):
bbox = face['bbox']
x1, y1, x2, y2 = map(int, bbox[:4])
face_crop = image[y1:y2, x1:x2]
if face_crop.size == 0:
continue
pitch, yaw = gaze_estimator.estimate(face_crop)
print(f' Face {i + 1}: pitch={np.degrees(pitch):.1f}°, yaw={np.degrees(yaw):.1f}°')
# Draw both bbox and gaze arrow with angle text
draw_gaze(image, bbox, pitch, yaw, draw_angles=True)
os.makedirs(save_dir, exist_ok=True)
output_path = os.path.join(save_dir, f'{Path(image_path).stem}_gaze.jpg')
cv2.imwrite(output_path, image)
print(f'Output saved: {output_path}')
def run_webcam(detector, gaze_estimator):
cap = cv2.VideoCapture(0)
if not cap.isOpened():
print('Cannot open webcam')
return
print("Press 'q' to quit")
while True:
ret, frame = cap.read()
if not ret:
break
frame = cv2.flip(frame, 1)
faces = detector.detect(frame)
for face in faces:
bbox = face['bbox']
x1, y1, x2, y2 = map(int, bbox[:4])
face_crop = frame[y1:y2, x1:x2]
if face_crop.size == 0:
continue
pitch, yaw = gaze_estimator.estimate(face_crop)
# Draw both bbox and gaze arrow
draw_gaze(frame, bbox, pitch, yaw)
cv2.putText(frame, f'Faces: {len(faces)}', (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
cv2.imshow('Gaze Estimation', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
def main():
parser = argparse.ArgumentParser(description='Run gaze estimation')
parser.add_argument('--image', type=str, help='Path to input image')
parser.add_argument('--webcam', action='store_true', help='Use webcam')
parser.add_argument('--save_dir', type=str, default='outputs')
args = parser.parse_args()
if not args.image and not args.webcam:
parser.error('Either --image or --webcam must be specified')
detector = RetinaFace()
gaze_estimator = MobileGaze()
if args.webcam:
run_webcam(detector, gaze_estimator)
else:
process_image(detector, gaze_estimator, args.image, args.save_dir)
if __name__ == '__main__':
main()

117
scripts/run_landmarks.py Normal file
View File

@@ -0,0 +1,117 @@
# 106-point facial landmark detection
# Usage: python run_landmarks.py --image path/to/image.jpg
# python run_landmarks.py --webcam
import argparse
import os
from pathlib import Path
import cv2
from uniface import SCRFD, Landmark106, RetinaFace
def process_image(detector, landmarker, image_path: str, save_dir: str = 'outputs'):
image = cv2.imread(image_path)
if image is None:
print(f"Error: Failed to load image from '{image_path}'")
return
faces = detector.detect(image)
print(f'Detected {len(faces)} face(s)')
if not faces:
return
for i, face in enumerate(faces):
bbox = face['bbox']
x1, y1, x2, y2 = map(int, bbox)
cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2)
landmarks = landmarker.get_landmarks(image, bbox)
print(f' Face {i + 1}: {len(landmarks)} landmarks')
for x, y in landmarks.astype(int):
cv2.circle(image, (x, y), 1, (0, 255, 0), -1)
cv2.putText(
image,
f'Face {i + 1}',
(x1, y1 - 10),
cv2.FONT_HERSHEY_SIMPLEX,
0.5,
(0, 255, 0),
2,
)
os.makedirs(save_dir, exist_ok=True)
output_path = os.path.join(save_dir, f'{Path(image_path).stem}_landmarks.jpg')
cv2.imwrite(output_path, image)
print(f'Output saved: {output_path}')
def run_webcam(detector, landmarker):
cap = cv2.VideoCapture(0) # 0 = default webcam
if not cap.isOpened():
print('Cannot open webcam')
return
print("Press 'q' to quit")
while True:
ret, frame = cap.read()
frame = cv2.flip(frame, 1) # mirror for natural interaction
if not ret:
break
faces = detector.detect(frame)
for face in faces:
bbox = face['bbox']
x1, y1, x2, y2 = map(int, bbox)
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
landmarks = landmarker.get_landmarks(frame, bbox) # 106 points
for x, y in landmarks.astype(int):
cv2.circle(frame, (x, y), 1, (0, 255, 0), -1)
cv2.putText(
frame,
f'Faces: {len(faces)}',
(10, 30),
cv2.FONT_HERSHEY_SIMPLEX,
1,
(0, 255, 0),
2,
)
cv2.imshow('106-Point Landmarks', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
def main():
parser = argparse.ArgumentParser(description='Run facial landmark detection')
parser.add_argument('--image', type=str, help='Path to input image')
parser.add_argument('--webcam', action='store_true', help='Use webcam')
parser.add_argument('--detector', type=str, default='retinaface', choices=['retinaface', 'scrfd'])
parser.add_argument('--save_dir', type=str, default='outputs')
args = parser.parse_args()
if not args.image and not args.webcam:
parser.error('Either --image or --webcam must be specified')
detector = RetinaFace() if args.detector == 'retinaface' else SCRFD()
landmarker = Landmark106()
if args.webcam:
run_webcam(detector, landmarker)
else:
process_image(detector, landmarker, args.image, args.save_dir)
if __name__ == '__main__':
main()

103
scripts/run_recognition.py Normal file
View File

@@ -0,0 +1,103 @@
# Face recognition: extract embeddings or compare two faces
# Usage: python run_recognition.py --image path/to/image.jpg
# python run_recognition.py --image1 face1.jpg --image2 face2.jpg
import argparse
import cv2
import numpy as np
from uniface.detection import SCRFD, RetinaFace
from uniface.face_utils import compute_similarity
from uniface.recognition import ArcFace, MobileFace, SphereFace
def get_recognizer(name: str):
if name == 'arcface':
return ArcFace()
elif name == 'mobileface':
return MobileFace()
else:
return SphereFace()
def run_inference(detector, recognizer, image_path: str):
image = cv2.imread(image_path)
if image is None:
print(f"Error: Failed to load image from '{image_path}'")
return
faces = detector.detect(image)
if not faces:
print('No faces detected.')
return
print(f'Detected {len(faces)} face(s). Extracting embedding for the first face...')
landmarks = faces[0]['landmarks'] # 5-point landmarks for alignment (already np.ndarray)
embedding = recognizer.get_embedding(image, landmarks)
norm_embedding = recognizer.get_normalized_embedding(image, landmarks) # L2 normalized
print(f' Embedding shape: {embedding.shape}')
print(f' L2 norm (raw): {np.linalg.norm(embedding):.4f}')
print(f' L2 norm (normalized): {np.linalg.norm(norm_embedding):.4f}')
def compare_faces(detector, recognizer, image1_path: str, image2_path: str, threshold: float = 0.35):
img1 = cv2.imread(image1_path)
img2 = cv2.imread(image2_path)
if img1 is None or img2 is None:
print('Error: Failed to load one or both images')
return
faces1 = detector.detect(img1)
faces2 = detector.detect(img2)
if not faces1 or not faces2:
print('Error: No faces detected in one or both images')
return
landmarks1 = faces1[0]['landmarks']
landmarks2 = faces2[0]['landmarks']
embedding1 = recognizer.get_normalized_embedding(img1, landmarks1)
embedding2 = recognizer.get_normalized_embedding(img2, landmarks2)
# cosine similarity for normalized embeddings
similarity = compute_similarity(embedding1, embedding2, normalized=True)
is_match = similarity > threshold
print(f'Similarity: {similarity:.4f}')
print(f'Result: {"Same person" if is_match else "Different person"} (threshold: {threshold})')
def main():
parser = argparse.ArgumentParser(description='Face recognition and comparison')
parser.add_argument('--image', type=str, help='Single image for embedding extraction')
parser.add_argument('--image1', type=str, help='First image for comparison')
parser.add_argument('--image2', type=str, help='Second image for comparison')
parser.add_argument('--threshold', type=float, default=0.35, help='Similarity threshold')
parser.add_argument('--detector', type=str, default='retinaface', choices=['retinaface', 'scrfd'])
parser.add_argument(
'--recognizer',
type=str,
default='arcface',
choices=['arcface', 'mobileface', 'sphereface'],
)
args = parser.parse_args()
detector = RetinaFace() if args.detector == 'retinaface' else SCRFD()
recognizer = get_recognizer(args.recognizer)
if args.image1 and args.image2:
compare_faces(detector, recognizer, args.image1, args.image2, args.threshold)
elif args.image:
run_inference(detector, recognizer, args.image)
else:
print('Error: Provide --image or both --image1 and --image2')
parser.print_help()
if __name__ == '__main__':
main()

View File

@@ -0,0 +1,109 @@
# Face detection on video files
# Usage: python run_video_detection.py --input video.mp4 --output output.mp4
import argparse
from pathlib import Path
import cv2
from tqdm import tqdm
from uniface import SCRFD, RetinaFace
from uniface.visualization import draw_detections
def process_video(
detector,
input_path: str,
output_path: str,
threshold: float = 0.6,
show_preview: bool = False,
):
cap = cv2.VideoCapture(input_path)
if not cap.isOpened():
print(f"Error: Cannot open video file '{input_path}'")
return
# get video properties
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = cap.get(cv2.CAP_PROP_FPS)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
print(f'Input: {input_path} ({width}x{height}, {fps:.1f} fps, {total_frames} frames)')
print(f'Output: {output_path}')
fourcc = cv2.VideoWriter_fourcc(*'mp4v') # codec for .mp4
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
if not out.isOpened():
print(f"Error: Cannot create output video '{output_path}'")
cap.release()
return
frame_count = 0
total_faces = 0
for _ in tqdm(range(total_frames), desc='Processing', unit='frames'):
ret, frame = cap.read()
if not ret:
break
frame_count += 1
faces = detector.detect(frame)
total_faces += len(faces)
bboxes = [f['bbox'] for f in faces]
scores = [f['confidence'] for f in faces]
landmarks = [f['landmarks'] for f in faces]
draw_detections(
image=frame, bboxes=bboxes, scores=scores, landmarks=landmarks, vis_threshold=threshold, fancy_bbox=True
)
cv2.putText(
frame,
f'Faces: {len(faces)}',
(10, 30),
cv2.FONT_HERSHEY_SIMPLEX,
1,
(0, 255, 0),
2,
)
out.write(frame)
if show_preview:
cv2.imshow("Processing - Press 'q' to cancel", frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
print('\nCancelled by user')
break
cap.release()
out.release()
if show_preview:
cv2.destroyAllWindows()
avg_faces = total_faces / frame_count if frame_count > 0 else 0
print(f'\nDone! {frame_count} frames, {total_faces} faces ({avg_faces:.1f} avg/frame)')
print(f'Saved: {output_path}')
def main():
parser = argparse.ArgumentParser(description='Process video with face detection')
parser.add_argument('--input', type=str, required=True, help='Input video path')
parser.add_argument('--output', type=str, required=True, help='Output video path')
parser.add_argument('--detector', type=str, default='retinaface', choices=['retinaface', 'scrfd'])
parser.add_argument('--threshold', type=float, default=0.6, help='Visualization threshold')
parser.add_argument('--preview', action='store_true', help='Show live preview')
args = parser.parse_args()
if not Path(args.input).exists():
print(f"Error: Input file '{args.input}' does not exist")
return
Path(args.output).parent.mkdir(parents=True, exist_ok=True)
detector = RetinaFace() if args.detector == 'retinaface' else SCRFD()
process_video(detector, args.input, args.output, args.threshold, args.preview)
if __name__ == '__main__':
main()

View File

@@ -0,0 +1,28 @@
import argparse
import hashlib
from pathlib import Path
def compute_sha256(file_path: Path, chunk_size: int = 8192) -> str:
sha256_hash = hashlib.sha256()
with file_path.open('rb') as f:
for chunk in iter(lambda: f.read(chunk_size), b''):
sha256_hash.update(chunk)
return sha256_hash.hexdigest()
def main():
parser = argparse.ArgumentParser(description='Compute SHA256 hash of a file')
parser.add_argument('file', type=Path, help='Path to file')
args = parser.parse_args()
if not args.file.exists() or not args.file.is_file():
print(f'File does not exist: {args.file}')
return
sha256 = compute_sha256(args.file)
print(f"SHA256 hash for '{args.file.name}':\n{sha256}")
if __name__ == '__main__':
main()

View File

@@ -1,43 +0,0 @@
import os
from setuptools import setup, find_packages
# Read the README file for the long description
long_description = ""
if os.path.exists("README.md"):
with open("README.md", "r", encoding="utf-8") as f:
long_description = f.read()
setup(
name="uniface",
version="0.1.1",
packages=find_packages(),
install_requires=[
"numpy",
"opencv-python",
"onnx",
"onnxruntime",
"requests",
"torch"
],
extras_require={
"dev": ["pytest"],
},
description="UniFace: A Comprehensive Library for Face Detection, Recognition, Landmark Analysis, Age, and Gender Detection",
long_description=long_description,
long_description_content_type="text/markdown",
author="Yakhyokhuja Valikhujaev",
author_email="yakhyo9696@gmail.com",
url="https://github.com/yakhyo/uniface",
license="MIT",
classifiers=[
"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.9",
"Programming Language :: Python :: 3.10",
"License :: OSI Approved :: MIT License",
"Operating System :: OS Independent",
"Topic :: Software Development :: Libraries :: Python Modules",
],
keywords="face detection, face recognition, facial landmark, facial attribute, onnx, opencv, retinaface",
python_requires=">=3.8",
)

57
test.py
View File

@@ -1,57 +0,0 @@
import os
import cv2
import numpy as np
from uniface import RetinaFace, draw_detections
def run_inference(image_path, save_image=False, vis_threshold=0.6):
"""
Perform inference on an image, draw detections, and optionally save the output image.
Args:
image_path (str): Path to the input image.
save_image (bool): Whether to save the output image with detections.
vis_threshold (float): Confidence threshold for displaying detections.
"""
# Load the image
original_image = cv2.imread(image_path)
if original_image is None:
print(f"Error: Could not read image from {image_path}")
return
# Perform face detection
boxes, landmarks = retinaface_inference.detect(original_image)
# Draw detections on the image
draw_detections(original_image, (boxes, landmarks), vis_threshold)
# Save the output image if requested
if save_image:
im_name = os.path.splitext(os.path.basename(image_path))[0]
save_name = f"{im_name}_out.jpg"
cv2.imwrite(save_name, original_image)
print(f"Image saved at '{save_name}'")
if __name__ == '__main__':
import time
# Initialize and run the ONNX inference
retinaface_inference = RetinaFace(
model="retinaface_mnet_v2",
conf_thresh=0.5,
pre_nms_topk=5000,
nms_thresh=0.4,
post_nms_topk=750,
)
img_path = "assets/test.jpg"
avg = 0
for _ in range(50):
st = time.time()
run_inference(img_path, save_image=True, vis_threshold=0.6)
d = time.time() - st
print(d)
avg += d
print("avg", avg / 50)

117
tests/test_age_gender.py Normal file
View File

@@ -0,0 +1,117 @@
import numpy as np
import pytest
from uniface.attribute import AgeGender
@pytest.fixture
def age_gender_model():
return AgeGender()
@pytest.fixture
def mock_image():
return np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
@pytest.fixture
def mock_bbox():
return [100, 100, 300, 300]
def test_model_initialization(age_gender_model):
assert age_gender_model is not None, 'AgeGender model initialization failed.'
def test_prediction_output_format(age_gender_model, mock_image, mock_bbox):
gender_id, age = age_gender_model.predict(mock_image, mock_bbox)
assert isinstance(gender_id, int), f'Gender ID should be int, got {type(gender_id)}'
assert isinstance(age, int), f'Age should be int, got {type(age)}'
def test_gender_values(age_gender_model, mock_image, mock_bbox):
gender_id, age = age_gender_model.predict(mock_image, mock_bbox)
assert gender_id in [0, 1], f'Gender ID should be 0 (Female) or 1 (Male), got {gender_id}'
def test_age_range(age_gender_model, mock_image, mock_bbox):
gender_id, age = age_gender_model.predict(mock_image, mock_bbox)
assert 0 <= age <= 120, f'Age should be between 0 and 120, got {age}'
def test_different_bbox_sizes(age_gender_model, mock_image):
test_bboxes = [
[50, 50, 150, 150],
[100, 100, 300, 300],
[50, 50, 400, 400],
]
for bbox in test_bboxes:
gender_id, age = age_gender_model.predict(mock_image, bbox)
assert gender_id in [0, 1], f'Failed for bbox {bbox}'
assert 0 <= age <= 120, f'Age out of range for bbox {bbox}'
def test_different_image_sizes(age_gender_model, mock_bbox):
test_sizes = [(480, 640, 3), (720, 1280, 3), (1080, 1920, 3)]
for size in test_sizes:
mock_image = np.random.randint(0, 255, size, dtype=np.uint8)
gender_id, age = age_gender_model.predict(mock_image, mock_bbox)
assert gender_id in [0, 1], f'Failed for image size {size}'
assert 0 <= age <= 120, f'Age out of range for image size {size}'
def test_consistency(age_gender_model, mock_image, mock_bbox):
gender_id1, age1 = age_gender_model.predict(mock_image, mock_bbox)
gender_id2, age2 = age_gender_model.predict(mock_image, mock_bbox)
assert gender_id1 == gender_id2, 'Same input should produce same gender prediction'
assert age1 == age2, 'Same input should produce same age prediction'
def test_bbox_list_format(age_gender_model, mock_image):
bbox_list = [100, 100, 300, 300]
gender_id, age = age_gender_model.predict(mock_image, bbox_list)
assert gender_id in [0, 1], 'Should work with bbox as list'
assert 0 <= age <= 120, 'Age should be in valid range'
def test_bbox_array_format(age_gender_model, mock_image):
bbox_array = np.array([100, 100, 300, 300])
gender_id, age = age_gender_model.predict(mock_image, bbox_array)
assert gender_id in [0, 1], 'Should work with bbox as numpy array'
assert 0 <= age <= 120, 'Age should be in valid range'
def test_multiple_predictions(age_gender_model, mock_image):
bboxes = [
[50, 50, 150, 150],
[200, 200, 350, 350],
[400, 400, 550, 550],
]
results = []
for bbox in bboxes:
gender_id, age = age_gender_model.predict(mock_image, bbox)
results.append((gender_id, age))
assert len(results) == 3, 'Should have 3 predictions'
for gender_id, age in results:
assert gender_id in [0, 1]
assert 0 <= age <= 120
def test_age_is_positive(age_gender_model, mock_image, mock_bbox):
for _ in range(5):
gender_id, age = age_gender_model.predict(mock_image, mock_bbox)
assert age >= 0, f'Age should be non-negative, got {age}'
def test_output_format_for_visualization(age_gender_model, mock_image, mock_bbox):
gender_id, age = age_gender_model.predict(mock_image, mock_bbox)
gender_str = 'Female' if gender_id == 0 else 'Male'
text = f'{gender_str}, {age}y'
assert isinstance(text, str), 'Should be able to format as string'
assert 'Male' in text or 'Female' in text, 'Text should contain gender'
assert 'y' in text, "Text should contain 'y' for years"

274
tests/test_factory.py Normal file
View File

@@ -0,0 +1,274 @@
import numpy as np
import pytest
from uniface import (
create_detector,
create_landmarker,
create_recognizer,
detect_faces,
list_available_detectors,
)
from uniface.constants import RetinaFaceWeights, SCRFDWeights
# create_detector tests
def test_create_detector_retinaface():
"""
Test creating a RetinaFace detector using factory function.
"""
detector = create_detector('retinaface')
assert detector is not None, 'Failed to create RetinaFace detector'
def test_create_detector_scrfd():
"""
Test creating a SCRFD detector using factory function.
"""
detector = create_detector('scrfd')
assert detector is not None, 'Failed to create SCRFD detector'
def test_create_detector_with_config():
"""
Test creating detector with custom configuration.
"""
detector = create_detector(
'retinaface',
model_name=RetinaFaceWeights.MNET_V2,
conf_thresh=0.8,
nms_thresh=0.3,
)
assert detector is not None, 'Failed to create detector with custom config'
def test_create_detector_invalid_method():
"""
Test that invalid detector method raises an error.
"""
with pytest.raises((ValueError, KeyError)):
create_detector('invalid_method')
def test_create_detector_scrfd_with_model():
"""
Test creating SCRFD detector with specific model.
"""
detector = create_detector('scrfd', model_name=SCRFDWeights.SCRFD_10G_KPS, conf_thresh=0.5)
assert detector is not None, 'Failed to create SCRFD with specific model'
# create_recognizer tests
def test_create_recognizer_arcface():
"""
Test creating an ArcFace recognizer using factory function.
"""
recognizer = create_recognizer('arcface')
assert recognizer is not None, 'Failed to create ArcFace recognizer'
def test_create_recognizer_mobileface():
"""
Test creating a MobileFace recognizer using factory function.
"""
recognizer = create_recognizer('mobileface')
assert recognizer is not None, 'Failed to create MobileFace recognizer'
def test_create_recognizer_sphereface():
"""
Test creating a SphereFace recognizer using factory function.
"""
recognizer = create_recognizer('sphereface')
assert recognizer is not None, 'Failed to create SphereFace recognizer'
def test_create_recognizer_invalid_method():
"""
Test that invalid recognizer method raises an error.
"""
with pytest.raises((ValueError, KeyError)):
create_recognizer('invalid_method')
# create_landmarker tests
def test_create_landmarker():
"""
Test creating a Landmark106 detector using factory function.
"""
landmarker = create_landmarker('2d106det')
assert landmarker is not None, 'Failed to create Landmark106 detector'
def test_create_landmarker_default():
"""
Test creating landmarker with default parameters.
"""
landmarker = create_landmarker()
assert landmarker is not None, 'Failed to create default landmarker'
def test_create_landmarker_invalid_method():
"""
Test that invalid landmarker method raises an error.
"""
with pytest.raises((ValueError, KeyError)):
create_landmarker('invalid_method')
# detect_faces tests
def test_detect_faces_retinaface():
"""
Test high-level detect_faces function with RetinaFace.
"""
mock_image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
faces = detect_faces(mock_image, method='retinaface')
assert isinstance(faces, list), 'detect_faces should return a list'
def test_detect_faces_scrfd():
"""
Test high-level detect_faces function with SCRFD.
"""
mock_image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
faces = detect_faces(mock_image, method='scrfd')
assert isinstance(faces, list), 'detect_faces should return a list'
def test_detect_faces_with_threshold():
"""
Test detect_faces with custom confidence threshold.
"""
mock_image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
faces = detect_faces(mock_image, method='retinaface', conf_thresh=0.8)
assert isinstance(faces, list), 'detect_faces should return a list'
# All detections should respect threshold
for face in faces:
assert face['confidence'] >= 0.8, 'All detections should meet confidence threshold'
def test_detect_faces_default_method():
"""
Test detect_faces with default method (should use retinaface).
"""
mock_image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
faces = detect_faces(mock_image) # No method specified
assert isinstance(faces, list), 'detect_faces should return a list with default method'
def test_detect_faces_empty_image():
"""
Test detect_faces on a blank image.
"""
empty_image = np.zeros((640, 640, 3), dtype=np.uint8)
faces = detect_faces(empty_image, method='retinaface')
assert isinstance(faces, list), 'Should return a list even for empty image'
assert len(faces) == 0, 'Should detect no faces in blank image'
# list_available_detectors tests
def test_list_available_detectors():
"""
Test that list_available_detectors returns a dictionary.
"""
detectors = list_available_detectors()
assert isinstance(detectors, dict), 'Should return a dictionary of detectors'
assert len(detectors) > 0, 'Should have at least one detector available'
def test_list_available_detectors_contents():
"""
Test that list includes known detectors.
"""
detectors = list_available_detectors()
# Should include at least these detectors
assert 'retinaface' in detectors, "Should include 'retinaface'"
assert 'scrfd' in detectors, "Should include 'scrfd'"
# Integration tests
def test_detector_inference_from_factory():
"""
Test that detector created from factory can perform inference.
"""
detector = create_detector('retinaface')
mock_image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
faces = detector.detect(mock_image)
assert isinstance(faces, list), 'Detector should return list of faces'
def test_recognizer_inference_from_factory():
"""
Test that recognizer created from factory can perform inference.
"""
recognizer = create_recognizer('arcface')
mock_image = np.random.randint(0, 255, (112, 112, 3), dtype=np.uint8)
embedding = recognizer.get_embedding(mock_image)
assert embedding is not None, 'Recognizer should return embedding'
assert embedding.shape[1] == 512, 'Should return 512-dimensional embedding'
def test_landmarker_inference_from_factory():
"""
Test that landmarker created from factory can perform inference.
"""
landmarker = create_landmarker('2d106det')
mock_image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
mock_bbox = [100, 100, 300, 300]
landmarks = landmarker.get_landmarks(mock_image, mock_bbox)
assert landmarks is not None, 'Landmarker should return landmarks'
assert landmarks.shape == (106, 2), 'Should return 106 landmarks'
def test_multiple_detector_creation():
"""
Test that multiple detectors can be created independently.
"""
detector1 = create_detector('retinaface')
detector2 = create_detector('scrfd')
assert detector1 is not None
assert detector2 is not None
assert detector1 is not detector2, 'Should create separate instances'
def test_detector_with_different_configs():
"""
Test creating multiple detectors with different configurations.
"""
detector_high_thresh = create_detector('retinaface', conf_thresh=0.9)
detector_low_thresh = create_detector('retinaface', conf_thresh=0.3)
mock_image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
faces_high = detector_high_thresh.detect(mock_image)
faces_low = detector_low_thresh.detect(mock_image)
# Both should work
assert isinstance(faces_high, list)
assert isinstance(faces_low, list)
def test_factory_returns_correct_types():
"""
Test that factory functions return instances of the correct types.
"""
from uniface import ArcFace, Landmark106, RetinaFace
detector = create_detector('retinaface')
recognizer = create_recognizer('arcface')
landmarker = create_landmarker('2d106det')
assert isinstance(detector, RetinaFace), 'Should return RetinaFace instance'
assert isinstance(recognizer, ArcFace), 'Should return ArcFace instance'
assert isinstance(landmarker, Landmark106), 'Should return Landmark106 instance'

107
tests/test_landmark.py Normal file
View File

@@ -0,0 +1,107 @@
import numpy as np
import pytest
from uniface.landmark import Landmark106
@pytest.fixture
def landmark_model():
return Landmark106()
@pytest.fixture
def mock_image():
return np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
@pytest.fixture
def mock_bbox():
return [100, 100, 300, 300]
def test_model_initialization(landmark_model):
assert landmark_model is not None, 'Landmark106 model initialization failed.'
def test_landmark_detection(landmark_model, mock_image, mock_bbox):
landmarks = landmark_model.get_landmarks(mock_image, mock_bbox)
assert landmarks.shape == (106, 2), f'Expected shape (106, 2), got {landmarks.shape}'
def test_landmark_dtype(landmark_model, mock_image, mock_bbox):
landmarks = landmark_model.get_landmarks(mock_image, mock_bbox)
assert landmarks.dtype == np.float32, f'Expected float32, got {landmarks.dtype}'
def test_landmark_coordinates_within_image(landmark_model, mock_image, mock_bbox):
landmarks = landmark_model.get_landmarks(mock_image, mock_bbox)
x_coords = landmarks[:, 0]
y_coords = landmarks[:, 1]
x1, y1, x2, y2 = mock_bbox
margin = 50
x_in_bounds = np.sum((x_coords >= x1 - margin) & (x_coords <= x2 + margin))
y_in_bounds = np.sum((y_coords >= y1 - margin) & (y_coords <= y2 + margin))
assert x_in_bounds >= 95, f'Only {x_in_bounds}/106 x-coordinates within bounds'
assert y_in_bounds >= 95, f'Only {y_in_bounds}/106 y-coordinates within bounds'
def test_different_bbox_sizes(landmark_model, mock_image):
test_bboxes = [
[50, 50, 150, 150],
[100, 100, 300, 300],
[50, 50, 400, 400],
]
for bbox in test_bboxes:
landmarks = landmark_model.get_landmarks(mock_image, bbox)
assert landmarks.shape == (106, 2), f'Failed for bbox {bbox}'
def test_landmark_array_format(landmark_model, mock_image, mock_bbox):
landmarks = landmark_model.get_landmarks(mock_image, mock_bbox)
landmarks_int = landmarks.astype(int)
assert landmarks_int.shape == (106, 2), 'Integer conversion should preserve shape'
assert landmarks_int.dtype in [np.int32, np.int64], 'Should convert to integer type'
def test_consistency(landmark_model, mock_image, mock_bbox):
landmarks1 = landmark_model.get_landmarks(mock_image, mock_bbox)
landmarks2 = landmark_model.get_landmarks(mock_image, mock_bbox)
assert np.allclose(landmarks1, landmarks2), 'Same input should produce same landmarks'
def test_different_image_sizes(landmark_model, mock_bbox):
test_sizes = [(480, 640, 3), (720, 1280, 3), (1080, 1920, 3)]
for size in test_sizes:
mock_image = np.random.randint(0, 255, size, dtype=np.uint8)
landmarks = landmark_model.get_landmarks(mock_image, mock_bbox)
assert landmarks.shape == (106, 2), f'Failed for image size {size}'
def test_bbox_list_format(landmark_model, mock_image):
bbox_list = [100, 100, 300, 300]
landmarks = landmark_model.get_landmarks(mock_image, bbox_list)
assert landmarks.shape == (106, 2), 'Should work with bbox as list'
def test_bbox_array_format(landmark_model, mock_image):
bbox_array = np.array([100, 100, 300, 300])
landmarks = landmark_model.get_landmarks(mock_image, bbox_array)
assert landmarks.shape == (106, 2), 'Should work with bbox as numpy array'
def test_landmark_distribution(landmark_model, mock_image, mock_bbox):
landmarks = landmark_model.get_landmarks(mock_image, mock_bbox)
x_variance = np.var(landmarks[:, 0])
y_variance = np.var(landmarks[:, 1])
assert x_variance > 0, 'Landmarks should have variation in x-coordinates'
assert y_variance > 0, 'Landmarks should have variation in y-coordinates'

