7 Commits

Author SHA1 Message Date
Yakhyokhuja Valikhujaev
4d1921e531 feat: Add 2D Gaze estimation models (#34)
* feat: Add Gaze Estimation, update docs and Add example notebook, inference code

* docs: Update README.md
2025-12-14 14:07:46 +09:00
yakhyo
da8a5cf35b feat: Add yolov5n, update docs and ruff code format 2025-12-11 01:02:18 +09:00
Yakhyokhuja Valikhujaev
3982d677a9 fix: Fix type conversion and remove redundant type conversion (#29)
* ref: Remove type conversion and update face class

* fix: change the type to float32

* chore: Update all examples, testing with latest version

* docs: Update docs reflecting the recent changes
2025-12-10 00:18:11 +09:00
Yakhyokhuja Valikhujaev
f4458f0550 Revise model configurations in README.md
Updated model names and confidence thresholds for SCRFD and YOLOv5Face in the README.
2025-12-08 10:07:30 +09:00
Yakhyokhuja Valikhujaev
637316f077 feat: Update examples and some minor changes to UniFace API (#28)
* chore: Style changes and create jupyter notebook template

* docs: Update docstring for detection

* feat: Keyword only for common parameters: model_name, conf_thresh, nms_thresh, input_size

* chore: Update drawing and let the conf text optional for drawing

* feat: add fancy bbox draw

* docs: Add examples of using UniFace

* feat: Add version to all examples
2025-12-07 19:51:08 +09:00
Yakhyokhuja Valikhujaev
6b1d2a1ce6 feat: Add YOLOv5 face detection support (#26)
* feat: Add YOLOv5 face detection model

* docs: Update docs, add new model information

* feat: Add YOLOv5 face detection model

* test: Add testing and running
2025-12-03 23:35:56 +09:00
Yakhyokhuja Valikhujaev
a5e97ac484 Update README.md 2025-12-01 13:19:25 +09:00
35 changed files with 2758 additions and 444 deletions

63
CONTRIBUTING.md Normal file
View File

@@ -0,0 +1,63 @@
# Contributing to UniFace
Thank you for considering contributing to UniFace! We welcome contributions of all kinds.
## How to Contribute
### Reporting Issues
- Use GitHub Issues to report bugs or suggest features
- Include clear descriptions and reproducible examples
- Check existing issues before creating new ones
### Pull Requests
1. Fork the repository
2. Create a new branch for your feature
3. Write clear, documented code with type hints
4. Add tests for new functionality
5. Ensure all tests pass
6. Submit a pull request with a clear description
### Code Style
- Follow PEP8 guidelines
- Use type hints (Python 3.10+)
- Write docstrings for public APIs
- Keep code simple and readable
## Development Setup
```bash
git clone https://github.com/yakhyo/uniface.git
cd uniface
pip install -e ".[dev]"
```
## Running Tests
```bash
pytest tests/
```
## Examples
Example notebooks demonstrating library usage:
| Example | Notebook |
|---------|----------|
| Face Detection | [face_detection.ipynb](examples/face_detection.ipynb) |
| Face Alignment | [face_alignment.ipynb](examples/face_alignment.ipynb) |
| Face Recognition | [face_analyzer.ipynb](examples/face_analyzer.ipynb) |
| Face Verification | [face_verification.ipynb](examples/face_verification.ipynb) |
| Face Search | [face_search.ipynb](examples/face_search.ipynb) |
## Questions?
Open an issue or start a discussion on GitHub.

259
MODELS.md
View File

@@ -10,14 +10,14 @@ Complete guide to all available models, their performance characteristics, and s
RetinaFace models are trained on the WIDER FACE dataset and provide excellent accuracy-speed tradeoffs.
| Model Name | Params | Size | Easy | Medium | Hard | Use Case |
|---------------------|--------|--------|--------|--------|--------|----------------------------|
| `MNET_025` | 0.4M | 1.7MB | 88.48% | 87.02% | 80.61% | Mobile/Edge devices |
| `MNET_050` | 1.0M | 2.6MB | 89.42% | 87.97% | 82.40% | Mobile/Edge devices |
| `MNET_V1` | 3.5M | 3.8MB | 90.59% | 89.14% | 84.13% | Balanced mobile |
| `MNET_V2` | 3.2M | 3.5MB | 91.70% | 91.03% | 86.60% | **Recommended default** |
| `RESNET18` | 11.7M | 27MB | 92.50% | 91.02% | 86.63% | Server/High accuracy |
| `RESNET34` | 24.8M | 56MB | 94.16% | 93.12% | 88.90% | Maximum accuracy |
| Model Name | Params | Size | Easy | Medium | Hard | Use Case |