118
tests/test_parsing.py Normal file
View File

@@ -0,0 +1,118 @@
# Copyright 2025 Yakhyokhuja Valikhujaev
# Author: Yakhyokhuja Valikhujaev
# GitHub: https://github.com/yakhyo
import numpy as np
import pytest
from uniface.constants import ParsingWeights
from uniface.parsing import BiSeNet, create_face_parser
def test_bisenet_initialization():
"""Test BiSeNet initialization."""
parser = BiSeNet()
assert parser is not None
assert parser.input_size == (512, 512)
def test_bisenet_with_different_models():
"""Test BiSeNet with different model weights."""
parser_resnet18 = BiSeNet(model_name=ParsingWeights.RESNET18)
parser_resnet34 = BiSeNet(model_name=ParsingWeights.RESNET34)
assert parser_resnet18 is not None
assert parser_resnet34 is not None
def test_bisenet_preprocess():
"""Test preprocessing."""
parser = BiSeNet()
# Create a dummy face image
face_image = np.random.randint(0, 255, (256, 256, 3), dtype=np.uint8)
# Preprocess
preprocessed = parser.preprocess(face_image)
assert preprocessed.shape == (1, 3, 512, 512)
assert preprocessed.dtype == np.float32
def test_bisenet_postprocess():
"""Test postprocessing."""
parser = BiSeNet()
# Create dummy model output (batch_size=1, num_classes=19, H=512, W=512)
dummy_output = np.random.randn(1, 19, 512, 512).astype(np.float32)
# Postprocess
mask = parser.postprocess(dummy_output, original_size=(256, 256))
assert mask.shape == (256, 256)
assert mask.dtype == np.uint8
assert mask.min() >= 0
assert mask.max() < 19 # 19 classes (0-18)
def test_bisenet_parse():
"""Test end-to-end parsing."""
parser = BiSeNet()
# Create a dummy face image
face_image = np.random.randint(0, 255, (256, 256, 3), dtype=np.uint8)
# Parse
mask = parser.parse(face_image)
assert mask.shape == (256, 256)
assert mask.dtype == np.uint8
assert mask.min() >= 0
assert mask.max() < 19
def test_bisenet_callable():
"""Test that BiSeNet is callable."""
parser = BiSeNet()
face_image = np.random.randint(0, 255, (256, 256, 3), dtype=np.uint8)
# Should work as callable
mask = parser(face_image)
assert mask.shape == (256, 256)
assert mask.dtype == np.uint8
def test_create_face_parser_with_enum():
"""Test factory function with enum."""
parser = create_face_parser(ParsingWeights.RESNET18)
assert parser is not None
assert isinstance(parser, BiSeNet)
def test_create_face_parser_with_string():
"""Test factory function with string."""
parser = create_face_parser('parsing_resnet18')
assert parser is not None
assert isinstance(parser, BiSeNet)
def test_create_face_parser_invalid_model():
"""Test factory function with invalid model name."""
with pytest.raises(ValueError, match='Unknown face parsing model'):
create_face_parser('invalid_model')
def test_bisenet_different_input_sizes():
"""Test parsing with different input image sizes."""
parser = BiSeNet()
# Test with different sizes
sizes = [(128, 128), (256, 256), (512, 512), (640, 480)]
for h, w in sizes:
face_image = np.random.randint(0, 255, (h, w, 3), dtype=np.uint8)
mask = parser.parse(face_image)
assert mask.shape == (h, w), f'Failed for size {h}x{w}'
assert mask.dtype == np.uint8

215
tests/test_recognition.py Normal file
View File

@@ -0,0 +1,215 @@
import numpy as np
import pytest
from uniface.recognition import ArcFace, MobileFace, SphereFace
@pytest.fixture
def arcface_model():
"""
Fixture to initialize the ArcFace model for testing.
"""
return ArcFace()
@pytest.fixture
def mobileface_model():
"""
Fixture to initialize the MobileFace model for testing.
"""
return MobileFace()
@pytest.fixture
def sphereface_model():
"""
Fixture to initialize the SphereFace model for testing.
"""
return SphereFace()
@pytest.fixture
def mock_aligned_face():
"""
Create a mock 112x112 aligned face image.
"""
return np.random.randint(0, 255, (112, 112, 3), dtype=np.uint8)
@pytest.fixture
def mock_landmarks():
"""
Create mock 5-point facial landmarks.
"""
return np.array(
[
[38.2946, 51.6963],
[73.5318, 51.5014],
[56.0252, 71.7366],
[41.5493, 92.3655],
[70.7299, 92.2041],
],
dtype=np.float32,
)
# ArcFace Tests
def test_arcface_initialization(arcface_model):
"""
Test that the ArcFace model initializes correctly.
"""
assert arcface_model is not None, 'ArcFace model initialization failed.'
def test_arcface_embedding_shape(arcface_model, mock_aligned_face):
"""
Test that ArcFace produces embeddings with the correct shape.
"""
embedding = arcface_model.get_embedding(mock_aligned_face)
# ArcFace typically produces 512-dimensional embeddings
assert embedding.shape[1] == 512, f'Expected 512-dim embedding, got {embedding.shape[1]}'
assert embedding.shape[0] == 1, 'Embedding should have batch dimension of 1'
def test_arcface_normalized_embedding(arcface_model, mock_landmarks):
"""
Test that normalized embeddings have unit length.
"""
# Create a larger mock image for alignment
mock_image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
embedding = arcface_model.get_normalized_embedding(mock_image, mock_landmarks)
# Check that embedding is normalized (L2 norm ≈ 1.0)
norm = np.linalg.norm(embedding)
assert np.isclose(norm, 1.0, atol=1e-5), f'Normalized embedding should have norm 1.0, got {norm}'
def test_arcface_embedding_dtype(arcface_model, mock_aligned_face):
"""
Test that embeddings have the correct data type.
"""
embedding = arcface_model.get_embedding(mock_aligned_face)
assert embedding.dtype == np.float32, f'Expected float32, got {embedding.dtype}'
def test_arcface_consistency(arcface_model, mock_aligned_face):
"""
Test that the same input produces the same embedding.
"""
embedding1 = arcface_model.get_embedding(mock_aligned_face)
embedding2 = arcface_model.get_embedding(mock_aligned_face)
assert np.allclose(embedding1, embedding2), 'Same input should produce same embedding'
# MobileFace Tests
def test_mobileface_initialization(mobileface_model):
"""
Test that the MobileFace model initializes correctly.
"""
assert mobileface_model is not None, 'MobileFace model initialization failed.'
def test_mobileface_embedding_shape(mobileface_model, mock_aligned_face):
"""
Test that MobileFace produces embeddings with the correct shape.
"""
embedding = mobileface_model.get_embedding(mock_aligned_face)
# MobileFace typically produces 512-dimensional embeddings
assert embedding.shape[1] == 512, f'Expected 512-dim embedding, got {embedding.shape[1]}'
assert embedding.shape[0] == 1, 'Embedding should have batch dimension of 1'
def test_mobileface_normalized_embedding(mobileface_model, mock_landmarks):
"""
Test that MobileFace normalized embeddings have unit length.
"""
mock_image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
embedding = mobileface_model.get_normalized_embedding(mock_image, mock_landmarks)
norm = np.linalg.norm(embedding)
assert np.isclose(norm, 1.0, atol=1e-5), f'Normalized embedding should have norm 1.0, got {norm}'
# SphereFace Tests
def test_sphereface_initialization(sphereface_model):
"""
Test that the SphereFace model initializes correctly.
"""
assert sphereface_model is not None, 'SphereFace model initialization failed.'
def test_sphereface_embedding_shape(sphereface_model, mock_aligned_face):
"""
Test that SphereFace produces embeddings with the correct shape.
"""
embedding = sphereface_model.get_embedding(mock_aligned_face)
# SphereFace typically produces 512-dimensional embeddings
assert embedding.shape[1] == 512, f'Expected 512-dim embedding, got {embedding.shape[1]}'
assert embedding.shape[0] == 1, 'Embedding should have batch dimension of 1'
def test_sphereface_normalized_embedding(sphereface_model, mock_landmarks):
"""
Test that SphereFace normalized embeddings have unit length.
"""
mock_image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
embedding = sphereface_model.get_normalized_embedding(mock_image, mock_landmarks)
norm = np.linalg.norm(embedding)
assert np.isclose(norm, 1.0, atol=1e-5), f'Normalized embedding should have norm 1.0, got {norm}'
# Cross-model comparison tests
def test_different_models_different_embeddings(arcface_model, mobileface_model, mock_aligned_face):
"""
Test that different models produce different embeddings for the same input.
"""
arcface_emb = arcface_model.get_embedding(mock_aligned_face)
mobileface_emb = mobileface_model.get_embedding(mock_aligned_face)
# Embeddings should be different (with high probability for random input)
# We check that they're not identical
assert not np.allclose(arcface_emb, mobileface_emb), 'Different models should produce different embeddings'
def test_embedding_similarity_computation(arcface_model, mock_aligned_face):
"""
Test computing similarity between embeddings.
"""
# Get two embeddings
emb1 = arcface_model.get_embedding(mock_aligned_face)
# Create a slightly different image
mock_aligned_face2 = mock_aligned_face.copy()
mock_aligned_face2[:10, :10] = 0 # Modify a small region
emb2 = arcface_model.get_embedding(mock_aligned_face2)
# Compute cosine similarity
from uniface import compute_similarity
similarity = compute_similarity(emb1, emb2)
# Similarity should be between -1 and 1
assert -1.0 <= similarity <= 1.0, f'Similarity should be in [-1, 1], got {similarity}'
def test_same_face_high_similarity(arcface_model, mock_aligned_face):
"""
Test that the same face produces high similarity.
"""
emb1 = arcface_model.get_embedding(mock_aligned_face)
emb2 = arcface_model.get_embedding(mock_aligned_face)
from uniface import compute_similarity
similarity = compute_similarity(emb1, emb2)
# Same image should have similarity close to 1.0
assert similarity > 0.99, f'Same face should have similarity > 0.99, got {similarity}'

View File

@@ -1,15 +1,14 @@
import pytest
import numpy as np
from uniface import RetinaFace
import pytest
from uniface.constants import RetinaFaceWeights
from uniface.detection import RetinaFace
@pytest.fixture
def retinaface_model():
"""
Fixture to initialize the RetinaFace model for testing.
"""
return RetinaFace(
model="retinaface_mnet_v2",
model_name=RetinaFaceWeights.MNET_V2,
conf_thresh=0.5,
pre_nms_topk=5000,
nms_thresh=0.4,
@@ -18,61 +17,39 @@ def retinaface_model():
def test_model_initialization(retinaface_model):
"""
Test that the RetinaFace model initializes correctly.
"""
assert retinaface_model is not None, "Model initialization failed."
assert retinaface_model is not None, 'Model initialization failed.'
def test_inference_on_640x640_image(retinaface_model):
"""
Test inference on a 640x640 BGR image.
"""
# Generate a mock 640x640 BGR image
mock_image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
faces = retinaface_model.detect(mock_image)
# Run inference
detections, landmarks = retinaface_model.detect(mock_image)
assert isinstance(faces, list), 'Detections should be a list.'
# Check output types
assert isinstance(detections, np.ndarray), "Detections should be a numpy array."
assert isinstance(landmarks, np.ndarray), "Landmarks should be a numpy array."
for face in faces:
assert isinstance(face, dict), 'Each detection should be a dictionary.'
assert 'bbox' in face, "Each detection should have a 'bbox' key."
assert 'confidence' in face, "Each detection should have a 'confidence' key."
assert 'landmarks' in face, "Each detection should have a 'landmarks' key."
# Check that detections have the expected shape
if detections.size > 0: # If faces are detected
assert detections.shape[1] == 5, "Each detection should have 5 values (x1, y1, x2, y2, score)."
bbox = face['bbox']
assert len(bbox) == 4, 'BBox should have 4 values (x1, y1, x2, y2).'
# Check landmarks shape
if landmarks.size > 0:
assert landmarks.shape[1:] == (5, 2), "Landmarks should have shape (N, 5, 2)."
landmarks = face['landmarks']
assert len(landmarks) == 5, 'Should have 5 landmark points.'
assert all(len(pt) == 2 for pt in landmarks), 'Each landmark should be (x, y).'
def test_confidence_threshold(retinaface_model):
"""
Test that detections respect the confidence threshold.
"""
# Generate a mock 640x640 BGR image
mock_image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
faces = retinaface_model.detect(mock_image)
# Run inference
detections, _ = retinaface_model.detect(mock_image)
# Ensure all detections have confidence scores above the threshold
if detections.size > 0: # If faces are detected
confidence_scores = detections[:, 4]
assert (confidence_scores >= 0.5).all(), "Some detections have confidence below the threshold."
for face in faces:
confidence = face['confidence']
assert confidence >= 0.5, f'Detection has confidence {confidence} below threshold 0.5'
def test_no_faces_detected(retinaface_model):
"""
Test inference on an image without detectable faces.
"""
# Generate an empty (black) 640x640 image
empty_image = np.zeros((640, 640, 3), dtype=np.uint8)
# Run inference
detections, landmarks = retinaface_model.detect(empty_image)
# Ensure no detections or landmarks are found
assert detections.size == 0, "Detections should be empty for a blank image."
assert landmarks.size == 0, "Landmarks should be empty for a blank image."
faces = retinaface_model.detect(empty_image)
assert len(faces) == 0, 'Should detect no faces in a blank image.'

71
tests/test_scrfd.py Normal file
View File

@@ -0,0 +1,71 @@
import numpy as np
import pytest
from uniface.constants import SCRFDWeights
from uniface.detection import SCRFD
@pytest.fixture
def scrfd_model():
return SCRFD(
model_name=SCRFDWeights.SCRFD_500M_KPS,
conf_thresh=0.5,
nms_thresh=0.4,
)
def test_model_initialization(scrfd_model):
assert scrfd_model is not None, 'Model initialization failed.'
def test_inference_on_640x640_image(scrfd_model):
mock_image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
faces = scrfd_model.detect(mock_image)
assert isinstance(faces, list), 'Detections should be a list.'
for face in faces:
assert isinstance(face, dict), 'Each detection should be a dictionary.'
assert 'bbox' in face, "Each detection should have a 'bbox' key."
assert 'confidence' in face, "Each detection should have a 'confidence' key."
assert 'landmarks' in face, "Each detection should have a 'landmarks' key."
bbox = face['bbox']
assert len(bbox) == 4, 'BBox should have 4 values (x1, y1, x2, y2).'
landmarks = face['landmarks']
assert len(landmarks) == 5, 'Should have 5 landmark points.'
assert all(len(pt) == 2 for pt in landmarks), 'Each landmark should be (x, y).'
def test_confidence_threshold(scrfd_model):
mock_image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
faces = scrfd_model.detect(mock_image)
for face in faces:
confidence = face['confidence']
assert confidence >= 0.5, f'Detection has confidence {confidence} below threshold 0.5'
def test_no_faces_detected(scrfd_model):
empty_image = np.zeros((640, 640, 3), dtype=np.uint8)
faces = scrfd_model.detect(empty_image)
assert len(faces) == 0, 'Should detect no faces in a blank image.'
def test_different_input_sizes(scrfd_model):
test_sizes = [(480, 640, 3), (720, 1280, 3), (1080, 1920, 3)]
for size in test_sizes:
mock_image = np.random.randint(0, 255, size, dtype=np.uint8)
faces = scrfd_model.detect(mock_image)
assert isinstance(faces, list), f'Should return list for size {size}'
def test_scrfd_10g_model():
model = SCRFD(model_name=SCRFDWeights.SCRFD_10G_KPS, conf_thresh=0.5)
assert model is not None, 'SCRFD 10G model initialization failed.'
mock_image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
faces = model.detect(mock_image)
assert isinstance(faces, list), 'SCRFD 10G should return list of detections.'

262
tests/test_utils.py Normal file
View File

@@ -0,0 +1,262 @@
import numpy as np
import pytest
from uniface import compute_similarity, face_alignment
@pytest.fixture
def mock_image():
"""
Create a mock 640x640 BGR image.
"""
return np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
@pytest.fixture
def mock_landmarks():
"""
Create mock 5-point facial landmarks.
Standard positions for a face roughly centered at (112/2, 112/2).
"""
return np.array(
[
[38.2946, 51.6963], # Left eye
[73.5318, 51.5014], # Right eye
[56.0252, 71.7366], # Nose
[41.5493, 92.3655], # Left mouth corner
[70.7299, 92.2041], # Right mouth corner
],
dtype=np.float32,
)
# compute_similarity tests
def test_compute_similarity_same_embedding():
"""
Test that similarity of an embedding with itself is 1.0.
"""
embedding = np.random.randn(1, 512).astype(np.float32)
embedding = embedding / np.linalg.norm(embedding) # Normalize
similarity = compute_similarity(embedding, embedding)
assert np.isclose(similarity, 1.0, atol=1e-5), f'Self-similarity should be 1.0, got {similarity}'
def test_compute_similarity_range():
"""
Test that similarity is always in the range [-1, 1].
"""
# Test with multiple random embeddings
for _ in range(10):
emb1 = np.random.randn(1, 512).astype(np.float32)
emb2 = np.random.randn(1, 512).astype(np.float32)
# Normalize
emb1 = emb1 / np.linalg.norm(emb1)
emb2 = emb2 / np.linalg.norm(emb2)
similarity = compute_similarity(emb1, emb2)
assert -1.0 <= similarity <= 1.0, f'Similarity should be in [-1, 1], got {similarity}'
def test_compute_similarity_orthogonal():
"""
Test that orthogonal embeddings have similarity close to 0.
"""
# Create orthogonal embeddings
emb1 = np.zeros((1, 512), dtype=np.float32)
emb1[0, 0] = 1.0 # [1, 0, 0, ..., 0]
emb2 = np.zeros((1, 512), dtype=np.float32)
emb2[0, 1] = 1.0 # [0, 1, 0, ..., 0]
similarity = compute_similarity(emb1, emb2)
assert np.isclose(similarity, 0.0, atol=1e-5), f'Orthogonal embeddings should have similarity 0.0, got {similarity}'
def test_compute_similarity_opposite():
"""
Test that opposite embeddings have similarity close to -1.
"""
emb1 = np.ones((1, 512), dtype=np.float32)
emb1 = emb1 / np.linalg.norm(emb1)
emb2 = -emb1 # Opposite direction
similarity = compute_similarity(emb1, emb2)
assert np.isclose(similarity, -1.0, atol=1e-5), f'Opposite embeddings should have similarity -1.0, got {similarity}'
def test_compute_similarity_symmetry():
"""
Test that similarity(A, B) == similarity(B, A).
"""
emb1 = np.random.randn(1, 512).astype(np.float32)
emb2 = np.random.randn(1, 512).astype(np.float32)
# Normalize
emb1 = emb1 / np.linalg.norm(emb1)
emb2 = emb2 / np.linalg.norm(emb2)
sim_12 = compute_similarity(emb1, emb2)
sim_21 = compute_similarity(emb2, emb1)
assert np.isclose(sim_12, sim_21), 'Similarity should be symmetric'
def test_compute_similarity_dtype():
"""
Test that compute_similarity returns a float.
"""
emb1 = np.random.randn(1, 512).astype(np.float32)
emb2 = np.random.randn(1, 512).astype(np.float32)
# Normalize
emb1 = emb1 / np.linalg.norm(emb1)
emb2 = emb2 / np.linalg.norm(emb2)
similarity = compute_similarity(emb1, emb2)
assert isinstance(similarity, (float, np.floating)), f'Similarity should be float, got {type(similarity)}'
# face_alignment tests
def test_face_alignment_output_shape(mock_image, mock_landmarks):
"""
Test that face_alignment produces output with the correct shape.
"""
aligned, _ = face_alignment(mock_image, mock_landmarks, image_size=(112, 112))
assert aligned.shape == (112, 112, 3), f'Expected shape (112, 112, 3), got {aligned.shape}'
def test_face_alignment_dtype(mock_image, mock_landmarks):
"""
Test that aligned face has the correct data type.
"""
aligned, _ = face_alignment(mock_image, mock_landmarks, image_size=(112, 112))
assert aligned.dtype == np.uint8, f'Expected uint8, got {aligned.dtype}'
def test_face_alignment_different_sizes(mock_image, mock_landmarks):
"""
Test face alignment with different output sizes.
"""
# Only test sizes that are multiples of 112 or 128 as required by the function
test_sizes = [(112, 112), (128, 128), (224, 224)]
for size in test_sizes:
aligned, _ = face_alignment(mock_image, mock_landmarks, image_size=size)
assert aligned.shape == (*size, 3), f'Failed for size {size}'
def test_face_alignment_consistency(mock_image, mock_landmarks):
"""
Test that the same input produces the same aligned face.
"""
aligned1, _ = face_alignment(mock_image, mock_landmarks, image_size=(112, 112))
aligned2, _ = face_alignment(mock_image, mock_landmarks, image_size=(112, 112))
assert np.allclose(aligned1, aligned2), 'Same input should produce same aligned face'
def test_face_alignment_landmarks_as_list(mock_image):
"""
Test that landmarks can be passed as a list of lists (converted to array).
"""
landmarks_list = [
[38.2946, 51.6963],
[73.5318, 51.5014],
[56.0252, 71.7366],
[41.5493, 92.3655],
[70.7299, 92.2041],
]
# Convert list to numpy array before passing to face_alignment
landmarks_array = np.array(landmarks_list, dtype=np.float32)
aligned, _ = face_alignment(mock_image, landmarks_array, image_size=(112, 112))
assert aligned.shape == (112, 112, 3), 'Should work with landmarks as array'
def test_face_alignment_value_range(mock_image, mock_landmarks):
"""
Test that aligned face pixel values are in valid range [0, 255].
"""
aligned, _ = face_alignment(mock_image, mock_landmarks, image_size=(112, 112))
assert np.all(aligned >= 0), 'Pixel values should be >= 0'
assert np.all(aligned <= 255), 'Pixel values should be <= 255'
def test_face_alignment_not_all_zeros(mock_image, mock_landmarks):
"""
Test that aligned face is not all zeros (actual transformation occurred).
"""
aligned, _ = face_alignment(mock_image, mock_landmarks, image_size=(112, 112))
# At least some pixels should be non-zero
assert np.any(aligned > 0), 'Aligned face should have some non-zero pixels'
def test_face_alignment_from_different_positions(mock_image):
"""
Test alignment with landmarks at different positions in the image.
"""
# Landmarks at different positions
positions = [
np.array(
[[100, 100], [150, 100], [125, 130], [110, 150], [140, 150]],
dtype=np.float32,
),
np.array(
[[300, 200], [350, 200], [325, 230], [310, 250], [340, 250]],
dtype=np.float32,
),
np.array(
[[500, 400], [550, 400], [525, 430], [510, 450], [540, 450]],
dtype=np.float32,
),
]
for landmarks in positions:
aligned, _ = face_alignment(mock_image, landmarks, image_size=(112, 112))
assert aligned.shape == (112, 112, 3), f'Failed for landmarks at {landmarks[0]}'
def test_face_alignment_landmark_count(mock_image):
"""
Test that face_alignment works specifically with 5-point landmarks.
"""
# Standard 5-point landmarks
landmarks_5pt = np.array(
[
[38.2946, 51.6963],
[73.5318, 51.5014],
[56.0252, 71.7366],
[41.5493, 92.3655],
[70.7299, 92.2041],
],
dtype=np.float32,
)
aligned, _ = face_alignment(mock_image, landmarks_5pt, image_size=(112, 112))
assert aligned.shape == (112, 112, 3), 'Should work with 5-point landmarks'
def test_compute_similarity_with_recognition_embeddings():
"""
Test compute_similarity with realistic embedding dimensions.
"""
# Simulate ArcFace/MobileFace/SphereFace embeddings (512-dim)
emb1 = np.random.randn(1, 512).astype(np.float32)
emb2 = np.random.randn(1, 512).astype(np.float32)
# Normalize (as done in get_normalized_embedding)
emb1 = emb1 / np.linalg.norm(emb1)
emb2 = emb2 / np.linalg.norm(emb2)
similarity = compute_similarity(emb1, emb2)
# Should be a valid similarity score
assert -1.0 <= similarity <= 1.0
assert isinstance(similarity, (float, np.floating))

View File

@@ -1,4 +1,4 @@
# Copyright 2024 Yakhyokhuja Valikhujaev
# Copyright 2025 Yakhyokhuja Valikhujaev
#
# Licensed under the MIT License.
# You may obtain a copy of the License at
@@ -11,18 +11,75 @@
# See the License for the specific language governing permissions and
# limitations under the License.
__license__ = 'MIT'
__author__ = 'Yakhyokhuja Valikhujaev'
__version__ = '1.5.0'
from uniface.retinaface import RetinaFace
from uniface.log import Logger
from uniface.face_utils import compute_similarity, face_alignment
from uniface.log import Logger, enable_logging
from uniface.model_store import verify_model_weights
from uniface.version import __version__, __author__
from uniface.visualization import draw_detections
from uniface.visualization import draw_detections, vis_parsing_maps
from .analyzer import FaceAnalyzer
from .attribute import AgeGender
from .face import Face
try:
from .attribute import Emotion
except ImportError:
Emotion = None # PyTorch not installed
from .detection import (
SCRFD,
RetinaFace,
YOLOv5Face,
create_detector,
detect_faces,
list_available_detectors,
)
from .gaze import MobileGaze, create_gaze_estimator
from .landmark import Landmark106, create_landmarker
from .parsing import BiSeNet, create_face_parser
from .recognition import ArcFace, MobileFace, SphereFace, create_recognizer
__all__ = [
"__version__",
"__author__"
"RetinaFace",
"Logger",
"verify_model_weights",
"draw_detections"
'__author__',
'__license__',
'__version__',
# Core classes
'Face',
'FaceAnalyzer',
# Factory functions
'create_detector',
'create_face_parser',
'create_gaze_estimator',
'create_landmarker',
'create_recognizer',
'detect_faces',
'list_available_detectors',
# Detection models
'RetinaFace',
'SCRFD',
'YOLOv5Face',
# Recognition models
'ArcFace',
'MobileFace',
'SphereFace',
# Landmark models
'Landmark106',
# Gaze models
'MobileGaze',
# Parsing models
'BiSeNet',
# Attribute models
'AgeGender',
'Emotion',
# Utilities
'compute_similarity',
'draw_detections',
'vis_parsing_maps',
'face_alignment',
'verify_model_weights',
'Logger',
'enable_logging',
]

83
uniface/analyzer.py Normal file
View File

@@ -0,0 +1,83 @@
# Copyright 2025 Yakhyokhuja Valikhujaev
# Author: Yakhyokhuja Valikhujaev
# GitHub: https://github.com/yakhyo
from typing import List, Optional
import numpy as np
from uniface.attribute.age_gender import AgeGender
from uniface.detection.base import BaseDetector
from uniface.face import Face
from uniface.log import Logger
from uniface.recognition.base import BaseRecognizer
__all__ = ['FaceAnalyzer']
class FaceAnalyzer:
"""Unified face analyzer combining detection, recognition, and attributes."""
def __init__(
self,
detector: BaseDetector,
recognizer: Optional[BaseRecognizer] = None,
age_gender: Optional[AgeGender] = None,
) -> None:
self.detector = detector
self.recognizer = recognizer
self.age_gender = age_gender
Logger.info(f'Initialized FaceAnalyzer with detector={detector.__class__.__name__}')
if recognizer:
Logger.info(f' - Recognition enabled: {recognizer.__class__.__name__}')
if age_gender:
Logger.info(f' - Age/Gender enabled: {age_gender.__class__.__name__}')
def analyze(self, image: np.ndarray) -> List[Face]:
"""Analyze faces in an image."""
detections = self.detector.detect(image)
Logger.debug(f'Detected {len(detections)} face(s)')
faces = []
for idx, detection in enumerate(detections):
bbox = detection['bbox']
confidence = detection['confidence']
landmarks = detection['landmarks']
embedding = None
if self.recognizer is not None:
try:
embedding = self.recognizer.get_normalized_embedding(image, landmarks)
Logger.debug(f' Face {idx + 1}: Extracted embedding with shape {embedding.shape}')
except Exception as e:
Logger.warning(f' Face {idx + 1}: Failed to extract embedding: {e}')
age, gender = None, None
if self.age_gender is not None:
try:
gender, age = self.age_gender.predict(image, bbox)
Logger.debug(f' Face {idx + 1}: Age={age}, Gender={gender}')
except Exception as e:
Logger.warning(f' Face {idx + 1}: Failed to predict age/gender: {e}')
face = Face(
bbox=bbox,
confidence=confidence,
landmarks=landmarks,
embedding=embedding,
age=age,
gender=gender,
)
faces.append(face)
Logger.info(f'Analysis complete: {len(faces)} face(s) processed')
return faces
def __repr__(self) -> str:
parts = [f'FaceAnalyzer(detector={self.detector.__class__.__name__}']
if self.recognizer:
parts.append(f'recognizer={self.recognizer.__class__.__name__}')
if self.age_gender:
parts.append(f'age_gender={self.age_gender.__class__.__name__}')
return ', '.join(parts) + ')'

View File

@@ -0,0 +1,99 @@
# Copyright 2025 Yakhyokhuja Valikhujaev
# Author: Yakhyokhuja Valikhujaev
# GitHub: https://github.com/yakhyo
from typing import Any, Dict, List, Union
import numpy as np
from uniface.attribute.age_gender import AgeGender
from uniface.attribute.base import Attribute
from uniface.constants import AgeGenderWeights, DDAMFNWeights
# Emotion requires PyTorch - make it optional
try:
from uniface.attribute.emotion import Emotion
_EMOTION_AVAILABLE = True
except ImportError:
Emotion = None
_EMOTION_AVAILABLE = False
# Public API for the attribute module
__all__ = ['AgeGender', 'Emotion', 'create_attribute_predictor', 'predict_attributes']
# A mapping from model enums to their corresponding attribute classes
_ATTRIBUTE_MODELS = {
**{model: AgeGender for model in AgeGenderWeights},
}
# Add Emotion models only if PyTorch is available
if _EMOTION_AVAILABLE:
_ATTRIBUTE_MODELS.update({model: Emotion for model in DDAMFNWeights})
def create_attribute_predictor(model_name: Union[AgeGenderWeights, DDAMFNWeights], **kwargs: Any) -> Attribute:
"""
Factory function to create an attribute predictor instance.
This high-level API simplifies the creation of attribute models by
dynamically selecting the correct class based on the provided model enum.
Args:
model_name: The enum corresponding to the desired attribute model
(e.g., AgeGenderWeights.DEFAULT or DDAMFNWeights.AFFECNET7).
**kwargs: Additional keyword arguments to pass to the model's constructor.
Returns:
An initialized instance of an Attribute predictor class (e.g., AgeGender).
Raises:
ValueError: If the provided model_name is not a supported enum.
"""
model_class = _ATTRIBUTE_MODELS.get(model_name)
if model_class is None:
raise ValueError(
f'Unsupported attribute model: {model_name}. Please choose from AgeGenderWeights or DDAMFNWeights.'
)
# Pass model_name to the constructor, as some classes might need it
return model_class(model_name=model_name, **kwargs)
def predict_attributes(
image: np.ndarray, detections: List[Dict[str, np.ndarray]], predictor: Attribute
) -> List[Dict[str, Any]]:
"""
High-level API to predict attributes for multiple detected faces.
This function iterates through a list of face detections, runs the
specified attribute predictor on each one, and appends the results back
into the detection dictionary.
Args:
image (np.ndarray): The full input image in BGR format.
detections (List[Dict]): A list of detection results, where each dict
must contain a 'bbox' and optionally 'landmark'.
predictor (Attribute): An initialized attribute predictor instance,
created by `create_attribute_predictor`.
Returns:
The list of detections, where each dictionary is updated with a new
'attributes' key containing the prediction result.
"""
for face in detections:
# Initialize attributes dict if it doesn't exist
if 'attributes' not in face:
face['attributes'] = {}
if isinstance(predictor, AgeGender):
gender_id, age = predictor(image, face['bbox'])
face['attributes']['gender_id'] = gender_id
face['attributes']['age'] = age
elif isinstance(predictor, Emotion):
emotion, confidence = predictor(image, face['landmark'])
face['attributes']['emotion'] = emotion
face['attributes']['confidence'] = confidence
return detections

View File

@@ -0,0 +1,211 @@
# Copyright 2025 Yakhyokhuja Valikhujaev
# Author: Yakhyokhuja Valikhujaev
# GitHub: https://github.com/yakhyo
from typing import List, Optional, Tuple, Union
import cv2
import numpy as np
from uniface.attribute.base import Attribute
from uniface.constants import AgeGenderWeights
from uniface.face_utils import bbox_center_alignment
from uniface.log import Logger
from uniface.model_store import verify_model_weights
from uniface.onnx_utils import create_onnx_session
__all__ = ['AgeGender']
class AgeGender(Attribute):
"""
Age and gender prediction model using ONNX Runtime.
This class inherits from the base `Attribute` class and implements the
functionality for predicting age (in years) and gender ID (0 for Female,
1 for Male) from a face image. It requires a bounding box to locate the face.
Args:
model_name (AgeGenderWeights): The enum specifying the model weights to load.
Defaults to `AgeGenderWeights.DEFAULT`.
input_size (Optional[Tuple[int, int]]): Input size (height, width).
If None, automatically detected from model metadata. Defaults to None.
"""
def __init__(
self,
model_name: AgeGenderWeights = AgeGenderWeights.DEFAULT,
input_size: Optional[Tuple[int, int]] = None,
) -> None:
"""
Initializes the AgeGender prediction model.
Args:
model_name (AgeGenderWeights): The enum specifying the model weights to load.
input_size (Optional[Tuple[int, int]]): Input size (height, width).
If None, automatically detected from model metadata. Defaults to None.
"""
Logger.info(f'Initializing AgeGender with model={model_name.name}')
self.model_path = verify_model_weights(model_name)
self._user_input_size = input_size # Store user preference
self._initialize_model()
def _initialize_model(self) -> None:
"""
Initializes the ONNX model and creates an inference session.
"""
try:
self.session = create_onnx_session(self.model_path)
# Get model input details from the loaded model
input_meta = self.session.get_inputs()[0]
self.input_name = input_meta.name
# Use user-provided size if given, otherwise auto-detect from model
model_input_size = tuple(input_meta.shape[2:4]) # (height, width)
if self._user_input_size is not None:
self.input_size = self._user_input_size
if self._user_input_size != model_input_size:
Logger.warning(
f'Using custom input_size {self.input_size}, '
f'but model expects {model_input_size}. This may affect accuracy.'
)
else:
self.input_size = model_input_size
self.output_names = [output.name for output in self.session.get_outputs()]
Logger.info(f'Successfully initialized AgeGender model with input size {self.input_size}')
except Exception as e:
Logger.error(
f"Failed to load AgeGender model from '{self.model_path}'",
exc_info=True,
)
raise RuntimeError(f'Failed to initialize AgeGender model: {e}') from e
def preprocess(self, image: np.ndarray, bbox: Union[List, np.ndarray]) -> np.ndarray:
"""
Aligns the face based on the bounding box and preprocesses it for inference.
Args:
image (np.ndarray): The full input image in BGR format.
bbox (Union[List, np.ndarray]): The face bounding box coordinates [x1, y1, x2, y2].
Returns:
np.ndarray: The preprocessed image blob ready for inference.
"""
bbox = np.asarray(bbox)
width, height = bbox[2] - bbox[0], bbox[3] - bbox[1]
center = ((bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2)
scale = self.input_size[1] / (max(width, height) * 1.5)
# **Rotation parameter restored here**
rotation = 0.0
aligned_face, _ = bbox_center_alignment(image, center, self.input_size[1], scale, rotation)
blob = cv2.dnn.blobFromImage(
aligned_face,
scalefactor=1.0,
size=self.input_size[::-1],
mean=(0.0, 0.0, 0.0),
swapRB=True,
)
return blob
def postprocess(self, prediction: np.ndarray) -> Tuple[int, int]:
"""
Processes the raw model output to extract gender and age.
Args:
prediction (np.ndarray): The raw output from the model inference.
Returns:
Tuple[int, int]: A tuple containing the predicted gender ID (0 for Female, 1 for Male)
and age (in years).
"""
# First two values are gender logits
gender_id = int(np.argmax(prediction[:2]))
# Third value is normalized age, scaled by 100
age = int(np.round(prediction[2] * 100))
return gender_id, age
def predict(self, image: np.ndarray, bbox: Union[List, np.ndarray]) -> Tuple[int, int]:
"""
Predicts age and gender for a single face specified by a bounding box.
Args:
image (np.ndarray): The full input image in BGR format.
bbox (Union[List, np.ndarray]): The face bounding box coordinates [x1, y1, x2, y2].
Returns:
Tuple[int, int]: A tuple containing the predicted gender ID (0 for Female, 1 for Male) and age.
"""
face_blob = self.preprocess(image, bbox)
prediction = self.session.run(self.output_names, {self.input_name: face_blob})[0][0]
gender_id, age = self.postprocess(prediction)
return gender_id, age
# TODO: below is only for testing, remove it later
if __name__ == '__main__':
# To run this script, you need to have uniface.detection installed
# or available in your path.
from uniface.constants import RetinaFaceWeights
from uniface.detection import create_detector
print('Initializing models for live inference...')
# 1. Initialize the face detector
# Using a smaller model for faster real-time performance
detector = create_detector(model_name=RetinaFaceWeights.MNET_V2)
# 2. Initialize the attribute predictor
age_gender_predictor = AgeGender()
# 3. Start webcam capture
cap = cv2.VideoCapture(0)
if not cap.isOpened():
print('Error: Could not open webcam.')
exit()
print("Starting webcam feed. Press 'q' to quit.")
while True:
ret, frame = cap.read()
if not ret:
print('Error: Failed to capture frame.')
break
# Detect faces in the current frame
detections = detector.detect(frame)
# For each detected face, predict age and gender
for detection in detections:
box = detection['bbox']
x1, y1, x2, y2 = map(int, box)
# Predict attributes
gender_id, age = age_gender_predictor.predict(frame, box)
gender_str = 'Female' if gender_id == 0 else 'Male'
# Prepare text and draw on the frame
label = f'{gender_str}, {age}'
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
cv2.putText(
frame,
label,
(x1, y1 - 10),
cv2.FONT_HERSHEY_SIMPLEX,
0.8,
(0, 255, 0),
2,
)
# Display the resulting frame
cv2.imshow("Age and Gender Inference (Press 'q' to quit)", frame)
# Break the loop if 'q' is pressed
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# Release resources
cap.release()
cv2.destroyAllWindows()
print('Inference stopped.')

92
uniface/attribute/base.py Normal file
View File

@@ -0,0 +1,92 @@
# Copyright 2025 Yakhyokhuja Valikhujaev
# Author: Yakhyokhuja Valikhujaev
# GitHub: https://github.com/yakhyo
from abc import ABC, abstractmethod
from typing import Any
import numpy as np
class Attribute(ABC):
"""
Abstract base class for face attribute models.
This class defines the common interface that all attribute models
(e.g., age-gender, emotion) must implement. It ensures a consistent API
across different attribute prediction modules in the library, making them
interchangeable and easy to use.
"""
@abstractmethod
def _initialize_model(self) -> None:
"""
Initializes the underlying model for inference.
This method should handle loading model weights, creating the
inference session (e.g., ONNX Runtime, PyTorch), and any necessary
warm-up procedures to prepare the model for prediction.
"""
raise NotImplementedError('Subclasses must implement the _initialize_model method.')
@abstractmethod
def preprocess(self, image: np.ndarray, *args: Any) -> Any:
"""
Preprocesses the input data for the model.
This method should take a raw image and any other necessary data
(like bounding boxes or landmarks) and convert it into the format
expected by the model's inference engine (e.g., a blob or tensor).
Args:
image (np.ndarray): The input image containing the face, typically
in BGR format.
*args: Additional arguments required for preprocessing, such as
bounding boxes or facial landmarks.
Returns:
The preprocessed data ready for model inference.
"""
raise NotImplementedError('Subclasses must implement the preprocess method.')
@abstractmethod
def postprocess(self, prediction: Any) -> Any:
"""
Postprocesses the raw model output into a human-readable format.
This method takes the raw output from the model's inference and
converts it into a meaningful result, such as an age value, a gender
label, or an emotion category.
Args:
prediction (Any): The raw output from the model's inference.
Returns:
The final, processed attributes.
"""
raise NotImplementedError('Subclasses must implement the postprocess method.')
@abstractmethod
def predict(self, image: np.ndarray, *args: Any) -> Any:
"""
Performs end-to-end attribute prediction on a given image.
This method orchestrates the full pipeline: it calls the preprocess,
inference, and postprocess steps to return the final, user-friendly
attribute prediction.
Args:
image (np.ndarray): The input image containing the face.
*args: Additional data required for prediction, such as a bounding
box or landmarks.
Returns:
The final predicted attributes.
"""
raise NotImplementedError('Subclasses must implement the predict method.')
def __call__(self, *args, **kwargs) -> Any:
"""
Provides a convenient, callable shortcut for the `predict` method.
"""
return self.predict(*args, **kwargs)

View File

@@ -0,0 +1,194 @@
# Copyright 2025 Yakhyokhuja Valikhujaev
# Author: Yakhyokhuja Valikhujaev
# GitHub: https://github.com/yakhyo
from typing import List, Tuple, Union
import cv2
import numpy as np
import torch
from uniface.attribute.base import Attribute
from uniface.constants import DDAMFNWeights
from uniface.face_utils import face_alignment
from uniface.log import Logger
from uniface.model_store import verify_model_weights
__all__ = ['Emotion']
class Emotion(Attribute):
"""
Emotion recognition model using a TorchScript model.
This class inherits from the base `Attribute` class and implements the
functionality for predicting one of several emotion categories from a face
image. It requires 5-point facial landmarks for alignment.
"""
def __init__(
self,
model_weights: DDAMFNWeights = DDAMFNWeights.AFFECNET7,
input_size: Tuple[int, int] = (112, 112),
) -> None:
"""
Initializes the emotion recognition model.
Args:
model_weights (DDAMFNWeights): The enum for the model weights to load.
input_size (Tuple[int, int]): The expected input size for the model.
"""
Logger.info(f'Initializing Emotion with model={model_weights.name}')
if torch.backends.mps.is_available():
self.device = torch.device('mps')
elif torch.cuda.is_available():
self.device = torch.device('cuda')
else:
self.device = torch.device('cpu')
self.input_size = input_size
self.model_path = verify_model_weights(model_weights)
# Define emotion labels based on the selected model
self.emotion_labels = [
'Neutral',
'Happy',
'Sad',
'Surprise',
'Fear',
'Disgust',
'Angry',
]
if model_weights == DDAMFNWeights.AFFECNET8:
self.emotion_labels.append('Contempt')
self._initialize_model()
def _initialize_model(self) -> None:
"""
Loads and initializes the TorchScript model for inference.
"""
try:
self.model = torch.jit.load(self.model_path, map_location=self.device)
self.model.eval()
# Warm-up with a dummy input for faster first inference
dummy_input = torch.randn(1, 3, *self.input_size).to(self.device)
with torch.no_grad():
self.model(dummy_input)
Logger.info(f'Successfully initialized Emotion model on {self.device}')
except Exception as e:
Logger.error(f"Failed to load Emotion model from '{self.model_path}'", exc_info=True)
raise RuntimeError(f'Failed to initialize Emotion model: {e}') from e
def preprocess(self, image: np.ndarray, landmark: Union[List, np.ndarray]) -> torch.Tensor:
"""
Aligns the face using landmarks and preprocesses it into a tensor.
Args:
image (np.ndarray): The full input image in BGR format.
landmark (Union[List, np.ndarray]): The 5-point facial landmarks.
Returns:
torch.Tensor: The preprocessed image tensor ready for inference.
"""
landmark = np.asarray(landmark)
aligned_image, _ = face_alignment(image, landmark)
# Convert BGR to RGB, resize, normalize, and convert to a CHW tensor
rgb_image = cv2.cvtColor(aligned_image, cv2.COLOR_BGR2RGB)
resized_image = cv2.resize(rgb_image, self.input_size).astype(np.float32) / 255.0
mean = np.array([0.485, 0.456, 0.406], dtype=np.float32)
std = np.array([0.229, 0.224, 0.225], dtype=np.float32)
normalized_image = (resized_image - mean) / std
transposed_image = normalized_image.transpose((2, 0, 1))
return torch.from_numpy(transposed_image).unsqueeze(0).to(self.device)
def postprocess(self, prediction: torch.Tensor) -> Tuple[str, float]:
"""
Processes the raw model output to get the emotion label and confidence score.
"""
probabilities = torch.nn.functional.softmax(prediction, dim=1).squeeze().cpu().numpy()
pred_index = np.argmax(probabilities)
emotion_label = self.emotion_labels[pred_index]
confidence = float(probabilities[pred_index])
return emotion_label, confidence
def predict(self, image: np.ndarray, landmark: Union[List, np.ndarray]) -> Tuple[str, float]:
"""
Predicts the emotion from a single face specified by its landmarks.
"""
input_tensor = self.preprocess(image, landmark)
with torch.no_grad():
output = self.model(input_tensor)
if isinstance(output, tuple):
output = output[0]
return self.postprocess(output)
# TODO: below is only for testing, remove it later
if __name__ == '__main__':
from uniface.constants import RetinaFaceWeights
from uniface.detection import create_detector
print('Initializing models for live inference...')
# 1. Initialize the face detector
# Using a smaller model for faster real-time performance
detector = create_detector(model_name=RetinaFaceWeights.MNET_V2)
# 2. Initialize the attribute predictor
emotion_predictor = Emotion()
# 3. Start webcam capture
cap = cv2.VideoCapture(0)
if not cap.isOpened():
print('Error: Could not open webcam.')
exit()
print("Starting webcam feed. Press 'q' to quit.")
while True:
ret, frame = cap.read()
if not ret:
print('Error: Failed to capture frame.')
break
# Detect faces in the current frame.
# This method returns a list of dictionaries for each detected face.
detections = detector.detect(frame)
# For each detected face, predict the emotion
for detection in detections:
box = detection['bbox']
landmark = detection['landmarks']
x1, y1, x2, y2 = map(int, box)
# Predict attributes using the landmark
emotion, confidence = emotion_predictor.predict(frame, landmark)
# Prepare text and draw on the frame
label = f'{emotion} ({confidence:.2f})'
cv2.rectangle(frame, (x1, y1), (x2, y2), (255, 0, 0), 2)
cv2.putText(
frame,
label,
(x1, y1 - 10),
cv2.FONT_HERSHEY_SIMPLEX,
0.8,
(255, 0, 0),
2,
)
# Display the resulting frame
cv2.imshow("Emotion Inference (Press 'q' to quit)", frame)
# Break the loop if 'q' is pressed
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# Release resources
cap.release()
cv2.destroyAllWindows()
print('Inference stopped.')

View File

@@ -1,14 +1,23 @@
# Copyright 2024 Yakhyokhuja Valikhujaev
# Copyright 2025 Yakhyokhuja Valikhujaev
# Author: Yakhyokhuja Valikhujaev
# GitHub: https://github.com/yakhyo
import cv2
import math
import itertools
import math
from typing import List, Optional, Tuple
import cv2
import numpy as np
import torch
from typing import Tuple, List
__all__ = [
'resize_image',
'generate_anchors',
'non_max_suppression',
'decode_boxes',
'decode_landmarks',
'distance2bbox',
'distance2kps',
]
def resize_image(frame, target_shape: Tuple[int, int] = (640, 640)) -> Tuple[np.ndarray, float]:
@@ -44,28 +53,21 @@ def resize_image(frame, target_shape: Tuple[int, int] = (640, 640)) -> Tuple[np.
return image, resize_factor
def generate_anchors(image_size: Tuple[int, int] = (640, 640)) -> torch.Tensor:
def generate_anchors(image_size: Tuple[int, int] = (640, 640)) -> np.ndarray:
"""
Generate anchor boxes for a given image size.
Generate anchor boxes for a given image size (RetinaFace specific).
Args:
image_size (Tuple[int, int]): Input image size (width, height). Defaults to (640, 640).
Returns:
torch.Tensor: Anchor box coordinates as a tensor.
np.ndarray: Anchor box coordinates as a NumPy array with shape (num_anchors, 4).
"""
image_size = image_size
steps = [8, 16, 32]
min_sizes = [[16, 32], [64, 128], [256, 512]]
anchors = []
feature_maps = [
[
math.ceil(image_size[0] / step),
math.ceil(image_size[1] / step)
] for step in steps
]
feature_maps = [[math.ceil(image_size[0] / step), math.ceil(image_size[1] / step)] for step in steps]
for k, (map_height, map_width) in enumerate(feature_maps):
step = steps[k]
@@ -79,20 +81,20 @@ def generate_anchors(image_size: Tuple[int, int] = (640, 640)) -> torch.Tensor:
for cy, cx in itertools.product(dense_cy, dense_cx):
anchors += [cx, cy, s_kx, s_ky]
output = torch.Tensor(anchors).view(-1, 4)
output = np.array(anchors, dtype=np.float32).reshape(-1, 4)
return output
def nms(dets: List[np.ndarray], threshold: float):
def non_max_suppression(dets: np.ndarray, threshold: float) -> List[int]:
"""
Apply Non-Maximum Suppression (NMS) to reduce overlapping bounding boxes based on a threshold.
Args:
dets (numpy.ndarray): Array of detections with each row as [x1, y1, x2, y2, score].
dets (np.ndarray): Array of detections with each row as [x1, y1, x2, y2, score].
threshold (float): IoU threshold for suppression.
Returns:
list: Indices of bounding boxes retained after suppression.
List[int]: Indices of bounding boxes retained after suppression.
"""
x1 = dets[:, 0]
y1 = dets[:, 1]
@@ -123,56 +125,119 @@ def nms(dets: List[np.ndarray], threshold: float):
return keep
def decode_boxes(loc, priors, variances=[0.1, 0.2]) -> torch.Tensor:
def decode_boxes(loc: np.ndarray, priors: np.ndarray, variances: Optional[List[float]] = None) -> np.ndarray:
"""
Decode locations from predictions using priors to undo
the encoding done for offset regression at train time.
the encoding done for offset regression at train time (RetinaFace specific).
Args:
loc (tensor): Location predictions for loc layers, shape: [num_priors, 4]
priors (tensor): Prior boxes in center-offset form, shape: [num_priors, 4]
variances (list[float]): Variances of prior boxes
loc (np.ndarray): Location predictions for loc layers, shape: [num_priors, 4]
priors (np.ndarray): Prior boxes in center-offset form, shape: [num_priors, 4]
variances (Optional[List[float]]): Variances of prior boxes. Defaults to [0.1, 0.2].
Returns:
tensor: Decoded bounding box predictions
np.ndarray: Decoded bounding box predictions with shape [num_priors, 4]
"""
if variances is None:
variances = [0.1, 0.2]
# Compute centers of predicted boxes
cxcy = priors[:, :2] + loc[:, :2] * variances[0] * priors[:, 2:]
# Compute widths and heights of predicted boxes
wh = priors[:, 2:] * torch.exp(loc[:, 2:] * variances[1])
wh = priors[:, 2:] * np.exp(loc[:, 2:] * variances[1])
# Convert center, size to corner coordinates
boxes = torch.empty_like(loc)
boxes = np.zeros_like(loc)
boxes[:, :2] = cxcy - wh / 2 # xmin, ymin
boxes[:, 2:] = cxcy + wh / 2 # xmax, ymax
return boxes
def decode_landmarks(predictions, priors, variances=[0.1, 0.2]) -> torch.Tensor:
def decode_landmarks(
predictions: np.ndarray, priors: np.ndarray, variances: Optional[List[float]] = None
) -> np.ndarray:
"""
Decode landmarks from predictions using prior boxes to reverse the encoding done during training.
Decode landmark predictions using prior boxes (RetinaFace specific).
Args:
predictions (tensor): Landmark predictions for localization layers.
Shape: [num_priors, 10] where each prior contains 5 landmark (x, y) pairs.
priors (tensor): Prior boxes in center-offset form.
Shape: [num_priors, 4], where each prior has (cx, cy, width, height).
variances (list[float]): Variances of the prior boxes to scale the decoded values.
predictions (np.ndarray): Landmark predictions, shape: [num_priors, 10]
priors (np.ndarray): Prior boxes, shape: [num_priors, 4]
variances (Optional[List[float]]): Scaling factors for landmark offsets. Defaults to [0.1, 0.2].
Returns:
landmarks (tensor): Decoded landmark predictions.
Shape: [num_priors, 10] where each row contains the decoded (x, y) pairs for 5 landmarks.
np.ndarray: Decoded landmarks, shape: [num_priors, 10]
"""
if variances is None:
variances = [0.1, 0.2]
# Reshape predictions to [num_priors, 5, 2] to handle each pair (x, y) in a batch
predictions = predictions.view(predictions.size(0), 5, 2)
# Reshape predictions to [num_priors, 5, 2] to process landmark points
predictions = predictions.reshape(predictions.shape[0], 5, 2)
# Perform the same operation on all landmark pairs at once
landmarks = priors[:, :2].unsqueeze(1) + predictions * variances[0] * priors[:, 2:].unsqueeze(1)
# Expand priors to match (num_priors, 5, 2)
priors_xy = np.repeat(priors[:, :2][:, np.newaxis, :], 5, axis=1) # (num_priors, 5, 2)
priors_wh = np.repeat(priors[:, 2:][:, np.newaxis, :], 5, axis=1) # (num_priors, 5, 2)
# Compute absolute landmark positions
landmarks = priors_xy + predictions * variances[0] * priors_wh
# Flatten back to [num_priors, 10]
landmarks = landmarks.view(landmarks.size(0), -1)
landmarks = landmarks.reshape(landmarks.shape[0], -1)
return landmarks
def distance2bbox(points: np.ndarray, distance: np.ndarray, max_shape: Optional[Tuple[int, int]] = None) -> np.ndarray:
"""
Decode distance prediction to bounding box (SCRFD specific).
Args:
points (np.ndarray): Anchor points with shape (n, 2), [x, y].
distance (np.ndarray): Distance from the given point to 4
boundaries (left, top, right, bottom) with shape (n, 4).
max_shape (Optional[Tuple[int, int]]): Shape of the image (height, width) for clipping.
Returns:
np.ndarray: Decoded bounding boxes with shape (n, 4) as [x1, y1, x2, y2].
"""
x1 = points[:, 0] - distance[:, 0]
y1 = points[:, 1] - distance[:, 1]
x2 = points[:, 0] + distance[:, 2]
y2 = points[:, 1] + distance[:, 3]
if max_shape is not None:
x1 = np.clip(x1, 0, max_shape[1])
y1 = np.clip(y1, 0, max_shape[0])
x2 = np.clip(x2, 0, max_shape[1])
y2 = np.clip(y2, 0, max_shape[0])
else:
x1 = np.maximum(x1, 0)
y1 = np.maximum(y1, 0)
x2 = np.maximum(x2, 0)
y2 = np.maximum(y2, 0)
return np.stack([x1, y1, x2, y2], axis=-1)
def distance2kps(points: np.ndarray, distance: np.ndarray, max_shape: Optional[Tuple[int, int]] = None) -> np.ndarray:
"""
Decode distance prediction to keypoints (SCRFD specific).
Args:
points (np.ndarray): Anchor points with shape (n, 2), [x, y].
distance (np.ndarray): Distance from the given point to keypoints with shape (n, 2k).
max_shape (Optional[Tuple[int, int]]): Shape of the image (height, width) for clipping.
Returns:
np.ndarray: Decoded keypoints with shape (n, 2k).
"""
preds = []
for i in range(0, distance.shape[1], 2):
px = points[:, i % 2] + distance[:, i]
py = points[:, i % 2 + 1] + distance[:, i + 1]
if max_shape is not None:
px = np.clip(px, 0, max_shape[1])
py = np.clip(py, 0, max_shape[0])
preds.append(px)
preds.append(py)
return np.stack(preds, axis=-1)

View File

@@ -1,26 +1,210 @@
# Copyright 2024 Yakhyokhuja Valikhujaev
# Copyright 2025 Yakhyokhuja Valikhujaev
# Author: Yakhyokhuja Valikhujaev
# GitHub: https://github.com/yakhyo
from enum import Enum
from typing import Dict
MODEL_URLS: Dict[str, str] = {
'retinaface_mnet025': 'https://github.com/yakhyo/uniface/releases/download/v0.1.1/retinaface_mv1_0.25.onnx',
'retinaface_mnet050': 'https://github.com/yakhyo/uniface/releases/download/v0.1.1/retinaface_mv1_0.50.onnx',
'retinaface_mnet_v1': 'https://github.com/yakhyo/uniface/releases/download/v0.1.1/retinaface_mv1.onnx',
'retinaface_mnet_v2': 'https://github.com/yakhyo/uniface/releases/download/v0.1.1/retinaface_mv2.onnx',
'retinaface_r18': 'https://github.com/yakhyo/uniface/releases/download/v0.1.1/retinaface_r18.onnx',
'retinaface_r34': 'https://github.com/yakhyo/uniface/releases/download/v0.1.1/retinaface_r34.onnx'
# fmt: off
class SphereFaceWeights(str, Enum):
"""
Trained on MS1M V2 dataset with 5.8 million images of 85k identities.
https://github.com/yakhyo/face-recognition
"""
SPHERE20 = "sphere20"
SPHERE36 = "sphere36"
class MobileFaceWeights(str, Enum):
"""
Trained on MS1M V2 dataset with 5.8 million images of 85k identities.
https://github.com/yakhyo/face-recognition
"""
MNET_025 = "mobilenetv1_025"
MNET_V2 = "mobilenetv2"
MNET_V3_SMALL = "mobilenetv3_small"
MNET_V3_LARGE = "mobilenetv3_large"
class ArcFaceWeights(str, Enum):
"""
Pretrained weights from ArcFace model (insightface).
https://github.com/deepinsight/insightface
"""
MNET = "arcface_mnet"
RESNET = "arcface_resnet"
class RetinaFaceWeights(str, Enum):
"""
Trained on WIDER FACE dataset.
https://github.com/yakhyo/retinaface-pytorch
"""
MNET_025 = "retinaface_mnet025"
MNET_050 = "retinaface_mnet050"
MNET_V1 = "retinaface_mnet_v1"
MNET_V2 = "retinaface_mnet_v2"
RESNET18 = "retinaface_r18"
RESNET34 = "retinaface_r34"
class SCRFDWeights(str, Enum):
"""
Trained on WIDER FACE dataset.
https://github.com/deepinsight/insightface
"""
SCRFD_10G_KPS = "scrfd_10g"
SCRFD_500M_KPS = "scrfd_500m"
class YOLOv5FaceWeights(str, Enum):
"""
Trained on WIDER FACE dataset.
Original implementation: https://github.com/deepcam-cn/yolov5-face
Exported to ONNX from: https://github.com/yakhyo/yolov5-face-onnx-inference
Model Performance (WIDER FACE):
- YOLOV5N: 11MB, 93.61% Easy / 91.52% Medium / 80.53% Hard
- YOLOV5S: 28MB, 94.33% Easy / 92.61% Medium / 83.15% Hard
- YOLOV5M: 82MB, 95.30% Easy / 93.76% Medium / 85.28% Hard
"""
YOLOV5N = "yolov5n"
YOLOV5S = "yolov5s"
YOLOV5M = "yolov5m"
class DDAMFNWeights(str, Enum):
"""
Trained on AffectNet dataset.
https://github.com/SainingZhang/DDAMFN/tree/main/DDAMFN
"""
AFFECNET7 = "affecnet7"
AFFECNET8 = "affecnet8"
class AgeGenderWeights(str, Enum):
"""
Trained on CelebA dataset.
https://github.com/deepinsight/insightface
"""
DEFAULT = "age_gender"
class LandmarkWeights(str, Enum):
"""
MobileNet 0.5 from Insightface
https://github.com/deepinsight/insightface/tree/master/alignment/coordinate_reg
"""
DEFAULT = "2d_106"
class GazeWeights(str, Enum):
"""
MobileGaze: Real-Time Gaze Estimation models.
Trained on Gaze360 dataset.
https://github.com/yakhyo/gaze-estimation
"""
RESNET18 = "gaze_resnet18"
RESNET34 = "gaze_resnet34"
RESNET50 = "gaze_resnet50"
MOBILENET_V2 = "gaze_mobilenetv2"
MOBILEONE_S0 = "gaze_mobileone_s0"
class ParsingWeights(str, Enum):
"""
Face Parsing: Semantic Segmentation of Facial Components.
Trained on CelebAMask-HQ dataset.
https://github.com/yakhyo/face-parsing
"""
RESNET18 = "parsing_resnet18"
RESNET34 = "parsing_resnet34"
MODEL_URLS: Dict[Enum, str] = {
# RetinaFace
RetinaFaceWeights.MNET_025: 'https://github.com/yakhyo/uniface/releases/download/weights/retinaface_mv1_0.25.onnx',
RetinaFaceWeights.MNET_050: 'https://github.com/yakhyo/uniface/releases/download/weights/retinaface_mv1_0.50.onnx',
RetinaFaceWeights.MNET_V1: 'https://github.com/yakhyo/uniface/releases/download/weights/retinaface_mv1.onnx',
RetinaFaceWeights.MNET_V2: 'https://github.com/yakhyo/uniface/releases/download/weights/retinaface_mv2.onnx',
RetinaFaceWeights.RESNET18: 'https://github.com/yakhyo/uniface/releases/download/weights/retinaface_r18.onnx',
RetinaFaceWeights.RESNET34: 'https://github.com/yakhyo/uniface/releases/download/weights/retinaface_r34.onnx',
# MobileFace
MobileFaceWeights.MNET_025: 'https://github.com/yakhyo/uniface/releases/download/weights/mobilenetv1_0.25.onnx',
MobileFaceWeights.MNET_V2: 'https://github.com/yakhyo/uniface/releases/download/weights/mobilenetv2.onnx',
MobileFaceWeights.MNET_V3_SMALL: 'https://github.com/yakhyo/uniface/releases/download/weights/mobilenetv3_small.onnx',
MobileFaceWeights.MNET_V3_LARGE: 'https://github.com/yakhyo/uniface/releases/download/weights/mobilenetv3_large.onnx',
# SphereFace
SphereFaceWeights.SPHERE20: 'https://github.com/yakhyo/uniface/releases/download/weights/sphere20.onnx',
SphereFaceWeights.SPHERE36: 'https://github.com/yakhyo/uniface/releases/download/weights/sphere36.onnx',
# ArcFace
ArcFaceWeights.MNET: 'https://github.com/yakhyo/uniface/releases/download/weights/w600k_mbf.onnx',
ArcFaceWeights.RESNET: 'https://github.com/yakhyo/uniface/releases/download/weights/w600k_r50.onnx',
# SCRFD
SCRFDWeights.SCRFD_10G_KPS: 'https://github.com/yakhyo/uniface/releases/download/weights/scrfd_10g_kps.onnx',
SCRFDWeights.SCRFD_500M_KPS: 'https://github.com/yakhyo/uniface/releases/download/weights/scrfd_500m_kps.onnx',
# YOLOv5-Face
YOLOv5FaceWeights.YOLOV5N: 'https://github.com/yakhyo/yolov5-face-onnx-inference/releases/download/weights/yolov5n_face.onnx',
YOLOv5FaceWeights.YOLOV5S: 'https://github.com/yakhyo/yolov5-face-onnx-inference/releases/download/weights/yolov5s_face.onnx',
YOLOv5FaceWeights.YOLOV5M: 'https://github.com/yakhyo/yolov5-face-onnx-inference/releases/download/weights/yolov5m_face.onnx',
# DDAFM
DDAMFNWeights.AFFECNET7: 'https://github.com/yakhyo/uniface/releases/download/weights/affecnet7.script',
DDAMFNWeights.AFFECNET8: 'https://github.com/yakhyo/uniface/releases/download/weights/affecnet8.script',
# AgeGender
AgeGenderWeights.DEFAULT: 'https://github.com/yakhyo/uniface/releases/download/weights/genderage.onnx',
# Landmarks
LandmarkWeights.DEFAULT: 'https://github.com/yakhyo/uniface/releases/download/weights/2d106det.onnx',
# Gaze (MobileGaze)
GazeWeights.RESNET18: 'https://github.com/yakhyo/gaze-estimation/releases/download/weights/resnet18_gaze.onnx',
GazeWeights.RESNET34: 'https://github.com/yakhyo/gaze-estimation/releases/download/weights/resnet34_gaze.onnx',
GazeWeights.RESNET50: 'https://github.com/yakhyo/gaze-estimation/releases/download/weights/resnet50_gaze.onnx',
GazeWeights.MOBILENET_V2: 'https://github.com/yakhyo/gaze-estimation/releases/download/weights/mobilenetv2_gaze.onnx',
GazeWeights.MOBILEONE_S0: 'https://github.com/yakhyo/gaze-estimation/releases/download/weights/mobileone_s0_gaze.onnx',
# Parsing
ParsingWeights.RESNET18: 'https://github.com/yakhyo/face-parsing/releases/download/weights/resnet18.onnx',
ParsingWeights.RESNET34: 'https://github.com/yakhyo/face-parsing/releases/download/weights/resnet34.onnx',
}
MODEL_SHA256: Dict[str, str] = {
'retinaface_mnet025': 'b7a7acab55e104dce6f32cdfff929bd83946da5cd869b9e2e9bdffafd1b7e4a5',
'retinaface_mnet050': 'd8977186f6037999af5b4113d42ba77a84a6ab0c996b17c713cc3d53b88bfc37',
'retinaface_mnet_v1': '75c961aaf0aff03d13c074e9ec656e5510e174454dd4964a161aab4fe5f04153',
'retinaface_mnet_v2': '3ca44c045651cabeed1193a1fae8946ad1f3a55da8fa74b341feab5a8319f757',
'retinaface_r18': 'e8b5ddd7d2c3c8f7c942f9f10cec09d8e319f78f09725d3f709631de34fb649d',
'retinaface_r34': 'bd0263dc2a465d32859555cb1741f2d98991eb0053696e8ee33fec583d30e630'
MODEL_SHA256: Dict[Enum, str] = {
# RetinaFace
RetinaFaceWeights.MNET_025: 'b7a7acab55e104dce6f32cdfff929bd83946da5cd869b9e2e9bdffafd1b7e4a5',
RetinaFaceWeights.MNET_050: 'd8977186f6037999af5b4113d42ba77a84a6ab0c996b17c713cc3d53b88bfc37',
RetinaFaceWeights.MNET_V1: '75c961aaf0aff03d13c074e9ec656e5510e174454dd4964a161aab4fe5f04153',
RetinaFaceWeights.MNET_V2: '3ca44c045651cabeed1193a1fae8946ad1f3a55da8fa74b341feab5a8319f757',
RetinaFaceWeights.RESNET18: 'e8b5ddd7d2c3c8f7c942f9f10cec09d8e319f78f09725d3f709631de34fb649d',
RetinaFaceWeights.RESNET34: 'bd0263dc2a465d32859555cb1741f2d98991eb0053696e8ee33fec583d30e630',
# MobileFace
MobileFaceWeights.MNET_025: 'eeda7d23d9c2b40cf77fa8da8e895b5697465192648852216074679657f8ee8b',
MobileFaceWeights.MNET_V2: '38b148284dd48cc898d5d4453104252fbdcbacc105fe3f0b80e78954d9d20d89',
MobileFaceWeights.MNET_V3_SMALL: 'd4acafa1039a82957aa8a9a1dac278a401c353a749c39df43de0e29cc1c127c3',
MobileFaceWeights.MNET_V3_LARGE: '0e48f8e11f070211716d03e5c65a3db35a5e917cfb5bc30552358629775a142a',
# SphereFace
SphereFaceWeights.SPHERE20: 'c02878cf658eb1861f580b7e7144b0d27cc29c440bcaa6a99d466d2854f14c9d',
SphereFaceWeights.SPHERE36: '13b3890cd5d7dec2b63f7c36fd7ce07403e5a0bbb701d9647c0289e6cbe7bb20',
# ArcFace
ArcFaceWeights.MNET: '9cc6e4a75f0e2bf0b1aed94578f144d15175f357bdc05e815e5c4a02b319eb4f',
ArcFaceWeights.RESNET: '4c06341c33c2ca1f86781dab0e829f88ad5b64be9fba56e56bc9ebdefc619e43',
# SCRFD
SCRFDWeights.SCRFD_10G_KPS: '5838f7fe053675b1c7a08b633df49e7af5495cee0493c7dcf6697200b85b5b91',
SCRFDWeights.SCRFD_500M_KPS: '5e4447f50245bbd7966bd6c0fa52938c61474a04ec7def48753668a9d8b4ea3a',
# YOLOv5-Face
YOLOv5FaceWeights.YOLOV5N: 'eb244a06e36999db732b317c2b30fa113cd6cfc1a397eaf738f2d6f33c01f640',
YOLOv5FaceWeights.YOLOV5S: 'fc682801cd5880e1e296184a14aea0035486b5146ec1a1389d2e7149cb134bb2',
YOLOv5FaceWeights.YOLOV5M: '04302ce27a15bde3e20945691b688e2dd018a10e92dd8932146bede6a49207b2',
# DDAFM
DDAMFNWeights.AFFECNET7: '10535bf8b6afe8e9d6ae26cea6c3add9a93036e9addb6adebfd4a972171d015d',
DDAMFNWeights.AFFECNET8: '8c66963bc71db42796a14dfcbfcd181b268b65a3fc16e87147d6a3a3d7e0f487',
# AgeGender
AgeGenderWeights.DEFAULT: '4fde69b1c810857b88c64a335084f1c3fe8f01246c9a191b48c7bb756d6652fb',
# Landmark
LandmarkWeights.DEFAULT: 'f001b856447c413801ef5c42091ed0cd516fcd21f2d6b79635b1e733a7109dbf',
# MobileGaze (trained on Gaze360)
GazeWeights.RESNET18: '23d5d7e4f6f40dce8c35274ce9d08b45b9e22cbaaf5af73182f473229d713d31',
GazeWeights.RESNET34: '4457ee5f7acd1a5ab02da4b61f02fc3a0b17adbf3844dd0ba3cd4288f2b5e1de',
GazeWeights.RESNET50: 'e1eaf98f5ec7c89c6abe7cfe39f7be83e747163f98d1ff945c0603b3c521be22',
GazeWeights.MOBILENET_V2: 'fdcdb84e3e6421b5a79e8f95139f249fc258d7f387eed5ddac2b80a9a15ce076',
GazeWeights.MOBILEONE_S0: 'c0b5a4f4a0ffd24f76ab3c1452354bb2f60110899fd9a88b464c75bafec0fde8',
# Face Parsing
ParsingWeights.RESNET18: '0d9bd318e46987c3bdbfacae9e2c0f461cae1c6ac6ea6d43bbe541a91727e33f',
ParsingWeights.RESNET34: '5b805bba7b5660ab7070b5a381dcf75e5b3e04199f1e9387232a77a00095102e',
}
CHUNK_SIZE = 8192

View File

@@ -0,0 +1,168 @@
# Copyright 2025 Yakhyokhuja Valikhujaev
# Author: Yakhyokhuja Valikhujaev
# GitHub: https://github.com/yakhyo
from typing import Any, Dict, List
import numpy as np
from .base import BaseDetector
from .retinaface import RetinaFace
from .scrfd import SCRFD
from .yolov5 import YOLOv5Face
# Global cache for detector instances
_detector_cache: Dict[str, BaseDetector] = {}
def detect_faces(image: np.ndarray, method: str = 'retinaface', **kwargs) -> List[Dict[str, Any]]:
"""
High-level face detection function.
Args:
image (np.ndarray): Input image as numpy array.
method (str): Detection method to use. Options: 'retinaface', 'scrfd', 'yolov5face'.
**kwargs: Additional arguments passed to the detector.
Returns:
List[Dict[str, Any]]: A list of dictionaries, where each dictionary represents a detected face and contains:
- 'bbox' (List[float]): [x1, y1, x2, y2] bounding box coordinates.
- 'confidence' (float): The confidence score of the detection.
- 'landmarks' (List[List[float]]): 5-point facial landmarks.
Example:
>>> from uniface import detect_faces
>>> image = cv2.imread("your_image.jpg")
>>> faces = detect_faces(image, method='retinaface', conf_thresh=0.8)
>>> for face in faces:
... print(f"Found face with confidence: {face['confidence']}")
... print(f"BBox: {face['bbox']}")
"""
method_name = method.lower()
sorted_kwargs = sorted(kwargs.items())
cache_key = f'{method_name}_{str(sorted_kwargs)}'
if cache_key not in _detector_cache:
# Pass kwargs to create the correctly configured detector
_detector_cache[cache_key] = create_detector(method, **kwargs)
detector = _detector_cache[cache_key]
return detector.detect(image)
def create_detector(method: str = 'retinaface', **kwargs) -> BaseDetector:
"""
Factory function to create face detectors.
Args:
method (str): Detection method. Options:
- 'retinaface': RetinaFace detector (default)
- 'scrfd': SCRFD detector (fast and accurate)
- 'yolov5face': YOLOv5-Face detector (accurate with landmarks)
**kwargs: Detector-specific parameters
Returns:
BaseDetector: Initialized detector instance
Raises:
ValueError: If method is not supported
Examples:
>>> # Basic usage
>>> detector = create_detector('retinaface')
>>> # SCRFD detector with custom parameters
>>> detector = create_detector(
... 'scrfd',
... model_name=SCRFDWeights.SCRFD_10G_KPS,
... conf_thresh=0.8,
... input_size=(640, 640)
... )
>>> # RetinaFace detector
>>> detector = create_detector(
... 'retinaface',
... model_name=RetinaFaceWeights.MNET_V2,
... conf_thresh=0.8,
... nms_thresh=0.4
... )
>>> # YOLOv5-Face detector
>>> detector = create_detector(
... 'yolov5face',
... model_name=YOLOv5FaceWeights.YOLOV5S,
... conf_thresh=0.25,
... nms_thresh=0.45
... )
"""
method = method.lower()
if method == 'retinaface':
return RetinaFace(**kwargs)
elif method == 'scrfd':
return SCRFD(**kwargs)
elif method == 'yolov5face':
return YOLOv5Face(**kwargs)
else:
available_methods = ['retinaface', 'scrfd', 'yolov5face']
raise ValueError(f"Unsupported detection method: '{method}'. Available methods: {available_methods}")
def list_available_detectors() -> Dict[str, Dict[str, Any]]:
"""
List all available detection methods with their descriptions and parameters.
Returns:
Dict[str, Dict[str, Any]]: Dictionary of detector information
"""
return {
'retinaface': {
'description': 'RetinaFace detector with high accuracy',
'supports_landmarks': True,
'paper': 'https://arxiv.org/abs/1905.00641',
'default_params': {
'model_name': 'mnet_v2',
'conf_thresh': 0.5,
'nms_thresh': 0.4,
'input_size': (640, 640),
},
},
'scrfd': {
'description': 'SCRFD detector - fast and accurate with efficient architecture',
'supports_landmarks': True,
'paper': 'https://arxiv.org/abs/2105.04714',
'default_params': {
'model_name': 'scrfd_10g_kps',
'conf_thresh': 0.5,
'nms_thresh': 0.4,
'input_size': (640, 640),
},
},
'yolov5face': {
'description': 'YOLOv5-Face detector - accurate face detection with landmarks',
'supports_landmarks': True,
'paper': 'https://arxiv.org/abs/2105.12931',
'default_params': {
'model_name': 'yolov5s_face',
'conf_thresh': 0.25,
'nms_thresh': 0.45,
'input_size': 640,
},
},
}
__all__ = [
'detect_faces',
'create_detector',
'list_available_detectors',
'SCRFD',
'RetinaFace',
'YOLOv5Face',
'BaseDetector',
]

104
uniface/detection/base.py Normal file
View File

@@ -0,0 +1,104 @@
# Copyright 2025 Yakhyokhuja Valikhujaev
# Author: Yakhyokhuja Valikhujaev
# GitHub: https://github.com/yakhyo
from abc import ABC, abstractmethod
from typing import Any, Dict, List
import numpy as np
class BaseDetector(ABC):
"""
Abstract base class for all face detectors.
This class defines the interface that all face detectors must implement,
ensuring consistency across different detection methods.
"""
def __init__(self, **kwargs):
"""Initialize the detector with configuration parameters."""
self.config = kwargs
@abstractmethod
def detect(self, image: np.ndarray, **kwargs) -> List[Dict[str, Any]]:
"""
Detect faces in an image.
Args:
image (np.ndarray): Input image as numpy array with shape (H, W, C)
**kwargs: Additional detection parameters
Returns:
List[Dict[str, Any]]: List of detected faces, where each dictionary contains:
- 'bbox' (np.ndarray): Bounding box coordinates with shape (4,) as [x1, y1, x2, y2]
- 'confidence' (float): Detection confidence score (0.0 to 1.0)
- 'landmarks' (np.ndarray): Facial landmarks with shape (5, 2) for 5-point landmarks
or (68, 2) for 68-point landmarks. Empty array if not supported.
Example:
>>> faces = detector.detect(image)
>>> for face in faces:
... bbox = face['bbox'] # np.ndarray with shape (4,)
... confidence = face['confidence'] # float
... landmarks = face['landmarks'] # np.ndarray with shape (5, 2)
"""
pass
@abstractmethod
def preprocess(self, image: np.ndarray) -> np.ndarray:
"""
Preprocess input image for detection.
Args:
image (np.ndarray): Input image
Returns:
np.ndarray: Preprocessed image tensor
"""
pass
@abstractmethod
def postprocess(self, outputs, **kwargs) -> Any:
"""
Postprocess model outputs to get final detections.
Args:
outputs: Raw model outputs
**kwargs: Additional postprocessing parameters
Returns:
Any: Processed outputs (implementation-specific format, typically tuple of arrays)
"""
pass
def __str__(self) -> str:
"""String representation of the detector."""
return f'{self.__class__.__name__}({self.config})'
def __repr__(self) -> str:
"""Detailed string representation."""
return self.__str__()
@property
def supports_landmarks(self) -> bool:
"""
Whether this detector supports landmark detection.
Returns:
bool: True if landmarks are supported, False otherwise
"""
return hasattr(self, '_supports_landmarks') and self._supports_landmarks
def get_info(self) -> Dict[str, Any]:
"""
Get detector information and configuration.
Returns:
Dict[str, Any]: Detector information
"""
return {
'name': self.__class__.__name__,
'supports_landmarks': self._supports_landmarks,
'config': self.config,
}

View File

@@ -0,0 +1,383 @@
# Copyright 2025 Yakhyokhuja Valikhujaev
# Author: Yakhyokhuja Valikhujaev
# GitHub: https://github.com/yakhyo
from typing import Any, Dict, List, Literal, Tuple
import numpy as np
from uniface.common import (
decode_boxes,
decode_landmarks,
generate_anchors,
non_max_suppression,
resize_image,
)
from uniface.constants import RetinaFaceWeights
from uniface.log import Logger
from uniface.model_store import verify_model_weights
from uniface.onnx_utils import create_onnx_session
from .base import BaseDetector
class RetinaFace(BaseDetector):
"""
Face detector based on the RetinaFace architecture.
Title: "RetinaFace: Single-stage Dense Face Localisation in the Wild"
Paper: https://arxiv.org/abs/1905.00641
Code: https://github.com/yakhyo/retinaface-pytorch
Args:
model_name (RetinaFaceWeights): Model weights to use. Defaults to `RetinaFaceWeights.MNET_V2`.
conf_thresh (float): Confidence threshold for filtering detections. Defaults to 0.5.
nms_thresh (float): Non-maximum suppression (NMS) IoU threshold. Defaults to 0.4.
input_size (Tuple[int, int]): Fixed input size (width, height) if `dynamic_size=False`.
Defaults to (640, 640).
Note: Non-default sizes may cause slower inference and CoreML compatibility issues.
**kwargs: Advanced options:
pre_nms_topk (int): Number of top-scoring boxes considered before NMS. Defaults to 5000.
post_nms_topk (int): Max number of detections kept after NMS. Defaults to 750.
dynamic_size (bool): If True, generate anchors dynamically per input image. Defaults to False.
Attributes:
model_name (RetinaFaceWeights): Selected model variant.
conf_thresh (float): Threshold for confidence-based filtering.
nms_thresh (float): IoU threshold used for NMS.
pre_nms_topk (int): Limit on proposals before applying NMS.
post_nms_topk (int): Limit on retained detections after NMS.
dynamic_size (bool): Flag indicating dynamic or static input sizing.
input_size (Tuple[int, int]): Static input size if `dynamic_size=False`.
_model_path (str): Absolute path to the verified model weights.
_priors (np.ndarray): Precomputed anchor boxes (if static size).
_supports_landmarks (bool): Indicates landmark prediction support.
Raises:
ValueError: If the model weights are invalid or not found.
RuntimeError: If the ONNX model fails to load or initialize.
"""
def __init__(
self,
*,
model_name: RetinaFaceWeights = RetinaFaceWeights.MNET_V2,
conf_thresh: float = 0.5,
nms_thresh: float = 0.4,
input_size: Tuple[int, int] = (640, 640),
**kwargs: Any,
) -> None:
super().__init__(
model_name=model_name,
conf_thresh=conf_thresh,
nms_thresh=nms_thresh,
input_size=input_size,
**kwargs,
)
self._supports_landmarks = True # RetinaFace supports landmarks
self.model_name = model_name
self.conf_thresh = conf_thresh
self.nms_thresh = nms_thresh
self.input_size = input_size
# Advanced options from kwargs
self.pre_nms_topk = kwargs.get('pre_nms_topk', 5000)
self.post_nms_topk = kwargs.get('post_nms_topk', 750)
self.dynamic_size = kwargs.get('dynamic_size', False)
Logger.info(
f'Initializing RetinaFace with model={self.model_name}, conf_thresh={self.conf_thresh}, '
f'nms_thresh={self.nms_thresh}, input_size={self.input_size}'
)
# Get path to model weights
self._model_path = verify_model_weights(self.model_name)
Logger.info(f'Verified model weights located at: {self._model_path}')
# Precompute anchors if using static size
if not self.dynamic_size and self.input_size is not None:
self._priors = generate_anchors(image_size=self.input_size)
Logger.debug('Generated anchors for static input size.')
# Initialize model
self._initialize_model(self._model_path)
def _initialize_model(self, model_path: str) -> None:
"""
Initializes an ONNX model session from the given path.
Args:
model_path (str): The file path to the ONNX model.
Raises:
RuntimeError: If the model fails to load, logs an error and raises an exception.
"""
try:
self.session = create_onnx_session(model_path)
self.input_names = self.session.get_inputs()[0].name
self.output_names = [x.name for x in self.session.get_outputs()]
Logger.info(f'Successfully initialized the model from {model_path}')
except Exception as e:
Logger.error(f"Failed to load model from '{model_path}': {e}", exc_info=True)
raise RuntimeError(f"Failed to initialize model session for '{model_path}'") from e
def preprocess(self, image: np.ndarray) -> np.ndarray:
"""Preprocess input image for model inference.
Args:
image (np.ndarray): Input image.
Returns:
np.ndarray: Preprocessed image tensor with shape (1, C, H, W)
"""
image = np.float32(image) - np.array([104, 117, 123], dtype=np.float32)
image = image.transpose(2, 0, 1) # HWC to CHW
image = np.expand_dims(image, axis=0) # Add batch dimension (1, C, H, W)
return image
def inference(self, input_tensor: np.ndarray) -> List[np.ndarray]:
"""Perform model inference on the preprocessed image tensor.
Args:
input_tensor (np.ndarray): Preprocessed input tensor.
Returns:
Tuple[np.ndarray, np.ndarray]: Raw model outputs.
"""
return self.session.run(self.output_names, {self.input_names: input_tensor})
def detect(
self,
image: np.ndarray,
*,
max_num: int = 0,
metric: Literal['default', 'max'] = 'max',
center_weight: float = 2.0,
) -> List[Dict[str, Any]]:
"""
Perform face detection on an input image and return bounding boxes and facial landmarks.
Args:
image (np.ndarray): Input image as a NumPy array of shape (H, W, C).
max_num (int): Maximum number of detections to return. Use 0 to return all detections. Defaults to 0.
metric (Literal["default", "max"]): Metric for ranking detections when `max_num` is limited.
- "default": Prioritize detections closer to the image center.
- "max": Prioritize detections with larger bounding box areas.
center_weight (float): Weight for penalizing detections farther from the image center
when using the "default" metric. Defaults to 2.0.
Returns:
List[Dict[str, Any]]: List of face detection dictionaries, each containing:
- 'bbox' (np.ndarray): Bounding box coordinates with shape (4,) as [x1, y1, x2, y2]
- 'confidence' (float): Detection confidence score (0.0 to 1.0)
- 'landmarks' (np.ndarray): 5-point facial landmarks with shape (5, 2)
Example:
>>> faces = detector.detect(image)
>>> for face in faces:
... bbox = face['bbox'] # np.ndarray with shape (4,)
... confidence = face['confidence'] # float
... landmarks = face['landmarks'] # np.ndarray with shape (5, 2)
... # Can pass landmarks directly to recognition
... embedding = recognizer.get_normalized_embedding(image, landmarks)
"""
original_height, original_width = image.shape[:2]
if self.dynamic_size:
height, width, _ = image.shape
self._priors = generate_anchors(image_size=(height, width)) # generate anchors for each input image
resize_factor = 1.0 # No resizing
else:
image, resize_factor = resize_image(image, target_shape=self.input_size)
height, width, _ = image.shape
image_tensor = self.preprocess(image)
# ONNXRuntime inference
outputs = self.inference(image_tensor)
# Postprocessing
detections, landmarks = self.postprocess(outputs, resize_factor, shape=(width, height))
if max_num > 0 and detections.shape[0] > max_num:
# Calculate area of detections
areas = (detections[:, 2] - detections[:, 0]) * (detections[:, 3] - detections[:, 1])
# Calculate offsets from image center
center = (original_height // 2, original_width // 2)
offsets = np.vstack(
[
(detections[:, 0] + detections[:, 2]) / 2 - center[1],
(detections[:, 1] + detections[:, 3]) / 2 - center[0],
]
)
offset_dist_squared = np.sum(np.power(offsets, 2.0), axis=0)
# Calculate scores based on the chosen metric
if metric == 'max':
scores = areas
else:
scores = areas - offset_dist_squared * center_weight
# Sort by scores and select top `max_num`
sorted_indices = np.argsort(scores)[::-1][:max_num]
detections = detections[sorted_indices]
landmarks = landmarks[sorted_indices]
faces = []
for i in range(detections.shape[0]):
face_dict = {
'bbox': detections[i, :4],
'confidence': float(detections[i, 4]),
'landmarks': landmarks[i],
}
faces.append(face_dict)
return faces
def postprocess(
self, outputs: List[np.ndarray], resize_factor: float, shape: Tuple[int, int]
) -> Tuple[np.ndarray, np.ndarray]:
"""
Process the model outputs into final detection results.
Args:
outputs (List[np.ndarray]): Raw outputs from the detection model.
- outputs[0]: Location predictions (bounding box coordinates).
- outputs[1]: Class confidence scores.
- outputs[2]: Landmark predictions.
resize_factor (float): Factor used to resize the input image during preprocessing.
shape (Tuple[int, int]): Original shape of the image as (height, width).
Returns:
Tuple[np.ndarray, np.ndarray]: Processed results containing:
- detections (np.ndarray): Array of detected bounding boxes with confidence scores.
Shape: (num_detections, 5), where each row is [x_min, y_min, x_max, y_max, score].
- landmarks (np.ndarray): Array of detected facial landmarks.
Shape: (num_detections, 5, 2), where each row contains 5 landmark points (x, y).
"""
loc, conf, landmarks = (
outputs[0].squeeze(0),
outputs[1].squeeze(0),
outputs[2].squeeze(0),
)
# Decode boxes and landmarks
boxes = decode_boxes(loc, self._priors)
landmarks = decode_landmarks(landmarks, self._priors)
boxes, landmarks = self._scale_detections(boxes, landmarks, resize_factor, shape=(shape[0], shape[1]))
# Extract confidence scores for the face class
scores = conf[:, 1]
mask = scores > self.conf_thresh
# Filter by confidence threshold
boxes, landmarks, scores = boxes[mask], landmarks[mask], scores[mask]
# Sort by scores
order = scores.argsort()[::-1][: self.pre_nms_topk]
boxes, landmarks, scores = boxes[order], landmarks[order], scores[order]
# Apply NMS
detections = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32, copy=False)
keep = non_max_suppression(detections, self.nms_thresh)
detections, landmarks = detections[keep], landmarks[keep]
# Keep top-k detections
detections, landmarks = (
detections[: self.post_nms_topk],
landmarks[: self.post_nms_topk],
)
landmarks = landmarks.reshape(-1, 5, 2).astype(np.float32)
return detections, landmarks
def _scale_detections(
self,
boxes: np.ndarray,
landmarks: np.ndarray,
resize_factor: float,
shape: Tuple[int, int],
) -> Tuple[np.ndarray, np.ndarray]:
# Scale bounding boxes and landmarks to the original image size.
bbox_scale = np.array([shape[0], shape[1]] * 2)
boxes = boxes * bbox_scale / resize_factor
landmark_scale = np.array([shape[0], shape[1]] * 5)
landmarks = landmarks * landmark_scale / resize_factor
return boxes, landmarks
# TODO: below is only for testing, remove it later
def draw_bbox(frame, bbox, score, color=(0, 255, 0), thickness=2):
x1, y1, x2, y2 = map(int, bbox) # Unpack 4 bbox values
cv2.rectangle(frame, (x1, y1), (x2, y2), color, thickness)
cv2.putText(frame, f'{score:.2f}', (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 1)
def draw_keypoints(frame, points, color=(0, 0, 255), radius=2):
for x, y in points.astype(np.int32):
cv2.circle(frame, (int(x), int(y)), radius, color, -1)
if __name__ == '__main__':
import cv2
detector = RetinaFace(model_name=RetinaFaceWeights.MNET_050)
print(detector.get_info())
cap = cv2.VideoCapture(0)
if not cap.isOpened():
print('Failed to open webcam.')
exit()
print("Webcam started. Press 'q' to exit.")
while True:
ret, frame = cap.read()
if not ret:
print('Failed to read frame.')
break
# Get face detections as list of dictionaries
faces = detector.detect(frame)
# Process each detected face
for face in faces:
# Extract bbox and landmarks from dictionary
bbox = face['bbox'] # [x1, y1, x2, y2]
landmarks = face['landmarks'] # [[x1, y1], [x2, y2], ...]
confidence = face['confidence']
# Pass bbox and confidence separately
draw_bbox(frame, bbox, confidence)
# Convert landmarks to numpy array format if needed
if landmarks is not None and len(landmarks) > 0:
# Convert list of [x, y] pairs to numpy array
points = np.array(landmarks, dtype=np.float32) # Shape: (5, 2)
draw_keypoints(frame, points)
# Display face count
cv2.putText(
frame,
f'Faces: {len(faces)}',
(10, 30),
cv2.FONT_HERSHEY_SIMPLEX,
0.7,
(255, 255, 255),
2,
)
cv2.imshow('FaceDetection', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()

357
uniface/detection/scrfd.py Normal file
View File

@@ -0,0 +1,357 @@
# Copyright 2025 Yakhyokhuja Valikhujaev
# Author: Yakhyokhuja Valikhujaev
# GitHub: https://github.com/yakhyo
from typing import Any, Dict, List, Literal, Tuple
import cv2
import numpy as np
from uniface.common import distance2bbox, distance2kps, non_max_suppression, resize_image
from uniface.constants import SCRFDWeights
from uniface.log import Logger
from uniface.model_store import verify_model_weights
from uniface.onnx_utils import create_onnx_session
from .base import BaseDetector
__all__ = ['SCRFD']
class SCRFD(BaseDetector):
"""
Face detector based on the SCRFD architecture.
Title: "Sample and Computation Redistribution for Efficient Face Detection"
Paper: https://arxiv.org/abs/2105.04714
Code: https://github.com/insightface/insightface
Args:
model_name (SCRFDWeights): Predefined model enum (e.g., `SCRFD_10G_KPS`).
Specifies the SCRFD variant to load. Defaults to SCRFD_10G_KPS.
conf_thresh (float): Confidence threshold for filtering detections. Defaults to 0.5.
nms_thresh (float): Non-Maximum Suppression threshold. Defaults to 0.4.
input_size (Tuple[int, int]): Input image size (width, height).
Defaults to (640, 640).
Note: Non-default sizes may cause slower inference and CoreML compatibility issues.
**kwargs: Reserved for future advanced options.
Attributes:
model_name (SCRFDWeights): Selected model variant.
conf_thresh (float): Threshold used to filter low-confidence detections.
nms_thresh (float): Threshold used during NMS to suppress overlapping boxes.
input_size (Tuple[int, int]): Image size to which inputs are resized before inference.
_fmc (int): Number of feature map levels used in the model.
_feat_stride_fpn (List[int]): Feature map strides corresponding to each detection level.
_num_anchors (int): Number of anchors per feature location.
_center_cache (Dict): Cached anchor centers for efficient forward passes.
_model_path (str): Absolute path to the downloaded/verified model weights.
Raises:
ValueError: If the model weights are invalid or not found.
RuntimeError: If the ONNX model fails to load or initialize.
"""
def __init__(
self,
*,
model_name: SCRFDWeights = SCRFDWeights.SCRFD_10G_KPS,
conf_thresh: float = 0.5,
nms_thresh: float = 0.4,
input_size: Tuple[int, int] = (640, 640),
**kwargs: Any,
) -> None:
super().__init__(
model_name=model_name,
conf_thresh=conf_thresh,
nms_thresh=nms_thresh,
input_size=input_size,
**kwargs,
)
self._supports_landmarks = True # SCRFD supports landmarks
self.model_name = model_name
self.conf_thresh = conf_thresh
self.nms_thresh = nms_thresh
self.input_size = input_size
# ------- SCRFD model params ------
self._fmc = 3
self._feat_stride_fpn = [8, 16, 32]
self._num_anchors = 2
self._center_cache = {}
# ---------------------------------
Logger.info(
f'Initializing SCRFD with model={self.model_name}, conf_thresh={self.conf_thresh}, '
f'nms_thresh={self.nms_thresh}, input_size={self.input_size}'
)
# Get path to model weights
self._model_path = verify_model_weights(self.model_name)
Logger.info(f'Verified model weights located at: {self._model_path}')
# Initialize model
self._initialize_model(self._model_path)
def _initialize_model(self, model_path: str) -> None:
"""
Initializes an ONNX model session from the given path.
Args:
model_path (str): The file path to the ONNX model.
Raises:
RuntimeError: If the model fails to load, logs an error and raises an exception.
"""
try:
self.session = create_onnx_session(model_path)
self.input_names = self.session.get_inputs()[0].name
self.output_names = [x.name for x in self.session.get_outputs()]
Logger.info(f'Successfully initialized the model from {model_path}')
except Exception as e:
Logger.error(f"Failed to load model from '{model_path}': {e}", exc_info=True)
raise RuntimeError(f"Failed to initialize model session for '{model_path}'") from e
def preprocess(self, image: np.ndarray) -> Tuple[np.ndarray, Tuple[int, int]]:
"""Preprocess image for inference.
Args:
image (np.ndarray): Input image
Returns:
Tuple[np.ndarray, Tuple[int, int]]: Preprocessed blob and input size
"""
image = image.astype(np.float32)
image = (image - 127.5) / 127.5
image = image.transpose(2, 0, 1) # HWC to CHW
image = np.expand_dims(image, axis=0)
return image
def inference(self, input_tensor: np.ndarray) -> List[np.ndarray]:
"""Perform model inference on the preprocessed image tensor.
Args:
input_tensor (np.ndarray): Preprocessed input tensor.
Returns:
Tuple[np.ndarray, np.ndarray]: Raw model outputs.
"""
return self.session.run(self.output_names, {self.input_names: input_tensor})
def postprocess(self, outputs: List[np.ndarray], image_size: Tuple[int, int]):
scores_list = []
bboxes_list = []
kpss_list = []
image_size = image_size
fmc = self._fmc
for idx, stride in enumerate(self._feat_stride_fpn):
scores = outputs[idx]
bbox_preds = outputs[fmc + idx] * stride
kps_preds = outputs[2 * fmc + idx] * stride
# Generate anchors
fm_height = image_size[0] // stride
fm_width = image_size[1] // stride
cache_key = (fm_height, fm_width, stride)
if cache_key in self._center_cache:
anchor_centers = self._center_cache[cache_key]
else:
y, x = np.mgrid[:fm_height, :fm_width]
anchor_centers = np.stack((x, y), axis=-1).astype(np.float32)
anchor_centers = (anchor_centers * stride).reshape(-1, 2)
if self._num_anchors > 1:
anchor_centers = np.tile(anchor_centers[:, None, :], (1, self._num_anchors, 1)).reshape(-1, 2)
if len(self._center_cache) < 100:
self._center_cache[cache_key] = anchor_centers
pos_indices = np.where(scores >= self.conf_thresh)[0]
if len(pos_indices) == 0:
continue
bboxes = distance2bbox(anchor_centers, bbox_preds)[pos_indices]
scores_selected = scores[pos_indices]
scores_list.append(scores_selected)
bboxes_list.append(bboxes)
landmarks = distance2kps(anchor_centers, kps_preds)
landmarks = landmarks.reshape((landmarks.shape[0], -1, 2))
kpss_list.append(landmarks[pos_indices])
return scores_list, bboxes_list, kpss_list
def detect(
self,
image: np.ndarray,
*,
max_num: int = 0,
metric: Literal['default', 'max'] = 'max',
center_weight: float = 2.0,
) -> List[Dict[str, Any]]:
"""
Perform face detection on an input image and return bounding boxes and facial landmarks.
Args:
image (np.ndarray): Input image as a NumPy array of shape (H, W, C).
max_num (int): Maximum number of detections to return. Use 0 to return all detections. Defaults to 0.
metric (Literal["default", "max"]): Metric for ranking detections when `max_num` is limited.
- "default": Prioritize detections closer to the image center.
- "max": Prioritize detections with larger bounding box areas.
center_weight (float): Weight for penalizing detections farther from the image center
when using the "default" metric. Defaults to 2.0.
Returns:
List[Dict[str, Any]]: List of face detection dictionaries, each containing:
- 'bbox' (np.ndarray): Bounding box coordinates with shape (4,) as [x1, y1, x2, y2]
- 'confidence' (float): Detection confidence score (0.0 to 1.0)
- 'landmarks' (np.ndarray): 5-point facial landmarks with shape (5, 2)
Example:
>>> faces = detector.detect(image)
>>> for face in faces:
... bbox = face['bbox'] # np.ndarray with shape (4,)
... confidence = face['confidence'] # float
... landmarks = face['landmarks'] # np.ndarray with shape (5, 2)
... # Can pass landmarks directly to recognition
... embedding = recognizer.get_normalized_embedding(image, landmarks)
"""
original_height, original_width = image.shape[:2]
image, resize_factor = resize_image(image, target_shape=self.input_size)
image_tensor = self.preprocess(image)
# ONNXRuntime inference
outputs = self.inference(image_tensor)
scores_list, bboxes_list, kpss_list = self.postprocess(outputs, image_size=image.shape[:2])
# Handle case when no faces are detected
if not scores_list:
return []
scores = np.vstack(scores_list)
scores_ravel = scores.ravel()
order = scores_ravel.argsort()[::-1]
bboxes = np.vstack(bboxes_list) / resize_factor
landmarks = np.vstack(kpss_list) / resize_factor
pre_det = np.hstack((bboxes, scores)).astype(np.float32, copy=False)
pre_det = pre_det[order, :]
keep = non_max_suppression(pre_det, threshold=self.nms_thresh)
detections = pre_det[keep, :]
landmarks = landmarks[order, :, :]
landmarks = landmarks[keep, :, :].astype(np.float32)
if 0 < max_num < detections.shape[0]:
# Calculate area of detections
area = (detections[:, 2] - detections[:, 0]) * (detections[:, 3] - detections[:, 1])
# Calculate offsets from image center
center = (original_height // 2, original_width // 2)
offsets = np.vstack(
[
(detections[:, 0] + detections[:, 2]) / 2 - center[1],
(detections[:, 1] + detections[:, 3]) / 2 - center[0],
]
)
# Calculate scores based on the chosen metric
offset_dist_squared = np.sum(np.power(offsets, 2.0), axis=0)
if metric == 'max':
values = area
else:
values = area - offset_dist_squared * center_weight
# Sort by scores and select top `max_num`
sorted_indices = np.argsort(values)[::-1][:max_num]
detections = detections[sorted_indices]
landmarks = landmarks[sorted_indices]
faces = []
for i in range(detections.shape[0]):
face_dict = {
'bbox': detections[i, :4],
'confidence': float(detections[i, 4]),
'landmarks': landmarks[i],
}
faces.append(face_dict)
return faces
# TODO: below is only for testing, remove it later
def draw_bbox(frame, bbox, score, color=(0, 255, 0), thickness=2):
x1, y1, x2, y2 = map(int, bbox) # Unpack 4 bbox values
cv2.rectangle(frame, (x1, y1), (x2, y2), color, thickness)
cv2.putText(frame, f'{score:.2f}', (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 1)
def draw_keypoints(frame, points, color=(0, 0, 255), radius=2):
for x, y in points.astype(np.int32):
cv2.circle(frame, (int(x), int(y)), radius, color, -1)
if __name__ == '__main__':
detector = SCRFD(model_name=SCRFDWeights.SCRFD_500M_KPS)
print(detector.get_info())
cap = cv2.VideoCapture(0)
if not cap.isOpened():
print('Failed to open webcam.')
exit()
print("Webcam started. Press 'q' to exit.")
while True:
ret, frame = cap.read()
if not ret:
print('Failed to read frame.')
break
# Get face detections as list of dictionaries
faces = detector.detect(frame)
# Process each detected face
for face in faces:
# Extract bbox and landmarks from dictionary
bbox = face['bbox'] # [x1, y1, x2, y2]
landmarks = face['landmarks'] # [[x1, y1], [x2, y2], ...]
confidence = face['confidence']
# Pass bbox and confidence separately
draw_bbox(frame, bbox, confidence)
# Convert landmarks to numpy array format if needed
if landmarks is not None and len(landmarks) > 0:
# Convert list of [x, y] pairs to numpy array
points = np.array(landmarks, dtype=np.float32) # Shape: (5, 2)
draw_keypoints(frame, points)
# Display face count
cv2.putText(
frame,
f'Faces: {len(faces)}',
(10, 30),
cv2.FONT_HERSHEY_SIMPLEX,
0.7,
(255, 255, 255),
2,
)
cv2.imshow('FaceDetection', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()

340
uniface/detection/yolov5.py Normal file
View File

@@ -0,0 +1,340 @@
# Copyright 2025 Yakhyokhuja Valikhujaev
# Author: Yakhyokhuja Valikhujaev
# GitHub: https://github.com/yakhyo
from typing import Any, Dict, List, Literal, Tuple
import cv2
import numpy as np
from uniface.common import non_max_suppression
from uniface.constants import YOLOv5FaceWeights
from uniface.log import Logger
from uniface.model_store import verify_model_weights
from uniface.onnx_utils import create_onnx_session
from .base import BaseDetector
__all__ = ['YOLOv5Face']
class YOLOv5Face(BaseDetector):
"""
Face detector based on the YOLOv5-Face architecture.
Title: "YOLO5Face: Why Reinventing a Face Detector"
Paper: https://arxiv.org/abs/2105.12931
Code: https://github.com/yakhyo/yolov5-face-onnx-inference (ONNX inference implementation)
Args:
model_name (YOLOv5FaceWeights): Predefined model enum (e.g., `YOLOV5S`).
Specifies the YOLOv5-Face variant to load. Defaults to YOLOV5S.
conf_thresh (float): Confidence threshold for filtering detections. Defaults to 0.6.
nms_thresh (float): Non-Maximum Suppression threshold. Defaults to 0.5.
input_size (int): Input image size. Defaults to 640.
Note: ONNX model is fixed at 640. Changing this will cause inference errors.
**kwargs: Advanced options:
max_det (int): Maximum number of detections to return. Defaults to 750.
Attributes:
model_name (YOLOv5FaceWeights): Selected model variant.
conf_thresh (float): Threshold used to filter low-confidence detections.
nms_thresh (float): Threshold used during NMS to suppress overlapping boxes.
input_size (int): Image size to which inputs are resized before inference.
max_det (int): Maximum number of detections to return.
_model_path (str): Absolute path to the downloaded/verified model weights.
Raises:
ValueError: If the model weights are invalid or not found.
RuntimeError: If the ONNX model fails to load or initialize.
"""
def __init__(
self,
*,
model_name: YOLOv5FaceWeights = YOLOv5FaceWeights.YOLOV5S,
conf_thresh: float = 0.6,
nms_thresh: float = 0.5,
input_size: int = 640,
**kwargs: Any,
) -> None:
super().__init__(
model_name=model_name,
conf_thresh=conf_thresh,
nms_thresh=nms_thresh,
input_size=input_size,
**kwargs,
)
self._supports_landmarks = True # YOLOv5-Face supports landmarks
# Validate input size
if input_size != 640:
raise ValueError(
f'YOLOv5Face only supports input_size=640 (got {input_size}). The ONNX model has a fixed input shape.'
)
self.model_name = model_name
self.conf_thresh = conf_thresh
self.nms_thresh = nms_thresh
self.input_size = input_size
# Advanced options from kwargs
self.max_det = kwargs.get('max_det', 750)
Logger.info(
f'Initializing YOLOv5Face with model={self.model_name}, conf_thresh={self.conf_thresh}, '
f'nms_thresh={self.nms_thresh}, input_size={self.input_size}'
)
# Get path to model weights
self._model_path = verify_model_weights(self.model_name)
Logger.info(f'Verified model weights located at: {self._model_path}')
# Initialize model
self._initialize_model(self._model_path)
def _initialize_model(self, model_path: str) -> None:
"""
Initializes an ONNX model session from the given path.
Args:
model_path (str): The file path to the ONNX model.
Raises:
RuntimeError: If the model fails to load, logs an error and raises an exception.
"""
try:
self.session = create_onnx_session(model_path)
self.input_names = self.session.get_inputs()[0].name
self.output_names = [x.name for x in self.session.get_outputs()]
Logger.info(f'Successfully initialized the model from {model_path}')
except Exception as e:
Logger.error(f"Failed to load model from '{model_path}': {e}", exc_info=True)
raise RuntimeError(f"Failed to initialize model session for '{model_path}'") from e
def preprocess(self, image: np.ndarray) -> Tuple[np.ndarray, float, Tuple[int, int]]:
"""
Preprocess image for inference.
Args:
image (np.ndarray): Input image (BGR format)
Returns:
Tuple[np.ndarray, float, Tuple[int, int]]: Preprocessed image, scale ratio, and padding
"""
# Get original image shape
img_h, img_w = image.shape[:2]
# Calculate scale ratio
scale = min(self.input_size / img_h, self.input_size / img_w)
new_h, new_w = int(img_h * scale), int(img_w * scale)
# Resize image
img_resized = cv2.resize(image, (new_w, new_h), interpolation=cv2.INTER_LINEAR)
# Create padded image
img_padded = np.full((self.input_size, self.input_size, 3), 114, dtype=np.uint8)
# Calculate padding
pad_h = (self.input_size - new_h) // 2
pad_w = (self.input_size - new_w) // 2
# Place resized image in center
img_padded[pad_h : pad_h + new_h, pad_w : pad_w + new_w] = img_resized
# Convert to RGB and normalize
img_rgb = cv2.cvtColor(img_padded, cv2.COLOR_BGR2RGB)
img_normalized = img_rgb.astype(np.float32) / 255.0
# Transpose to CHW format (HWC -> CHW) and add batch dimension
img_transposed = np.transpose(img_normalized, (2, 0, 1))
img_batch = np.expand_dims(img_transposed, axis=0)
img_batch = np.ascontiguousarray(img_batch)
return img_batch, scale, (pad_w, pad_h)
def inference(self, input_tensor: np.ndarray) -> List[np.ndarray]:
"""Perform model inference on the preprocessed image tensor.
Args:
input_tensor (np.ndarray): Preprocessed input tensor.
Returns:
List[np.ndarray]: Raw model outputs.
"""
return self.session.run(self.output_names, {self.input_names: input_tensor})
def postprocess(
self,
predictions: np.ndarray,
scale: float,
padding: Tuple[int, int],
) -> Tuple[np.ndarray, np.ndarray]:
"""
Postprocess model predictions.
Args:
predictions (np.ndarray): Raw model output
scale (float): Scale ratio used in preprocessing
padding (Tuple[int, int]): Padding used in preprocessing
Returns:
Tuple[np.ndarray, np.ndarray]: Filtered detections and landmarks
- detections: [x1, y1, x2, y2, conf]
- landmarks: [5, 2] for each detection
"""
# predictions shape: (1, 25200, 16)
# 16 = [x, y, w, h, obj_conf, cls_conf, 10 landmarks (5 points * 2 coords)]
predictions = predictions[0] # Remove batch dimension
# Filter by confidence
mask = predictions[:, 4] >= self.conf_thresh
predictions = predictions[mask]
if len(predictions) == 0:
return np.array([]), np.array([])
# Convert from xywh to xyxy
boxes = self._xywh2xyxy(predictions[:, :4])
# Get confidence scores
scores = predictions[:, 4]
# Get landmarks (5 points, 10 coordinates)
landmarks = predictions[:, 5:15].copy()
# Apply NMS
detections_for_nms = np.hstack((boxes, scores[:, None])).astype(np.float32, copy=False)
keep = non_max_suppression(detections_for_nms, self.nms_thresh)
if len(keep) == 0:
return np.array([]), np.array([])
# Filter detections and limit to max_det
keep = keep[: self.max_det]
boxes = boxes[keep]
scores = scores[keep]
landmarks = landmarks[keep]
# Scale back to original image coordinates
pad_w, pad_h = padding
boxes[:, [0, 2]] = (boxes[:, [0, 2]] - pad_w) / scale
boxes[:, [1, 3]] = (boxes[:, [1, 3]] - pad_h) / scale
# Scale landmarks
for i in range(5):
landmarks[:, i * 2] = (landmarks[:, i * 2] - pad_w) / scale
landmarks[:, i * 2 + 1] = (landmarks[:, i * 2 + 1] - pad_h) / scale
# Reshape landmarks to (N, 5, 2)
landmarks = landmarks.reshape(-1, 5, 2)
# Combine results
detections = np.concatenate([boxes, scores[:, None]], axis=1)
return detections, landmarks
def _xywh2xyxy(self, x: np.ndarray) -> np.ndarray:
"""
Convert bounding box format from xywh to xyxy.
Args:
x (np.ndarray): Boxes in [x, y, w, h] format
Returns:
np.ndarray: Boxes in [x1, y1, x2, y2] format
"""
y = np.copy(x)
y[..., 0] = x[..., 0] - x[..., 2] / 2 # x1
y[..., 1] = x[..., 1] - x[..., 3] / 2 # y1
y[..., 2] = x[..., 0] + x[..., 2] / 2 # x2
y[..., 3] = x[..., 1] + x[..., 3] / 2 # y2
return y
def detect(
self,
image: np.ndarray,
*,
max_num: int = 0,
metric: Literal['default', 'max'] = 'max',
center_weight: float = 2.0,
) -> List[Dict[str, Any]]:
"""
Perform face detection on an input image and return bounding boxes and facial landmarks.
Args:
image (np.ndarray): Input image as a NumPy array of shape (H, W, C).
max_num (int): Maximum number of detections to return. Use 0 to return all detections. Defaults to 0.
metric (Literal["default", "max"]): Metric for ranking detections when `max_num` is limited.
- "default": Prioritize detections closer to the image center.
- "max": Prioritize detections with larger bounding box areas.
center_weight (float): Weight for penalizing detections farther from the image center
when using the "default" metric. Defaults to 2.0.
Returns:
List[Dict[str, Any]]: List of face detection dictionaries, each containing:
- 'bbox' (np.ndarray): Bounding box coordinates with shape (4,) as [x1, y1, x2, y2]
- 'confidence' (float): Detection confidence score (0.0 to 1.0)
- 'landmarks' (np.ndarray): 5-point facial landmarks with shape (5, 2)
Example:
>>> faces = detector.detect(image)
>>> for face in faces:
... bbox = face['bbox'] # np.ndarray with shape (4,)
... confidence = face['confidence'] # float
... landmarks = face['landmarks'] # np.ndarray with shape (5, 2)
... # Can pass landmarks directly to recognition
... embedding = recognizer.get_normalized_embedding(image, landmarks)
"""
original_height, original_width = image.shape[:2]
# Preprocess
image_tensor, scale, padding = self.preprocess(image)
# ONNXRuntime inference
outputs = self.inference(image_tensor)
# Postprocess
detections, landmarks = self.postprocess(outputs[0], scale, padding)
# Handle case when no faces are detected
if len(detections) == 0:
return []
if 0 < max_num < detections.shape[0]:
# Calculate area of detections
area = (detections[:, 2] - detections[:, 0]) * (detections[:, 3] - detections[:, 1])
# Calculate offsets from image center
center = (original_height // 2, original_width // 2)
offsets = np.vstack(
[
(detections[:, 0] + detections[:, 2]) / 2 - center[1],
(detections[:, 1] + detections[:, 3]) / 2 - center[0],
]
)
# Calculate scores based on the chosen metric
offset_dist_squared = np.sum(np.power(offsets, 2.0), axis=0)
if metric == 'max':
values = area
else:
values = area - offset_dist_squared * center_weight
# Sort by scores and select top `max_num`
sorted_indices = np.argsort(values)[::-1][:max_num]
detections = detections[sorted_indices]
landmarks = landmarks[sorted_indices]
faces = []
for i in range(detections.shape[0]):
face_dict = {
'bbox': detections[i, :4],
'confidence': float(detections[i, 4]),
'landmarks': landmarks[i],
}
faces.append(face_dict)
return faces

66
uniface/face.py Normal file
View File

@@ -0,0 +1,66 @@
# Copyright 2025 Yakhyokhuja Valikhujaev
# Author: Yakhyokhuja Valikhujaev
# GitHub: https://github.com/yakhyo
from dataclasses import asdict, dataclass
from typing import Optional
import numpy as np
from uniface.face_utils import compute_similarity
__all__ = ['Face']
@dataclass
class Face:
"""
Detected face with analysis results.
"""
# Required attributes
bbox: np.ndarray
confidence: float
landmarks: np.ndarray
# Optional attributes
embedding: Optional[np.ndarray] = None
age: Optional[int] = None
gender: Optional[int] = None # 0 or 1
def compute_similarity(self, other: 'Face') -> float:
"""Compute cosine similarity with another face."""
if self.embedding is None or other.embedding is None:
raise ValueError('Both faces must have embeddings for similarity computation')
return float(compute_similarity(self.embedding, other.embedding))
def to_dict(self) -> dict:
"""Convert to dictionary."""
return asdict(self)
@property
def sex(self) -> str:
"""Get gender as a string label (Female or Male)."""
if self.gender is None:
return None
return 'Female' if self.gender == 0 else 'Male'
@property
def bbox_xyxy(self) -> np.ndarray:
"""Get bounding box coordinates in (x1, y1, x2, y2) format."""
return self.bbox.copy()
@property
def bbox_xywh(self) -> np.ndarray:
"""Get bounding box coordinates in (x1, y1, w, h) format."""
return np.array([self.bbox[0], self.bbox[1], self.bbox[2] - self.bbox[0], self.bbox[3] - self.bbox[1]])
def __repr__(self) -> str:
parts = [f'Face(confidence={self.confidence:.3f}']
if self.age is not None:
parts.append(f'age={self.age}')
if self.gender is not None:
parts.append(f'sex={self.sex}')
if self.embedding is not None:
parts.append(f'embedding_dim={self.embedding.shape[0]}')
return ', '.join(parts) + ')'

194
uniface/face_utils.py Normal file
View File

@@ -0,0 +1,194 @@
# Copyright 2025 Yakhyokhuja Valikhujaev
# Author: Yakhyokhuja Valikhujaev
# GitHub: https://github.com/yakhyo
from typing import Tuple, Union
import cv2
import numpy as np
from skimage.transform import SimilarityTransform
__all__ = [
'face_alignment',
'compute_similarity',
'bbox_center_alignment',
'transform_points_2d',
]
# Reference alignment for facial landmarks (ArcFace)
reference_alignment: np.ndarray = np.array(
[
[38.2946, 51.6963],
[73.5318, 51.5014],
[56.0252, 71.7366],
[41.5493, 92.3655],
[70.7299, 92.2041],
],
dtype=np.float32,
)
def estimate_norm(landmark: np.ndarray, image_size: Union[int, Tuple[int, int]] = 112) -> Tuple[np.ndarray, np.ndarray]:
"""
Estimate the normalization transformation matrix for facial landmarks.
Args:
landmark (np.ndarray): Array of shape (5, 2) representing the coordinates of the facial landmarks.
image_size (Union[int, Tuple[int, int]], optional): The size of the output image.
Can be an integer (for square images) or a tuple (width, height). Default is 112.
Returns:
np.ndarray: The 2x3 transformation matrix for aligning the landmarks.
np.ndarray: The 2x3 inverse transformation matrix for aligning the landmarks.
Raises:
AssertionError: If the input landmark array does not have the shape (5, 2)
or if image_size is not a multiple of 112 or 128.
"""
assert landmark.shape == (5, 2), 'Landmark array must have shape (5, 2).'
# Handle both int and tuple inputs
if isinstance(image_size, tuple):
size = image_size[0] # Use width for ratio calculation
else:
size = image_size
assert size % 112 == 0 or size % 128 == 0, 'Image size must be a multiple of 112 or 128.'
if size % 112 == 0:
ratio = float(size) / 112.0
diff_x = 0.0
else:
ratio = float(size) / 128.0
diff_x = 8.0 * ratio
# Adjust reference alignment based on ratio and diff_x
alignment = reference_alignment * ratio
alignment[:, 0] += diff_x
# Compute the transformation matrix
transform = SimilarityTransform()
transform.estimate(landmark, alignment)
matrix = transform.params[0:2, :]
inverse_matrix = np.linalg.inv(transform.params)[0:2, :]
return matrix, inverse_matrix
def face_alignment(
image: np.ndarray,
landmark: np.ndarray,
image_size: Union[int, Tuple[int, int]] = 112,
) -> Tuple[np.ndarray, np.ndarray]:
"""
Align the face in the input image based on the given facial landmarks.
Args:
image (np.ndarray): Input image as a NumPy array.
landmark (np.ndarray): Array of shape (5, 2) representing the coordinates of the facial landmarks.
image_size (Union[int, Tuple[int, int]], optional): The size of the aligned output image.
Can be an integer (for square images) or a tuple (width, height). Default is 112.
Returns:
np.ndarray: The aligned face as a NumPy array.
np.ndarray: The 2x3 transformation matrix used for alignment.
"""
# Get the transformation matrix
M, M_inv = estimate_norm(landmark, image_size)
# Handle both int and tuple for warpAffine output size
if isinstance(image_size, int):
output_size = (image_size, image_size)
else:
output_size = image_size
# Warp the input image to align the face
warped = cv2.warpAffine(image, M, output_size, borderValue=0.0)
return warped, M_inv
def compute_similarity(feat1: np.ndarray, feat2: np.ndarray, normalized: bool = False) -> np.float32:
"""Computing Similarity between two faces.
Args:
feat1 (np.ndarray): First embedding.
feat2 (np.ndarray): Second embedding.
normalized (bool): Set True if the embeddings are already L2 normalized.
Returns:
np.float32: Cosine similarity.
"""
feat1 = feat1.ravel()
feat2 = feat2.ravel()
if normalized:
return np.dot(feat1, feat2)
else:
return np.dot(feat1, feat2) / (np.linalg.norm(feat1) * np.linalg.norm(feat2) + 1e-5)
def bbox_center_alignment(image, center, output_size, scale, rotation):
"""
Apply center-based alignment, scaling, and rotation to an image.
Args:
image (np.ndarray): Input image.
center (Tuple[float, float]): Center point (e.g., face center from bbox).
output_size (int): Desired output image size (square).
scale (float): Scaling factor to zoom in/out.
rotation (float): Rotation angle in degrees (clockwise).
Returns:
cropped (np.ndarray): Aligned and cropped image.
M (np.ndarray): 2x3 affine transform matrix used.
"""
# Convert rotation from degrees to radians
rot = float(rotation) * np.pi / 180.0
# Scale the image
t1 = SimilarityTransform(scale=scale)
# Translate the center point to the origin (after scaling)
cx = center[0] * scale
cy = center[1] * scale
t2 = SimilarityTransform(translation=(-1 * cx, -1 * cy))
# Apply rotation around origin (center of face)
t3 = SimilarityTransform(rotation=rot)
# Translate origin to center of output image
t4 = SimilarityTransform(translation=(output_size / 2, output_size / 2))
# Combine all transformations in order: scale → center shift → rotate → recentralize
t = t1 + t2 + t3 + t4
# Extract 2x3 affine matrix
M = t.params[0:2]
# Warp the image using OpenCV
cropped = cv2.warpAffine(image, M, (output_size, output_size), borderValue=0.0)
return cropped, M
def transform_points_2d(points: np.ndarray, transform: np.ndarray) -> np.ndarray:
"""
Apply a 2D affine transformation to an array of 2D points.
Args:
points (np.ndarray): An (N, 2) array of 2D points.
transform (np.ndarray): A (2, 3) affine transformation matrix.
Returns:
np.ndarray: Transformed (N, 2) array of points.
"""
transformed = np.zeros_like(points, dtype=np.float32)
for i in range(points.shape[0]):
point = np.array([points[i, 0], points[i, 1], 1.0], dtype=np.float32)
result = np.dot(transform, point)
transformed[i] = result[:2]
return transformed

58
uniface/gaze/__init__.py Normal file
View File

@@ -0,0 +1,58 @@
# Copyright 2025 Yakhyokhuja Valikhujaev
# Author: Yakhyokhuja Valikhujaev
# GitHub: https://github.com/yakhyo
from .base import BaseGazeEstimator
from .models import MobileGaze
def create_gaze_estimator(method: str = 'mobilegaze', **kwargs) -> BaseGazeEstimator:
"""
Factory function to create gaze estimators.
This function initializes and returns a gaze estimator instance based on the
specified method. It acts as a high-level interface to the underlying
model classes.
Args:
method (str): The gaze estimation method to use.
Options: 'mobilegaze' (default).
**kwargs: Model-specific parameters passed to the estimator's constructor.
For example, `model_name` can be used to select a specific
backbone from `GazeWeights` enum (RESNET18, RESNET34, RESNET50,
MOBILENET_V2, MOBILEONE_S0).
Returns:
BaseGazeEstimator: An initialized gaze estimator instance ready for use.
Raises:
ValueError: If the specified `method` is not supported.
Examples:
>>> # Create the default MobileGaze estimator (ResNet18 backbone)
>>> estimator = create_gaze_estimator()
>>> # Create with MobileNetV2 backbone
>>> from uniface.constants import GazeWeights
>>> estimator = create_gaze_estimator(
... 'mobilegaze',
... model_name=GazeWeights.MOBILENET_V2
... )
>>> # Use the estimator
>>> pitch, yaw = estimator.estimate(face_crop)
"""
method = method.lower()
if method in ('mobilegaze', 'mobile_gaze', 'gaze'):
return MobileGaze(**kwargs)
else:
available = ['mobilegaze']
raise ValueError(f"Unsupported gaze estimation method: '{method}'. Available: {available}")
__all__ = [
'create_gaze_estimator',
'MobileGaze',
'BaseGazeEstimator',
]

108
uniface/gaze/base.py Normal file
View File

@@ -0,0 +1,108 @@
# Copyright 2025 Yakhyokhuja Valikhujaev
# Author: Yakhyokhuja Valikhujaev
# GitHub: https://github.com/yakhyo
from abc import ABC, abstractmethod
from typing import Tuple
import numpy as np
class BaseGazeEstimator(ABC):
"""
Abstract base class for all gaze estimation models.
This class defines the common interface that all gaze estimators must implement,
ensuring consistency across different gaze estimation methods. Gaze estimation
predicts the direction a person is looking based on their face image.
The gaze direction is represented as pitch and yaw angles in radians:
- Pitch: Vertical angle (positive = looking up, negative = looking down)
- Yaw: Horizontal angle (positive = looking right, negative = looking left)
"""
@abstractmethod
def _initialize_model(self) -> None:
"""
Initialize the underlying model for inference.
This method should handle loading model weights, creating the
inference session (e.g., ONNX Runtime), and any necessary
setup procedures to prepare the model for prediction.
Raises:
RuntimeError: If the model fails to load or initialize.
"""
raise NotImplementedError('Subclasses must implement the _initialize_model method.')
@abstractmethod
def preprocess(self, face_image: np.ndarray) -> np.ndarray:
"""
Preprocess the input face image for model inference.
This method should take a raw face crop and convert it into the format
expected by the model's inference engine (e.g., normalized tensor).
Args:
face_image (np.ndarray): A cropped face image in BGR format with
shape (H, W, C).
Returns:
np.ndarray: The preprocessed image tensor ready for inference,
typically with shape (1, C, H, W).
"""
raise NotImplementedError('Subclasses must implement the preprocess method.')
@abstractmethod
def postprocess(self, outputs: Tuple[np.ndarray, np.ndarray]) -> Tuple[float, float]:
"""
Postprocess raw model outputs into gaze angles.
This method takes the raw output from the model's inference and
converts it into pitch and yaw angles in radians.
Args:
outputs: Raw outputs from the model inference. The format depends
on the specific model architecture.
Returns:
Tuple[float, float]: A tuple of (pitch, yaw) angles in radians.
"""
raise NotImplementedError('Subclasses must implement the postprocess method.')
@abstractmethod
def estimate(self, face_image: np.ndarray) -> Tuple[float, float]:
"""
Perform end-to-end gaze estimation on a face image.
This method orchestrates the full pipeline: preprocessing the input,
running inference, and postprocessing to return the gaze direction.
Args:
face_image (np.ndarray): A cropped face image in BGR format.
The face should be roughly centered and
well-framed within the image.
Returns:
Tuple[float, float]: A tuple of (pitch, yaw) angles in radians:
- pitch: Vertical gaze angle (positive = up, negative = down)
- yaw: Horizontal gaze angle (positive = right, negative = left)
Example:
>>> estimator = create_gaze_estimator()
>>> pitch, yaw = estimator.estimate(face_crop)
>>> print(f"Looking: pitch={np.degrees(pitch):.1f}°, yaw={np.degrees(yaw):.1f}°")
"""
raise NotImplementedError('Subclasses must implement the estimate method.')
def __call__(self, face_image: np.ndarray) -> Tuple[float, float]:
"""
Provides a convenient, callable shortcut for the `estimate` method.
Args:
face_image (np.ndarray): A cropped face image in BGR format.
Returns:
Tuple[float, float]: A tuple of (pitch, yaw) angles in radians.
"""
return self.estimate(face_image)

187
uniface/gaze/models.py Normal file
View File

@@ -0,0 +1,187 @@
# Copyright 2025 Yakhyokhuja Valikhujaev
# Author: Yakhyokhuja Valikhujaev
# GitHub: https://github.com/yakhyo
from typing import Tuple
import cv2
import numpy as np
from uniface.constants import GazeWeights
from uniface.log import Logger
from uniface.model_store import verify_model_weights
from uniface.onnx_utils import create_onnx_session
from .base import BaseGazeEstimator
__all__ = ['MobileGaze']
class MobileGaze(BaseGazeEstimator):
"""
MobileGaze: Real-Time Gaze Estimation with ONNX Runtime.
MobileGaze is a gaze estimation model that predicts gaze direction from a single
face image. It supports multiple backbone architectures including ResNet 18/34/50,
MobileNetV2, and MobileOne S0. The model uses a classification approach with binned
angles, which are then decoded to continuous pitch and yaw values.
The model outputs gaze direction as pitch (vertical) and yaw (horizontal) angles
in radians.
Reference:
https://github.com/yakhyo/gaze-estimation
Args:
model_name (GazeWeights): The enum specifying the gaze model backbone to load.
Options: RESNET18, RESNET34, RESNET50, MOBILENET_V2, MOBILEONE_S0.
Defaults to `GazeWeights.RESNET18`.
input_size (Tuple[int, int]): The resolution (width, height) for the model's
input. Defaults to (448, 448).
Attributes:
input_size (Tuple[int, int]): Model input dimensions.
input_mean (list): Per-channel mean values for normalization (ImageNet).
input_std (list): Per-channel std values for normalization (ImageNet).
Example:
>>> from uniface.gaze import MobileGaze
>>> from uniface import RetinaFace
>>>
>>> detector = RetinaFace()
>>> gaze_estimator = MobileGaze()
>>>
>>> # Detect faces and estimate gaze for each
>>> faces = detector.detect(image)
>>> for face in faces:
... bbox = face['bbox']
... x1, y1, x2, y2 = map(int, bbox[:4])
... face_crop = image[y1:y2, x1:x2]
... pitch, yaw = gaze_estimator.estimate(face_crop)
... print(f"Gaze: pitch={np.degrees(pitch):.1f}°, yaw={np.degrees(yaw):.1f}°")
"""
def __init__(
self,
model_name: GazeWeights = GazeWeights.RESNET34,
input_size: Tuple[int, int] = (448, 448),
) -> None:
Logger.info(f'Initializing MobileGaze with model={model_name}, input_size={input_size}')
self.input_size = input_size
self.input_mean = [0.485, 0.456, 0.406]
self.input_std = [0.229, 0.224, 0.225]
# Model specific parameters for bin-based classification (Gaze360 config)
self._bins = 90
self._binwidth = 4
self._angle_offset = 180
self._idx_tensor = np.arange(self._bins, dtype=np.float32)
self.model_path = verify_model_weights(model_name)
self._initialize_model()
def _initialize_model(self) -> None:
"""
Initialize the ONNX model from the stored model path.
Raises:
RuntimeError: If the model fails to load or initialize.
"""
try:
self.session = create_onnx_session(self.model_path)
# Get input configuration
input_cfg = self.session.get_inputs()[0]
input_shape = input_cfg.shape
self.input_name = input_cfg.name
self.input_size = tuple(input_shape[2:4][::-1]) # Update from model
# Get output configuration
outputs = self.session.get_outputs()
self.output_names = [output.name for output in outputs]
if len(self.output_names) != 2:
raise ValueError(f'Expected 2 output nodes (pitch, yaw), got {len(self.output_names)}')
Logger.info(f'MobileGaze initialized with input size {self.input_size}')
except Exception as e:
Logger.error(f"Failed to load gaze model from '{self.model_path}'", exc_info=True)
raise RuntimeError(f'Failed to initialize gaze model: {e}') from e
def preprocess(self, face_image: np.ndarray) -> np.ndarray:
"""
Preprocess a face crop for gaze estimation.
Args:
face_image (np.ndarray): A cropped face image in BGR format.
Returns:
np.ndarray: Preprocessed image tensor with shape (1, 3, H, W).
"""
# Convert BGR to RGB
image = cv2.cvtColor(face_image, cv2.COLOR_BGR2RGB)
# Resize to model input size
image = cv2.resize(image, self.input_size)
# Normalize to [0, 1] and apply normalization
image = image.astype(np.float32) / 255.0
mean = np.array(self.input_mean, dtype=np.float32)
std = np.array(self.input_std, dtype=np.float32)
image = (image - mean) / std
# HWC -> CHW -> NCHW
image = np.transpose(image, (2, 0, 1))
image = np.expand_dims(image, axis=0).astype(np.float32)
return image
def _softmax(self, x: np.ndarray) -> np.ndarray:
"""Apply softmax along axis 1."""
e_x = np.exp(x - np.max(x, axis=1, keepdims=True))
return e_x / e_x.sum(axis=1, keepdims=True)
def postprocess(self, outputs: Tuple[np.ndarray, np.ndarray]) -> Tuple[np.ndarray, np.ndarray]:
"""
Postprocess raw model outputs into gaze angles.
This method takes the raw output from the model's inference and
converts it into pitch and yaw angles in radians.
Args:
outputs: Raw outputs from the model inference. The format depends
on the specific model architecture.
Returns:
Tuple[np.ndarray, np.ndarray]: A tuple of (pitch, yaw) angles in radians.
"""
pitch_logits, yaw_logits = outputs
# Convert logits to probabilities
pitch_probs = self._softmax(pitch_logits)
yaw_probs = self._softmax(yaw_logits)
# Compute expected bin index (soft-argmax)
pitch_deg = np.sum(pitch_probs * self._idx_tensor, axis=1) * self._binwidth - self._angle_offset
yaw_deg = np.sum(yaw_probs * self._idx_tensor, axis=1) * self._binwidth - self._angle_offset
# Convert degrees to radians
pitch = np.radians(pitch_deg[0])
yaw = np.radians(yaw_deg[0])
return pitch, yaw
def estimate(self, face_image: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
"""
Perform end-to-end gaze estimation on a face image.
This method orchestrates the full pipeline: preprocessing the input,
running inference, and postprocessing to return the gaze direction.
"""
input_tensor = self.preprocess(face_image)
outputs = self.session.run(self.output_names, {self.input_name: input_tensor})
pitch, yaw = self.postprocess((outputs[0], outputs[1]))
return pitch, yaw

View File

@@ -0,0 +1,28 @@
# Copyright 2025 Yakhyokhuja Valikhujaev
# Author: Yakhyokhuja Valikhujaev
# GitHub: https://github.com/yakhyo
from .base import BaseLandmarker
from .models import Landmark106
def create_landmarker(method: str = '2d106det', **kwargs) -> BaseLandmarker:
"""
Factory function to create facial landmark predictors.
Args:
method (str): Landmark prediction method. Options: '106'.
**kwargs: Model-specific parameters.
Returns:
Initialized landmarker instance.
"""
method = method.lower()
if method == '2d106det':
return Landmark106(**kwargs)
else:
available = ['2d106det']
raise ValueError(f"Unsupported method: '{method}'. Available: {available}")
__all__ = ['create_landmarker', 'Landmark106', 'BaseLandmarker']

32
uniface/landmark/base.py Normal file
View File

@@ -0,0 +1,32 @@
# Copyright 2025 Yakhyokhuja Valikhujaev
# Author: Yakhyokhuja Valikhujaev
# GitHub: https://github.com/yakhyo
from abc import ABC, abstractmethod
import numpy as np
class BaseLandmarker(ABC):
"""
Abstract Base Class for all facial landmark models.
"""
@abstractmethod
def get_landmarks(self, image: np.ndarray, bbox: np.ndarray) -> np.ndarray:
"""
Predicts facial landmarks for a given face bounding box.
This method defines the standard interface for all landmark predictors.
It takes a full image and a bounding box for a single face and returns
the predicted keypoints for that face.
Args:
image (np.ndarray): The full source image in BGR format.
bbox (np.ndarray): A bounding box of a face [x1, y1, x2, y2].
Returns:
np.ndarray: An array of predicted landmark points with shape (N, 2),
where N is the number of landmarks.
"""
raise NotImplementedError

212
uniface/landmark/models.py Normal file
View File

@@ -0,0 +1,212 @@
# Copyright 2025 Yakhyokhuja Valikhujaev
# Author: Yakhyokhuja Valikhujaev
# GitHub: https://github.com/yakhyo
from typing import Tuple
import cv2
import numpy as np
from uniface.constants import LandmarkWeights
from uniface.face_utils import bbox_center_alignment, transform_points_2d
from uniface.log import Logger
from uniface.model_store import verify_model_weights
from uniface.onnx_utils import create_onnx_session
from .base import BaseLandmarker
__all__ = ['Landmark106']
class Landmark106(BaseLandmarker):
"""Facial landmark model for predicting 106 facial keypoints.
This class implements the BaseLandmarker and provides an end-to-end
pipeline for 106-point facial landmark detection. It handles model
loading, preprocessing of a face crop based on a bounding box,
inference, and post-processing to map landmarks back to the
original image coordinates.
Args:
model_name (LandmarkWeights): The enum specifying the landmark model to load.
Defaults to `LandmarkWeights.DEFAULT`.
input_size (Tuple[int, int]): The resolution (width, height) for the model's
input. Defaults to (192, 192).
Example:
>>> # Assume 'image' is a loaded image and 'bbox' is a face bounding box
>>> # bbox = [x1, y1, x2, y2]
>>>
>>> landmarker = Landmark106()
>>> landmarks = landmarker.get_landmarks(image, bbox)
>>> print(landmarks.shape)
(106, 2)
"""
def __init__(
self,
model_name: LandmarkWeights = LandmarkWeights.DEFAULT,
input_size: Tuple[int, int] = (192, 192),
) -> None:
Logger.info(f'Initializing Facial Landmark with model={model_name}, input_size={input_size}')
self.input_size = input_size
self.input_std = 1.0
self.input_mean = 0.0
self.model_path = verify_model_weights(model_name)
self._initialize_model()
def _initialize_model(self):
"""
Initialize the ONNX model from the stored model path.
Raises:
RuntimeError: If the model fails to load or initialize.
"""
try:
self.session = create_onnx_session(self.model_path)
# Get input configuration
input_metadata = self.session.get_inputs()[0]
input_shape = input_metadata.shape
self.input_size = tuple(input_shape[2:4][::-1]) # Update input size from model
# Get input/output names
self.input_names = [input.name for input in self.session.get_inputs()]
self.output_names = [output.name for output in self.session.get_outputs()]
# Determine landmark dimensions from output shape
output_shape = self.session.get_outputs()[0].shape
self.lmk_dim = 2 # x,y coordinates
self.lmk_num = output_shape[1] // self.lmk_dim # Number of landmarks
Logger.info(f'Model initialized with {self.lmk_num} landmarks')
except Exception as e:
Logger.error(f"Failed to load landmark model from '{self.model_path}'", exc_info=True)
raise RuntimeError(f'Failed to initialize landmark model: {e}') from e
def preprocess(self, image: np.ndarray, bbox: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
"""Prepares a face crop for inference.
This method takes a face bounding box, performs a center alignment to
warp the face into the model's required input size, and then creates
a normalized blob ready for the ONNX session.
Args:
image (np.ndarray): The full source image in BGR format.
bbox (np.ndarray): The bounding box of the face [x1, y1, x2, y2].
Returns:
Tuple[np.ndarray, np.ndarray]: A tuple containing:
- The preprocessed image blob ready for inference.
- The affine transformation matrix used for alignment.
"""
width, height = bbox[2] - bbox[0], bbox[3] - bbox[1]
center = ((bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2)
scale = self.input_size[0] / (max(width, height) * 1.5)
aligned_face, transform_matrix = bbox_center_alignment(image, center, self.input_size[0], scale, 0.0)
face_blob = cv2.dnn.blobFromImage(
aligned_face,
1.0 / self.input_std,
self.input_size,
(self.input_mean, self.input_mean, self.input_mean),
swapRB=True,
)
return face_blob, transform_matrix
def postprocess(self, predictions: np.ndarray, transform_matrix: np.ndarray) -> np.ndarray:
"""Converts raw model predictions back to original image coordinates.
This method reshapes the model's flat output array into landmark points,
denormalizes them to the model's input space, and then applies an
inverse affine transformation to map them back to the original image space.
Args:
predictions (np.ndarray): Raw landmark coordinates from the model output.
transform_matrix (np.ndarray): The affine transformation matrix from preprocessing.
Returns:
np.ndarray: An array of landmark points in the original image's coordinates.
"""
landmarks = predictions.reshape((-1, 2))
landmarks[:, 0:2] += 1
landmarks[:, 0:2] *= self.input_size[0] // 2
inverse_matrix = cv2.invertAffineTransform(transform_matrix)
landmarks = transform_points_2d(landmarks, inverse_matrix)
return landmarks
def get_landmarks(self, image: np.ndarray, bbox: np.ndarray) -> np.ndarray:
"""Predicts facial landmarks for the given image and face bounding box.
This is the main public method that orchestrates the full pipeline of
preprocessing, inference, and post-processing.
Args:
image (np.ndarray): The full source image in BGR format.
bbox (np.ndarray): A bounding box of a face [x1, y1, x2, y2].
Returns:
np.ndarray: An array of predicted landmark points with shape (106, 2).
"""
face_blob, transform_matrix = self.preprocess(image, bbox)
raw_predictions = self.session.run(self.output_names, {self.input_names[0]: face_blob})[0][0]
landmarks = self.postprocess(raw_predictions, transform_matrix)
return landmarks
# Testing code
if __name__ == '__main__':
from uniface.detection import RetinaFace
from uniface.landmark import Landmark106
face_detector = RetinaFace()
landmarker = Landmark106()
cap = cv2.VideoCapture(0)
if not cap.isOpened():
print('Webcam not available.')
exit()
print("Press 'q' to quit.")
while True:
ret, frame = cap.read()
if not ret:
print('Frame capture failed.')
break
# 2. The detect method returns a list of dictionaries
faces = face_detector.detect(frame)
if not faces:
cv2.imshow('Facial Landmark Detection', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
continue
# 3. Loop through the list of face dictionaries
for face in faces:
# Extract the bounding box
bbox = face['bbox']
# 4. Get landmarks for the current face using its bounding box
landmarks = landmarker.get_landmarks(frame, bbox)
# --- Drawing Logic ---
# Draw the landmarks
for x, y in landmarks.astype(int):
cv2.circle(frame, (x, y), 2, (0, 255, 0), -1)
# Draw the bounding box
x1, y1, x2, y2 = map(int, bbox)
cv2.rectangle(frame, (x1, y1), (x2, y2), (255, 0, 0), 2)
cv2.imshow('Facial Landmark Detection', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()

View File

@@ -1,7 +1,25 @@
import logging
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s - %(levelname)s - %(message)s"
)
Logger = logging.getLogger("retinaface")
# Create logger for uniface
Logger = logging.getLogger('uniface')
Logger.setLevel(logging.WARNING) # Only show warnings/errors by default
Logger.addHandler(logging.NullHandler())
def enable_logging(level=logging.INFO):
"""
Enable verbose logging for uniface.
Args:
level: Logging level (logging.DEBUG, logging.INFO, etc.)
Example:
>>> from uniface import enable_logging
>>> enable_logging() # Show INFO logs
"""
Logger.handlers.clear()
handler = logging.StreamHandler()
handler.setFormatter(logging.Formatter('%(asctime)s - %(levelname)s - %(message)s', datefmt='%Y-%m-%d %H:%M:%S'))
Logger.addHandler(handler)
Logger.setLevel(level)
Logger.propagate = False

View File

@@ -1,102 +1,115 @@
# Copyright 2024 Yakhyokhuja Valikhujaev
# Author: Yakhyokhuja Valikhujaev
# GitHub: https://github.com/yakhyo
import os
import hashlib
import requests
from uniface.log import Logger
import uniface.constants as const
def verify_model_weights(model_name: str, root: str = '~/.uniface/models') -> str:
"""
Ensures model weights are available by downloading if missing and verifying integrity with a SHA-256 hash.
Checks if the specified model weights file exists in `root`. If missing, downloads from a predefined URL.
The file is then verified using its SHA-256 hash. If verification fails, the corrupted file is deleted,
and an error is raised.
Args:
model_name (str): Name of the model weights to verify or download.
root (str, optional): Directory to store the model weights. Defaults to '~/.uniface/models'.
Returns:
str: Path to the verified model weights file.
Raises:
ValueError: If the model is not found or if verification fails.
ConnectionError: If downloading the file fails.
Examples:
>>> # Download and verify 'retinaface_mnet025' weights
>>> verify_model_weights('retinaface_mnet025')
'/home/user/.uniface/models/retinaface_mnet025.onnx'
>>> # Use a custom directory
>>> verify_model_weights('retinaface_r34', root='/custom/dir')
'/custom/dir/retinaface_r34.onnx'
"""
root = os.path.expanduser(root)
os.makedirs(root, exist_ok=True)
model_path = os.path.join(root, f'{model_name}.onnx')
if not os.path.exists(model_path):
url = const.MODEL_URLS.get(model_name)
if not url:
Logger.error(f"No URL found for model '{model_name}'")
raise ValueError(f"No URL found for model '{model_name}'")
Logger.info(f"Downloading '{model_name}' from {url}")
download_file(url, model_path)
Logger.info(f"Successfully '{model_name}' downloaded to {model_path}")
expected_hash = const.MODEL_SHA256.get(model_name)
if expected_hash and not verify_file_hash(model_path, expected_hash):
os.remove(model_path) # Remove corrupted file
Logger.warning("Corrupted weight detected. Removing...")
raise ValueError(f"Hash mismatch for '{model_name}'. The file may be corrupted; please try downloading again.")
return model_path
def download_file(url: str, dest_path: str) -> None:
"""Download a file from a URL in chunks and save it to the destination path."""
try:
response = requests.get(url, stream=True)
response.raise_for_status()
with open(dest_path, "wb") as file:
for chunk in response.iter_content(chunk_size=const.CHUNK_SIZE):
if chunk:
file.write(chunk)
except requests.RequestException as e:
raise ConnectionError(f"Failed to download file from {url}. Error: {e}")
def verify_file_hash(file_path: str, expected_hash: str) -> bool:
"""Compute the SHA-256 hash of the file and compare it with the expected hash."""
file_hash = hashlib.sha256()
with open(file_path, "rb") as f:
for chunk in iter(lambda: f.read(const.CHUNK_SIZE), b""):
file_hash.update(chunk)
actual_hash = file_hash.hexdigest()
if actual_hash != expected_hash:
Logger.warning(f"Expected hash: {expected_hash}, but got: {actual_hash}")
return actual_hash == expected_hash
if __name__ == "__main__":
model_names = [
'retinaface_mnet025',
'retinaface_mnet050',
'retinaface_mnet_v1',
'retinaface_mnet_v2',
'retinaface_r18',
'retinaface_r34'
]
# Download each model in the list
for model_name in model_names:
model_path = verify_model_weights(model_name)
# Copyright 2025 Yakhyokhuja Valikhujaev
# Author: Yakhyokhuja Valikhujaev
# GitHub: https://github.com/yakhyo
import hashlib
import os
import requests
from tqdm import tqdm
import uniface.constants as const
from uniface.log import Logger
__all__ = ['verify_model_weights']
def verify_model_weights(model_name: str, root: str = '~/.uniface/models') -> str:
"""
Ensure model weights are present, downloading and verifying them using SHA-256 if necessary.
Given a model identifier from an Enum class (e.g., `RetinaFaceWeights.MNET_V2`), this function checks if
the corresponding `.onnx` weight file exists locally. If not, it downloads the file from a predefined URL.
After download, the files integrity is verified using a SHA-256 hash. If verification fails, the file is deleted
and an error is raised.
Args:
model_name (Enum): Model weight identifier (e.g., `RetinaFaceWeights.MNET_V2`, `ArcFaceWeights.RESNET`, etc.).
root (str, optional): Directory to store or locate the model weights. Defaults to '~/.uniface/models'.
Returns:
str: Absolute path to the verified model weights file.
Raises:
ValueError: If the model is unknown or SHA-256 verification fails.
ConnectionError: If downloading the file fails.
Examples:
>>> from uniface.models import RetinaFaceWeights, verify_model_weights
>>> verify_model_weights(RetinaFaceWeights.MNET_V2)
'/home/user/.uniface/models/retinaface_mnet_v2.onnx'
>>> verify_model_weights(RetinaFaceWeights.RESNET34, root='/custom/dir')
'/custom/dir/retinaface_r34.onnx'
"""
root = os.path.expanduser(root)
os.makedirs(root, exist_ok=True)
# Keep model_name as enum for dictionary lookup
url = const.MODEL_URLS.get(model_name)
if not url:
Logger.error(f"No URL found for model '{model_name}'")
raise ValueError(f"No URL found for model '{model_name}'")
file_ext = os.path.splitext(url)[1]
model_path = os.path.normpath(os.path.join(root, f'{model_name.value}{file_ext}'))
if not os.path.exists(model_path):
Logger.info(f"Downloading model '{model_name}' from {url}")
try:
download_file(url, model_path)
Logger.info(f"Successfully downloaded '{model_name}' to {model_path}")
except Exception as e:
Logger.error(f"Failed to download model '{model_name}': {e}")
raise ConnectionError(f"Download failed for '{model_name}'") from e
expected_hash = const.MODEL_SHA256.get(model_name)
if expected_hash and not verify_file_hash(model_path, expected_hash):
os.remove(model_path) # Remove corrupted file
Logger.warning('Corrupted weight detected. Removing...')
raise ValueError(f"Hash mismatch for '{model_name}'. The file may be corrupted; please try downloading again.")
return model_path
def download_file(url: str, dest_path: str) -> None:
"""Download a file from a URL in chunks and save it to the destination path."""
try:
response = requests.get(url, stream=True)
response.raise_for_status()
with (
open(dest_path, 'wb') as file,
tqdm(
desc=f'Downloading {dest_path}',
unit='B',
unit_scale=True,
unit_divisor=1024,
) as progress,
):
for chunk in response.iter_content(chunk_size=const.CHUNK_SIZE):
if chunk:
file.write(chunk)
progress.update(len(chunk))
except requests.RequestException as e:
raise ConnectionError(f'Failed to download file from {url}. Error: {e}') from e
def verify_file_hash(file_path: str, expected_hash: str) -> bool:
"""Compute the SHA-256 hash of the file and compare it with the expected hash."""
file_hash = hashlib.sha256()
with open(file_path, 'rb') as f:
for chunk in iter(lambda: f.read(const.CHUNK_SIZE), b''):
file_hash.update(chunk)
actual_hash = file_hash.hexdigest()
if actual_hash != expected_hash:
Logger.warning(f'Expected hash: {expected_hash}, but got: {actual_hash}')
return actual_hash == expected_hash
if __name__ == '__main__':
model_names = [model.value for model in const.RetinaFaceWeights]
# Download each model in the list
for model_name in model_names:
model_path = verify_model_weights(model_name)

99
uniface/onnx_utils.py Normal file
View File

@@ -0,0 +1,99 @@
# Copyright 2025 Yakhyokhuja Valikhujaev
# Author: Yakhyokhuja Valikhujaev
# GitHub: https://github.com/yakhyo
from typing import List
import onnxruntime as ort
from uniface.log import Logger
def get_available_providers() -> List[str]:
"""
Get list of available ONNX Runtime execution providers for the current platform.
Automatically detects and prioritizes hardware acceleration:
- CoreML on Apple Silicon (M1/M2/M3/M4)
- CUDA on NVIDIA GPUs
- CPU as fallback (always available)
Returns:
List[str]: Ordered list of execution providers to use
Examples:
>>> providers = get_available_providers()
>>> # On M4 Mac: ['CoreMLExecutionProvider', 'CPUExecutionProvider']
>>> # On Linux with CUDA: ['CUDAExecutionProvider', 'CPUExecutionProvider']
>>> # On CPU-only: ['CPUExecutionProvider']
"""
available = ort.get_available_providers()
providers = []
# Priority order: CoreML > CUDA > CPU
if 'CoreMLExecutionProvider' in available:
providers.append('CoreMLExecutionProvider')
Logger.info('CoreML acceleration enabled (Apple Silicon)')
if 'CUDAExecutionProvider' in available:
providers.append('CUDAExecutionProvider')
Logger.info('CUDA acceleration enabled (NVIDIA GPU)')
# CPU is always available as fallback
providers.append('CPUExecutionProvider')
if len(providers) == 1:
Logger.info('Using CPU execution (no hardware acceleration detected)')
return providers
def create_onnx_session(model_path: str, providers: List[str] = None) -> ort.InferenceSession:
"""
Create an ONNX Runtime inference session with optimal provider selection.
Args:
model_path (str): Path to the ONNX model file
providers (List[str], optional): List of providers to use.
If None, automatically detects best available providers.
Returns:
ort.InferenceSession: Configured ONNX Runtime session
Raises:
RuntimeError: If session creation fails
Examples:
>>> session = create_onnx_session("model.onnx")
>>> # Automatically uses best available providers
>>> session = create_onnx_session("model.onnx", providers=["CPUExecutionProvider"])
>>> # Force CPU-only execution
"""
if providers is None:
providers = get_available_providers()
# Suppress ONNX Runtime warnings (e.g., CoreML partition warnings)
# Log levels: 0=VERBOSE, 1=INFO, 2=WARNING, 3=ERROR, 4=FATAL
sess_options = ort.SessionOptions()
sess_options.log_severity_level = 3 # Only show ERROR and FATAL
try:
session = ort.InferenceSession(model_path, sess_options=sess_options, providers=providers)
active_provider = session.get_providers()[0]
Logger.debug(f'Session created with provider: {active_provider}')
# Show user-friendly message about which provider is being used
provider_names = {
'CoreMLExecutionProvider': 'CoreML (Apple Silicon)',
'CUDAExecutionProvider': 'CUDA (NVIDIA GPU)',
'CPUExecutionProvider': 'CPU',
}
provider_display = provider_names.get(active_provider, active_provider)
Logger.debug(f'Model loaded with provider: {active_provider}')
print(f'✓ Model loaded ({provider_display})')
return session
except Exception as e:
Logger.error(f'Failed to create ONNX session: {e}', exc_info=True)
raise RuntimeError(f'Failed to initialize ONNX Runtime session: {e}') from e

View File

@@ -0,0 +1,61 @@
# Copyright 2025 Yakhyokhuja Valikhujaev
# Author: Yakhyokhuja Valikhujaev
# GitHub: https://github.com/yakhyo
from typing import Union
from uniface.constants import ParsingWeights
from .base import BaseFaceParser
from .bisenet import BiSeNet
__all__ = ['BaseFaceParser', 'BiSeNet', 'create_face_parser']
def create_face_parser(
model_name: Union[str, ParsingWeights] = ParsingWeights.RESNET18,
) -> BaseFaceParser:
"""
Factory function to create a face parsing model instance.
This function provides a convenient way to instantiate face parsing models
without directly importing the specific model classes. It supports both
string-based and enum-based model selection.
Args:
model_name (Union[str, ParsingWeights]): The face parsing model to create.
Can be either a string or a ParsingWeights enum value.
Available options:
- 'parsing_resnet18' or ParsingWeights.RESNET18 (default)
- 'parsing_resnet34' or ParsingWeights.RESNET34
Returns:
BaseFaceParser: An instance of the requested face parsing model.
Raises:
ValueError: If the model_name is not recognized.
Examples:
>>> # Using enum
>>> from uniface.parsing import create_face_parser
>>> from uniface.constants import ParsingWeights
>>> parser = create_face_parser(ParsingWeights.RESNET18)
>>>
>>> # Using string
>>> parser = create_face_parser('parsing_resnet18')
>>>
>>> # Parse a face image
>>> mask = parser.parse(face_crop)
"""
# Convert string to enum if necessary
if isinstance(model_name, str):
try:
model_name = ParsingWeights(model_name)
except ValueError as e:
valid_models = [e.value for e in ParsingWeights]
raise ValueError(
f"Unknown face parsing model: '{model_name}'. Valid options are: {', '.join(valid_models)}"
) from e
# All parsing models use the same BiSeNet class
return BiSeNet(model_name=model_name)

106
uniface/parsing/base.py Normal file
View File

@@ -0,0 +1,106 @@
# Copyright 2025 Yakhyokhuja Valikhujaev
# Author: Yakhyokhuja Valikhujaev
# GitHub: https://github.com/yakhyo
from abc import ABC, abstractmethod
from typing import Tuple
import numpy as np
class BaseFaceParser(ABC):
"""
Abstract base class for all face parsing models.
This class defines the common interface that all face parsing models must implement,
ensuring consistency across different parsing methods. Face parsing segments a face
image into semantic regions such as skin, eyes, nose, mouth, hair, etc.
The output is a segmentation mask where each pixel is assigned a class label
representing a facial component.
"""
@abstractmethod
def _initialize_model(self) -> None:
"""
Initialize the underlying model for inference.
This method should handle loading model weights, creating the
inference session (e.g., ONNX Runtime), and any necessary
setup procedures to prepare the model for prediction.
Raises:
RuntimeError: If the model fails to load or initialize.
"""
raise NotImplementedError('Subclasses must implement the _initialize_model method.')
@abstractmethod
def preprocess(self, face_image: np.ndarray) -> np.ndarray:
"""
Preprocess the input face image for model inference.
This method should take a raw face crop and convert it into the format
expected by the model's inference engine (e.g., normalized tensor).
Args:
face_image (np.ndarray): A face image in BGR format with
shape (H, W, C).
Returns:
np.ndarray: The preprocessed image tensor ready for inference,
typically with shape (1, C, H, W).
"""
raise NotImplementedError('Subclasses must implement the preprocess method.')
@abstractmethod
def postprocess(self, outputs: np.ndarray, original_size: Tuple[int, int]) -> np.ndarray:
"""
Postprocess raw model outputs into a segmentation mask.
This method takes the raw output from the model's inference and
converts it into a segmentation mask at the original image size.
Args:
outputs (np.ndarray): Raw outputs from the model inference.
original_size (Tuple[int, int]): Original image size (width, height).
Returns:
np.ndarray: Segmentation mask with the same size as the original image.
"""
raise NotImplementedError('Subclasses must implement the postprocess method.')
@abstractmethod
def parse(self, face_image: np.ndarray) -> np.ndarray:
"""
Perform end-to-end face parsing on a face image.
This method orchestrates the full pipeline: preprocessing the input,
running inference, and postprocessing to return the segmentation mask.
Args:
face_image (np.ndarray): A face image in BGR format.
The face should be roughly centered and
well-framed within the image.
Returns:
np.ndarray: Segmentation mask with the same size as input image,
where each pixel value represents a facial component class.
Example:
>>> parser = create_face_parser()
>>> mask = parser.parse(face_crop)
>>> print(f"Mask shape: {mask.shape}, unique classes: {np.unique(mask)}")
"""
raise NotImplementedError('Subclasses must implement the parse method.')
def __call__(self, face_image: np.ndarray) -> np.ndarray:
"""
Provides a convenient, callable shortcut for the `parse` method.
Args:
face_image (np.ndarray): A face image in BGR format.
Returns:
np.ndarray: Segmentation mask with the same size as input image.
"""
return self.parse(face_image)

166
uniface/parsing/bisenet.py Normal file
View File

@@ -0,0 +1,166 @@
# Copyright 2025 Yakhyokhuja Valikhujaev
# Author: Yakhyokhuja Valikhujaev
# GitHub: https://github.com/yakhyo
from typing import Tuple
import cv2
import numpy as np
from uniface.constants import ParsingWeights
from uniface.log import Logger
from uniface.model_store import verify_model_weights
from uniface.onnx_utils import create_onnx_session
from .base import BaseFaceParser
__all__ = ['BiSeNet']
class BiSeNet(BaseFaceParser):
"""
BiSeNet: Bilateral Segmentation Network for Face Parsing with ONNX Runtime.
BiSeNet is a semantic segmentation model that segments a face image into
different facial components such as skin, eyes, nose, mouth, hair, etc. The model
uses a BiSeNet architecture with ResNet backbone and outputs a segmentation mask
where each pixel is assigned a class label.
The model supports 19 facial component classes including:
- Background, skin, eyebrows, eyes, nose, mouth, lips, ears, hair, etc.
Reference:
https://github.com/yakhyo/face-parsing
Args:
model_name (ParsingWeights): The enum specifying the parsing model to load.
Options: RESNET18, RESNET34.
Defaults to `ParsingWeights.RESNET18`.
input_size (Tuple[int, int]): The resolution (width, height) for the model's
input. Defaults to (512, 512).
Attributes:
input_size (Tuple[int, int]): Model input dimensions.
input_mean (np.ndarray): Per-channel mean values for normalization (ImageNet).
input_std (np.ndarray): Per-channel std values for normalization (ImageNet).
Example:
>>> from uniface.parsing import BiSeNet
>>> from uniface import RetinaFace
>>>
>>> detector = RetinaFace()
>>> parser = BiSeNet()
>>>
>>> # Detect faces and parse each face
>>> faces = detector.detect(image)
>>> for face in faces:
... bbox = face['bbox']
... x1, y1, x2, y2 = map(int, bbox[:4])
... face_crop = image[y1:y2, x1:x2]
... mask = parser.parse(face_crop)
... print(f"Mask shape: {mask.shape}, unique classes: {np.unique(mask)}")
"""
def __init__(
self,
model_name: ParsingWeights = ParsingWeights.RESNET18,
input_size: Tuple[int, int] = (512, 512),
) -> None:
Logger.info(f'Initializing BiSeNet with model={model_name}, input_size={input_size}')
self.input_size = input_size
self.input_mean = np.array([0.485, 0.456, 0.406], dtype=np.float32)
self.input_std = np.array([0.229, 0.224, 0.225], dtype=np.float32)
self.model_path = verify_model_weights(model_name)
self._initialize_model()
def _initialize_model(self) -> None:
"""
Initialize the ONNX model from the stored model path.
Raises:
RuntimeError: If the model fails to load or initialize.
"""
try:
self.session = create_onnx_session(self.model_path)
# Get input configuration
input_cfg = self.session.get_inputs()[0]
input_shape = input_cfg.shape
self.input_name = input_cfg.name
self.input_size = tuple(input_shape[2:4][::-1]) # Update from model
# Get output configuration
outputs = self.session.get_outputs()
self.output_names = [output.name for output in outputs]
Logger.info(f'BiSeNet initialized with input size {self.input_size}')
except Exception as e:
Logger.error(f"Failed to load parsing model from '{self.model_path}'", exc_info=True)
raise RuntimeError(f'Failed to initialize parsing model: {e}') from e
def preprocess(self, face_image: np.ndarray) -> np.ndarray:
"""
Preprocess a face image for parsing.
Args:
face_image (np.ndarray): A face image in BGR format.
Returns:
np.ndarray: Preprocessed image tensor with shape (1, 3, H, W).
"""
# Convert BGR to RGB
image = cv2.cvtColor(face_image, cv2.COLOR_BGR2RGB)
# Resize to model input size
image = cv2.resize(image, self.input_size, interpolation=cv2.INTER_LINEAR)
# Normalize to [0, 1] and apply normalization
image = image.astype(np.float32) / 255.0
image = (image - self.input_mean) / self.input_std
# HWC -> CHW -> NCHW
image = np.transpose(image, (2, 0, 1))
image = np.expand_dims(image, axis=0).astype(np.float32)
return image
def postprocess(self, outputs: np.ndarray, original_size: Tuple[int, int]) -> np.ndarray:
"""
Postprocess model output to segmentation mask.
Args:
outputs (np.ndarray): Raw model output.
original_size (Tuple[int, int]): Original image size (width, height).
Returns:
np.ndarray: Segmentation mask resized to original dimensions.
"""
# Get the class with highest probability for each pixel
predicted_mask = outputs.squeeze(0).argmax(0).astype(np.uint8)
# Resize back to original size
restored_mask = cv2.resize(predicted_mask, original_size, interpolation=cv2.INTER_NEAREST)
return restored_mask
def parse(self, face_image: np.ndarray) -> np.ndarray:
"""
Perform end-to-end face parsing on a face image.
This method orchestrates the full pipeline: preprocessing the input,
running inference, and postprocessing to return the segmentation mask.
Args:
face_image (np.ndarray): A face image in BGR format.
Returns:
np.ndarray: Segmentation mask with the same size as input image.
"""
original_size = (face_image.shape[1], face_image.shape[0]) # (width, height)
input_tensor = self.preprocess(face_image)
outputs = self.session.run(self.output_names, {self.input_name: input_tensor})
return self.postprocess(outputs[0], original_size)

0
uniface/py.typed Normal file
View File

View File

@@ -0,0 +1,64 @@
# Copyright 2025 Yakhyokhuja Valikhujaev
# Author: Yakhyokhuja Valikhujaev
# GitHub: https://github.com/yakhyo
from .base import BaseRecognizer
from .models import ArcFace, MobileFace, SphereFace
def create_recognizer(method: str = 'arcface', **kwargs) -> BaseRecognizer:
"""
Factory function to create face recognizers.
This function initializes and returns a face recognizer instance based on the
specified method. It acts as a high-level interface to the underlying
model classes like ArcFace, MobileFace, etc.
Args:
method (str): The recognition method to use.
Options: 'arcface' (default), 'mobileface', 'sphereface'.
**kwargs: Model-specific parameters passed to the recognizer's constructor.
For example, `model_name` can be used to select a specific
pre-trained weight from the available enums (e.g., `ArcFaceWeights.MNET`).
Returns:
BaseRecognizer: An initialized recognizer instance ready for use.
Raises:
ValueError: If the specified `method` is not supported.
Examples:
>>> # Create the default ArcFace recognizer
>>> recognizer = create_recognizer()
>>> # Create a specific MobileFace recognizer
>>> from uniface.constants import MobileFaceWeights
>>> recognizer = create_recognizer(
... 'mobileface',
... model_name=MobileFaceWeights.MNET_V2
... )
>>> # Create a SphereFace recognizer
>>> recognizer = create_recognizer('sphereface')
"""
method = method.lower()
if method == 'arcface':
return ArcFace(**kwargs)
elif method == 'mobileface':
return MobileFace(**kwargs)
elif method == 'sphereface':
return SphereFace(**kwargs)
else:
available = ['arcface', 'mobileface', 'sphereface']
raise ValueError(f"Unsupported method: '{method}'. Available: {available}")
__all__ = [
'create_recognizer',
'ArcFace',
'MobileFace',
'SphereFace',
'BaseRecognizer',
]

156
uniface/recognition/base.py Normal file
View File

@@ -0,0 +1,156 @@
# Copyright 2025 Yakhyokhuja Valikhujaev
# Author: Yakhyokhuja Valikhujaev
# GitHub: https://github.com/yakhyo
from abc import ABC, abstractmethod
from dataclasses import dataclass
from typing import List, Tuple, Union
import cv2
import numpy as np
from uniface.face_utils import face_alignment
from uniface.log import Logger
from uniface.onnx_utils import create_onnx_session
@dataclass
class PreprocessConfig:
"""
Configuration for preprocessing images before feeding them into the model.
"""
input_mean: Union[float, List[float]] = 127.5
input_std: Union[float, List[float]] = 127.5
input_size: Tuple[int, int] = (112, 112)
class BaseRecognizer(ABC):
"""
Abstract Base Class for all face recognition models.
It provides the core functionality for preprocessing, inference, and embedding extraction.
"""
@abstractmethod
def __init__(self, model_path: str, preprocessing: PreprocessConfig) -> None:
"""
Initializes the model. Subclasses must call this.
Args:
model_path (str): The direct path to the verified ONNX model.
preprocessing (PreprocessConfig): The configuration for preprocessing.
"""
self.input_mean = preprocessing.input_mean
self.input_std = preprocessing.input_std
self.input_size = preprocessing.input_size
self.model_path = model_path
self._initialize_model()
def _initialize_model(self) -> None:
"""
Loads the ONNX model and prepares it for inference.
Raises:
RuntimeError: If the model fails to load or initialize.
"""
try:
# Initialize model session with available providers
self.session = create_onnx_session(self.model_path)
# Extract input configuration
input_cfg = self.session.get_inputs()[0]
self.input_name = input_cfg.name
# Verify input dimensions match our configuration
input_shape = input_cfg.shape
model_input_size = tuple(input_shape[2:4][::-1]) # (width, height)
if model_input_size != self.input_size:
Logger.warning(f'Model input size {model_input_size} differs from configured size {self.input_size}')
# Extract output configuration
self.output_names = [output.name for output in self.session.get_outputs()]
self.output_shape = self.session.get_outputs()[0].shape
assert len(self.output_names) == 1, 'Expected only one output node.'
Logger.info(f'Successfully initialized face encoder from {self.model_path}')
except Exception as e:
Logger.error(
f"Failed to load face encoder model from '{self.model_path}'",
exc_info=True,
)
raise RuntimeError(f"Failed to initialize model session for '{self.model_path}'") from e
def preprocess(self, face_img: np.ndarray) -> np.ndarray:
"""
Preprocess the image: resize, normalize, and convert it to a blob.
Args:
face_img: Input image in BGR format.
Returns:
Preprocessed image as a NumPy array ready for inference.
"""
resized_img = cv2.resize(face_img, self.input_size)
if isinstance(self.input_std, (list, tuple)):
# Per-channel normalization
rgb_img = cv2.cvtColor(resized_img, cv2.COLOR_BGR2RGB).astype(np.float32)
normalized_img = (rgb_img - np.array(self.input_mean, dtype=np.float32)) / np.array(
self.input_std, dtype=np.float32
)
# Change to NCHW (batch, channels, height, width)
blob = np.transpose(normalized_img, (2, 0, 1)) # CHW
blob = np.expand_dims(blob, axis=0) # NCHW
else:
# Single-value normalization
blob = cv2.dnn.blobFromImage(
resized_img,
scalefactor=1.0 / self.input_std,
size=self.input_size,
mean=(self.input_mean, self.input_mean, self.input_mean),
swapRB=True, # Convert BGR to RGB
)
return blob
def get_embedding(self, image: np.ndarray, landmarks: np.ndarray = None) -> np.ndarray:
"""
Extracts face embedding from an image.
Args:
image: Input face image (BGR format). If already aligned (112x112), landmarks can be None.
landmarks: Facial landmarks (5 points for alignment). Optional if image is already aligned.
Returns:
Face embedding vector (typically 512-dimensional).
"""
# If landmarks are provided, align the face first
if landmarks is not None:
aligned_face, _ = face_alignment(image, landmarks, image_size=self.input_size)
else:
# Assume image is already aligned
aligned_face = image
# Generate embedding from aligned face
face_blob = self.preprocess(aligned_face)
embedding = self.session.run(self.output_names, {self.input_name: face_blob})[0]
return embedding
def get_normalized_embedding(self, image: np.ndarray, landmarks: np.ndarray) -> np.ndarray:
"""
Extracts a l2 normalized face embedding vector from an image.
Args:
image: Input face image (BGR format).
landmarks: Facial landmarks (5 points for alignment).
Returns:
Normalized face embedding vector (typically 512-dimensional).
"""
embedding = self.get_embedding(image, landmarks)
norm = np.linalg.norm(embedding)
return embedding / norm if norm > 0 else embedding

View File

@@ -0,0 +1,103 @@
# Copyright 2025 Yakhyokhuja Valikhujaev
# Author: Yakhyokhuja Valikhujaev
# GitHub: https://github.com/yakhyo
from typing import Optional
from uniface.constants import ArcFaceWeights, MobileFaceWeights, SphereFaceWeights
from uniface.model_store import verify_model_weights
from .base import BaseRecognizer, PreprocessConfig
__all__ = ['ArcFace', 'MobileFace', 'SphereFace']
class ArcFace(BaseRecognizer):
"""ArcFace model for robust face recognition.
This class provides a concrete implementation of the BaseRecognizer,
pre-configured for ArcFace models. It handles the loading of specific
ArcFace weights and sets up the appropriate default preprocessing.
Args:
model_name (ArcFaceWeights): The specific ArcFace model variant to use.
Defaults to `ArcFaceWeights.MNET`.
preprocessing (Optional[PreprocessConfig]): An optional custom preprocessing
configuration. If None, a default config for ArcFace is used.
Example:
>>> from uniface.recognition import ArcFace
>>> recognizer = ArcFace()
>>> # embedding = recognizer.get_normalized_embedding(image, landmarks)
"""
def __init__(
self,
model_name: ArcFaceWeights = ArcFaceWeights.MNET,
preprocessing: Optional[PreprocessConfig] = None,
) -> None:
if preprocessing is None:
preprocessing = PreprocessConfig(input_mean=127.5, input_std=127.5, input_size=(112, 112))
model_path = verify_model_weights(model_name)
super().__init__(model_path=model_path, preprocessing=preprocessing)
class MobileFace(BaseRecognizer):
"""Lightweight MobileFaceNet model for fast face recognition.
This class provides a concrete implementation of the BaseRecognizer,
pre-configured for MobileFaceNet models. It is optimized for speed,
making it suitable for edge devices.
Args:
model_name (MobileFaceWeights): The specific MobileFaceNet model variant to use.
Defaults to `MobileFaceWeights.MNET_V2`.
preprocessing (Optional[PreprocessConfig]): An optional custom preprocessing
configuration. If None, a default config for MobileFaceNet is used.
Example:
>>> from uniface.recognition import MobileFace
>>> recognizer = MobileFace()
>>> # embedding = recognizer.get_normalized_embedding(image, landmarks)
"""
def __init__(
self,
model_name: MobileFaceWeights = MobileFaceWeights.MNET_V2,
preprocessing: Optional[PreprocessConfig] = None,
) -> None:
if preprocessing is None:
preprocessing = PreprocessConfig(input_mean=127.5, input_std=127.5, input_size=(112, 112))
model_path = verify_model_weights(model_name)
super().__init__(model_path=model_path, preprocessing=preprocessing)
class SphereFace(BaseRecognizer):
"""SphereFace model using angular margin for face recognition.
This class provides a concrete implementation of the BaseRecognizer,
pre-configured for SphereFace models, which were among the first to
introduce angular margin loss functions.
Args:
model_name (SphereFaceWeights): The specific SphereFace model variant to use.
Defaults to `SphereFaceWeights.SPHERE20`.
preprocessing (Optional[PreprocessConfig]): An optional custom preprocessing
configuration. If None, a default config for SphereFace is used.
Example:
>>> from uniface.recognition import SphereFace
>>> recognizer = SphereFace()
>>> # embedding = recognizer.get_normalized_embedding(image, landmarks)
"""
def __init__(
self,
model_name: SphereFaceWeights = SphereFaceWeights.SPHERE20,
preprocessing: Optional[PreprocessConfig] = None,
) -> None:
if preprocessing is None:
preprocessing = PreprocessConfig(input_mean=127.5, input_std=127.5, input_size=(112, 112))
model_path = verify_model_weights(model_name)
super().__init__(model_path=model_path, preprocessing=preprocessing)

View File

@@ -1,256 +0,0 @@
# Copyright 2024 Yakhyokhuja Valikhujaev
# Author: Yakhyokhuja Valikhujaev
# GitHub: https://github.com/yakhyo
import os
import cv2
import numpy as np
import onnxruntime as ort
import torch
from typing import Tuple, List, Optional, Literal
from uniface.log import Logger
from uniface.model_store import verify_model_weights
from uniface.common import (
nms,
resize_image,
decode_boxes,
generate_anchors,
decode_landmarks
)
class RetinaFace:
"""
A class for face detection using the RetinaFace model.
Args:
model (str): Path or identifier of the model weights.
conf_thresh (float): Confidence threshold for detections. Defaults to 0.5.
nms_thresh (float): Non-maximum suppression threshold. Defaults to 0.4.
pre_nms_topk (int): Maximum number of detections before NMS. Defaults to 5000.
post_nms_topk (int): Maximum number of detections after NMS. Defaults to 750.
dynamic_size (Optional[bool]): Whether to adjust anchor generation dynamically based on image size. Defaults to False.
input_size (Optional[Tuple[int, int]]): Static input size for the model (width, height). Defaults to (640, 640).
Attributes:
conf_thresh (float): Confidence threshold for filtering detections.
nms_thresh (float): Threshold for NMS to remove duplicate detections.
pre_nms_topk (int): Maximum detections to consider before applying NMS.
post_nms_topk (int): Maximum detections retained after applying NMS.
dynamic_size (bool): Indicates if input size and anchors are dynamically adjusted.
input_size (Tuple[int, int]): The model's input image size.
_model_path (str): Path to the model weights.
_priors (torch.Tensor): Precomputed anchor boxes for static input size.
"""
def __init__(
self,
model: str,
conf_thresh: float = 0.5,
nms_thresh: float = 0.4,
pre_nms_topk: int = 5000,
post_nms_topk: int = 750,
dynamic_size: Optional[bool] = False,
input_size: Optional[Tuple[int, int]] = (640, 640), # Default input size if dynamic_size=False
) -> None:
self.conf_thresh = conf_thresh
self.nms_thresh = nms_thresh
self.pre_nms_topk = pre_nms_topk
self.post_nms_topk = post_nms_topk
self.dynamic_size = dynamic_size
self.input_size = input_size
Logger.info(
f"Initializing RetinaFace with model={model}, conf_thresh={conf_thresh}, nms_thresh={nms_thresh}, "
f"pre_nms_topk={pre_nms_topk}, post_nms_topk={post_nms_topk}, dynamic_size={dynamic_size}, "
f"input_size={input_size}"
)
# Get path to model weights
self._model_path = verify_model_weights(model)
Logger.info(f"Verified model weights located at: {self._model_path}")
# Precompute anchors if using static size
if not dynamic_size and input_size is not None:
self._priors = generate_anchors(image_size=input_size)
Logger.debug("Generated anchors for static input size.")
# Initialize model
self._initialize_model(self._model_path)
def _initialize_model(self, model_path: str) -> None:
"""
Initializes an ONNX model session from the given path.
Args:
model_path (str): The file path to the ONNX model.
Raises:
RuntimeError: If the model fails to load, logs an error and raises an exception.
"""
try:
self.session = ort.InferenceSession(model_path)
self.input_name = self.session.get_inputs()[0].name
Logger.info(f"Successfully initialized the model from {model_path}")
except Exception as e:
Logger.error(f"Failed to load model from '{model_path}': {e}")
raise RuntimeError(f"Failed to initialize model session for '{model_path}'") from e
def preprocess(self, image: np.ndarray) -> np.ndarray:
"""Preprocess input image for model inference.
Args:
image (np.ndarray): Input image.
Returns:
np.ndarray: Preprocessed image tensor with shape (1, C, H, W)
"""
image = np.float32(image) - np.array([104, 117, 123], dtype=np.float32)
image = image.transpose(2, 0, 1) # HWC to CHW
image = np.expand_dims(image, axis=0) # Add batch dimension (1, C, H, W)
return image
def inference(self, input_tensor: np.ndarray) -> List[np.ndarray]:
"""Perform model inference on the preprocessed image tensor.
Args:
input_tensor (np.ndarray): Preprocessed input tensor.
Returns:
Tuple[np.ndarray, np.ndarray]: Raw model outputs.
"""
return self.session.run(None, {self.input_name: input_tensor})
def detect(
self,
image: np.ndarray,
max_num: Optional[int] = 0,
metric: Literal["default", "max"] = "default",
center_weight: Optional[float] = 2.0
) -> Tuple[np.ndarray, np.ndarray]:
"""
Perform face detection on an input image and return bounding boxes and landmarks.
Args:
image (np.ndarray): Input image as a NumPy array of shape (height, width, channels).
max_num (int, optional): Maximum number of detections to return. Defaults to 1.
metric (str, optional): Metric for ranking detections when `max_num` is specified.
Options:
- "default": Prioritize detections closer to the image center.
- "max": Prioritize detections with larger bounding box areas.
center_weight (float, optional): Weight for penalizing detections farther from the image center
when using the "default" metric. Defaults to 2.0.
Returns:
Tuple[np.ndarray, np.ndarray]: Detection results containing:
- detections (np.ndarray): Array of detected bounding boxes with confidence scores.
Shape: (num_detections, 5), where each row is [x_min, y_min, x_max, y_max, score].
- landmarks (np.ndarray): Array of detected facial landmarks.
Shape: (num_detections, 5, 2), where each row contains 5 landmark points (x, y).
"""
if self.dynamic_size:
height, width, _ = image.shape
self._priors = generate_anchors(image_size=(height, width)) # generate anchors for each input image
resize_factor = 1.0 # No resizing
else:
image, resize_factor = resize_image(image, target_shape=self.input_size)
height, width, _ = image.shape
image_tensor = self.preprocess(image)
# ONNXRuntime inference
outputs = self.inference(image_tensor)
# Postprocessing
detections, landmarks = self.postprocess(outputs, resize_factor, shape=(width, height))
if max_num > 0 and detections.shape[0] > max_num:
# Calculate area of detections
areas = (detections[:, 2] - detections[:, 0]) * (detections[:, 3] - detections[:, 1])
# Calculate offsets from image center
center = (height // 2, width // 2)
offsets = np.vstack([
(detections[:, 0] + detections[:, 2]) / 2 - center[1],
(detections[:, 1] + detections[:, 3]) / 2 - center[0]
])
offset_dist_squared = np.sum(np.power(offsets, 2.0), axis=0)
# Calculate scores based on the chosen metric
if metric == 'max':
scores = areas
else:
scores = areas - offset_dist_squared * center_weight
# Sort by scores and select top `max_num`
sorted_indices = np.argsort(scores)[::-1][:max_num]
detections = detections[sorted_indices]
landmarks = landmarks[sorted_indices]
return detections, landmarks
def postprocess(self, outputs: List[np.ndarray], resize_factor: float, shape: Tuple[int, int]) -> Tuple[np.ndarray, np.ndarray]:
"""
Process the model outputs into final detection results.
Args:
outputs (List[np.ndarray]): Raw outputs from the detection model.
- outputs[0]: Location predictions (bounding box coordinates).
- outputs[1]: Class confidence scores.
- outputs[2]: Landmark predictions.
resize_factor (float): Factor used to resize the input image during preprocessing.
shape (Tuple[int, int]): Original shape of the image as (height, width).
Returns:
Tuple[np.ndarray, np.ndarray]: Processed results containing:
- detections (np.ndarray): Array of detected bounding boxes with confidence scores.
Shape: (num_detections, 5), where each row is [x_min, y_min, x_max, y_max, score].
- landmarks (np.ndarray): Array of detected facial landmarks.
Shape: (num_detections, 5, 2), where each row contains 5 landmark points (x, y).
"""
loc, conf, landmarks = outputs[0].squeeze(0), outputs[1].squeeze(0), outputs[2].squeeze(0)
# Decode boxes and landmarks
boxes = decode_boxes(torch.tensor(loc), self._priors).cpu().numpy()
landmarks = decode_landmarks(torch.tensor(landmarks), self._priors).cpu().numpy()
boxes, landmarks = self._scale_detections(boxes, landmarks, resize_factor, shape=(shape[0], shape[1]))
# Extract confidence scores for the face class
scores = conf[:, 1]
mask = scores > self.conf_thresh
# Filter by confidence threshold
boxes, landmarks, scores = boxes[mask], landmarks[mask], scores[mask]
# Sort by scores
order = scores.argsort()[::-1][:self.pre_nms_topk]
boxes, landmarks, scores = boxes[order], landmarks[order], scores[order]
# Apply NMS
detections = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32, copy=False)
keep = nms(detections, self.nms_thresh)
detections, landmarks = detections[keep], landmarks[keep]
# Keep top-k detections
detections, landmarks = detections[:self.post_nms_topk], landmarks[:self.post_nms_topk]
landmarks = landmarks.reshape(-1, 5, 2).astype(np.int32)
return detections, landmarks
def _scale_detections(self, boxes: np.ndarray, landmarks: np.ndarray, resize_factor: float, shape: Tuple[int, int]) -> Tuple[np.ndarray, np.ndarray]:
"""Scale bounding boxes and landmarks to the original image size."""
bbox_scale = np.array([shape[0], shape[1]] * 2)
boxes = boxes * bbox_scale / resize_factor
landmark_scale = np.array([shape[0], shape[1]] * 5)
landmarks = landmarks * landmark_scale / resize_factor
return boxes, landmarks

View File

@@ -1,15 +0,0 @@
# Copyright 2024 Yakhyokhuja Valikhujaev
#
# Licensed under the MIT License.
# You may obtain a copy of the License at
#
# https://opensource.org/licenses/MIT
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
__version__ = "0.1.1"
__author__ = "Yakhyokhuja Valikhujaev"

View File

@@ -1,38 +1,330 @@
# Copyright 2024 Yakhyokhuja Valikhujaev
# Copyright 2025 Yakhyokhuja Valikhujaev
# Author: Yakhyokhuja Valikhujaev
# GitHub: https://github.com/yakhyo
from typing import List, Tuple, Union
import cv2
import numpy as np
# Face parsing component names (19 classes)
FACE_PARSING_LABELS = [
'background',
'skin',
'l_brow',
'r_brow',
'l_eye',
'r_eye',
'eye_g',
'l_ear',
'r_ear',
'ear_r',
'nose',
'mouth',
'u_lip',
'l_lip',
'neck',
'neck_l',
'cloth',
'hair',
'hat',
]
def draw_detections(image, detections, vis_threshold=0.6):
# Color palette for face parsing visualization
FACE_PARSING_COLORS = [
[0, 0, 0],
[255, 85, 0],
[255, 170, 0],
[255, 0, 85],
[255, 0, 170],
[0, 255, 0],
[85, 255, 0],
[170, 255, 0],
[0, 255, 85],
[0, 255, 170],
[0, 0, 255],
[85, 0, 255],
[170, 0, 255],
[0, 85, 255],
[0, 170, 255],
[255, 255, 0],
[255, 255, 85],
[255, 255, 170],
[255, 0, 255],
]
def draw_detections(
*,
image: np.ndarray,
bboxes: Union[List[np.ndarray], List[List[float]]],
scores: Union[np.ndarray, List[float]],
landmarks: Union[List[np.ndarray], List[List[List[float]]]],
vis_threshold: float = 0.6,
draw_score: bool = False,
fancy_bbox: bool = True,
):
"""
Draw bounding boxes and landmarks on the image.
Draws bounding boxes, landmarks, and optional scores on an image.
Args:
image (ndarray): Image to draw detections on.
detections (tuple): (bounding boxes, landmarks) as NumPy arrays.
vis_threshold (float): Confidence threshold for filtering detections.
image: Input image to draw on.
bboxes: List of bounding boxes [x1, y1, x2, y2].
scores: List of confidence scores.
landmarks: List of landmark sets with shape (5, 2).
vis_threshold: Confidence threshold for filtering. Defaults to 0.6.
draw_score: Whether to draw confidence scores. Defaults to False.
"""
colors = [(0, 0, 255), (0, 255, 255), (255, 0, 255), (0, 255, 0), (255, 0, 0)]
_colors = [(0, 0, 255), (0, 255, 255), (255, 0, 255), (0, 255, 0), (255, 0, 0)]
# Unpack detections
boxes, landmarks = detections
scores = boxes[:, 4]
# Calculate line thickness based on image size
line_thickness = max(round(sum(image.shape[:2]) / 2 * 0.003), 2)
# Filter detections by confidence threshold
filtered = scores >= vis_threshold
boxes = boxes[filtered, :4].astype(np.int32)
landmarks = landmarks[filtered]
scores = scores[filtered]
keep_indices = [i for i, score in enumerate(scores) if score >= vis_threshold]
print(f"#faces: {len(scores)}")
for i in keep_indices:
bbox = np.array(bboxes[i], dtype=np.int32)
score = scores[i]
landmark_set = np.array(landmarks[i], dtype=np.int32)
# Draw bounding boxes, scores, and landmarks
for box, score, landmark in zip(boxes, scores, landmarks):
cv2.rectangle(image, box[:2], box[2:], (0, 0, 255), 2)
cv2.putText(image, f"{score:.2f}", (box[0], box[1] + 12), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
for point, color in zip(landmark, _colors):
cv2.circle(image, tuple(point), 2, color, -1)
# Calculate dynamic font scale based on bbox height
bbox_h = bbox[3] - bbox[1]
font_scale = max(0.4, min(0.7, bbox_h / 200))
font_thickness = 2
# Draw bounding box
if fancy_bbox:
draw_fancy_bbox(image, bbox, color=(0, 255, 0), thickness=line_thickness, proportion=0.2)
else:
cv2.rectangle(image, tuple(bbox[:2]), tuple(bbox[2:]), (0, 255, 0), line_thickness)
# Draw confidence score with background
if draw_score:
text = f'{score:.2f}'
(text_width, text_height), baseline = cv2.getTextSize(
text, cv2.FONT_HERSHEY_SIMPLEX, font_scale, font_thickness
)
# Draw background rectangle
cv2.rectangle(
image,
(bbox[0], bbox[1] - text_height - baseline - 10),
(bbox[0] + text_width + 10, bbox[1]),
(0, 255, 0),
-1,
)
# Draw text
cv2.putText(
image,
text,
(bbox[0] + 5, bbox[1] - 5),
cv2.FONT_HERSHEY_SIMPLEX,
font_scale,
(0, 0, 0),
font_thickness,
)
# Draw landmarks
for j, point in enumerate(landmark_set):
cv2.circle(image, tuple(point), line_thickness + 1, colors[j], -1)
def draw_fancy_bbox(
image: np.ndarray,
bbox: np.ndarray,
color: Tuple[int, int, int] = (0, 255, 0),
thickness: int = 3,
proportion: float = 0.2,
):
"""
Draws a bounding box with fancy corners on an image.
Args:
image: Input image to draw on.
bbox: Bounding box coordinates [x1, y1, x2, y2].
color: Color of the bounding box. Defaults to green.
thickness: Thickness of the bounding box lines. Defaults to 3.
proportion: Proportion of the corner length to the width/height of the bounding box. Defaults to 0.2.
"""
x1, y1, x2, y2 = map(int, bbox)
width = x2 - x1
height = y2 - y1
corner_length = int(proportion * min(width, height))
# Draw the rectangle
cv2.rectangle(image, (x1, y1), (x2, y2), color, 1)
# Top-left corner
cv2.line(image, (x1, y1), (x1 + corner_length, y1), color, thickness)
cv2.line(image, (x1, y1), (x1, y1 + corner_length), color, thickness)
# Top-right corner
cv2.line(image, (x2, y1), (x2 - corner_length, y1), color, thickness)
cv2.line(image, (x2, y1), (x2, y1 + corner_length), color, thickness)
# Bottom-left corner
cv2.line(image, (x1, y2), (x1, y2 - corner_length), color, thickness)
cv2.line(image, (x1, y2), (x1 + corner_length, y2), color, thickness)
# Bottom-right corner
cv2.line(image, (x2, y2), (x2, y2 - corner_length), color, thickness)
cv2.line(image, (x2, y2), (x2 - corner_length, y2), color, thickness)
def draw_gaze(
image: np.ndarray,
bbox: np.ndarray,
pitch: np.ndarray,
yaw: np.ndarray,
*,
draw_bbox: bool = True,
fancy_bbox: bool = True,
draw_angles: bool = True,
):
"""
Draws gaze direction with optional bounding box on an image.
Args:
image: Input image to draw on (modified in-place).
bbox: Face bounding box [x1, y1, x2, y2].
pitch: Vertical gaze angle in radians.
yaw: Horizontal gaze angle in radians.
draw_bbox: Whether to draw the bounding box. Defaults to True.
fancy_bbox: Use fancy corner-style bbox. Defaults to True.
draw_angles: Whether to display pitch/yaw values as text. Defaults to False.
"""
x_min, y_min, x_max, y_max = map(int, bbox[:4])
# Calculate dynamic line thickness based on image size (same as draw_detections)
line_thickness = max(round(sum(image.shape[:2]) / 2 * 0.003), 2)
# Calculate dynamic font scale based on bbox height (same as draw_detections)
bbox_h = y_max - y_min
font_scale = max(0.4, min(0.7, bbox_h / 200))
font_thickness = 2
# Draw bounding box if requested
if draw_bbox:
if fancy_bbox:
draw_fancy_bbox(image, bbox, color=(0, 255, 0), thickness=line_thickness)
else:
cv2.rectangle(image, (x_min, y_min), (x_max, y_max), (0, 255, 0), line_thickness)
# Calculate center of the bounding box
x_center = (x_min + x_max) // 2
y_center = (y_min + y_max) // 2
# Calculate the direction of the gaze
length = x_max - x_min
dx = int(-length * np.sin(pitch) * np.cos(yaw))
dy = int(-length * np.sin(yaw))
point1 = (x_center, y_center)
point2 = (x_center + dx, y_center + dy)
# Calculate dynamic center point radius based on line thickness
center_radius = max(line_thickness + 1, 4)
# Draw gaze direction
cv2.circle(image, (x_center, y_center), radius=center_radius, color=(0, 0, 255), thickness=-1)
cv2.arrowedLine(
image,
point1,
point2,
color=(0, 0, 255),
thickness=line_thickness,
line_type=cv2.LINE_AA,
tipLength=0.25,
)
# Draw angle values
if draw_angles:
text = f'P:{np.degrees(pitch):.0f}deg Y:{np.degrees(yaw):.0f}deg'
(text_width, text_height), baseline = cv2.getTextSize(
text, cv2.FONT_HERSHEY_SIMPLEX, font_scale, font_thickness
)
# Draw background rectangle for text
cv2.rectangle(
image,
(x_min, y_min - text_height - baseline - 10),
(x_min + text_width + 10, y_min),
(0, 0, 255),
-1,
)
# Draw text
cv2.putText(
image,
text,
(x_min + 5, y_min - 5),
cv2.FONT_HERSHEY_SIMPLEX,
font_scale,
(255, 255, 255),
font_thickness,
)
def vis_parsing_maps(
image: np.ndarray,
segmentation_mask: np.ndarray,
*,
save_image: bool = False,
save_path: str = 'result.png',
) -> np.ndarray:
"""
Visualizes face parsing segmentation mask by overlaying colored regions on the image.
Args:
image: Input face image in RGB format with shape (H, W, 3).
segmentation_mask: Segmentation mask with shape (H, W) where each pixel
value represents a facial component class (0-18).
save_image: Whether to save the visualization to disk. Defaults to False.
save_path: Path to save the visualization if save_image is True.
Returns:
np.ndarray: Blended image with segmentation overlay in BGR format.
Example:
>>> import cv2
>>> from uniface.parsing import BiSeNet
>>> from uniface.visualization import vis_parsing_maps
>>>
>>> parser = BiSeNet()
>>> face_image = cv2.imread('face.jpg')
>>> mask = parser.parse(face_image)
>>>
>>> # Visualize
>>> face_rgb = cv2.cvtColor(face_image, cv2.COLOR_BGR2RGB)
>>> result = vis_parsing_maps(face_rgb, mask)
>>> cv2.imwrite('parsed_face.jpg', result)
"""
# Create numpy arrays for image and segmentation mask
image = np.array(image).copy().astype(np.uint8)
segmentation_mask = segmentation_mask.copy().astype(np.uint8)
# Create a color mask
segmentation_mask_color = np.zeros((segmentation_mask.shape[0], segmentation_mask.shape[1], 3))
num_classes = np.max(segmentation_mask)
for class_index in range(1, num_classes + 1):
class_pixels = np.where(segmentation_mask == class_index)
segmentation_mask_color[class_pixels[0], class_pixels[1], :] = FACE_PARSING_COLORS[class_index]
segmentation_mask_color = segmentation_mask_color.astype(np.uint8)
# Convert image to BGR format for blending
bgr_image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
# Blend the image with the segmentation mask
blended_image = cv2.addWeighted(bgr_image, 0.6, segmentation_mask_color, 0.4, 0)
# Save the result if required
if save_image:
cv2.imwrite(save_path, blended_image, [int(cv2.IMWRITE_JPEG_QUALITY), 100])
return blended_image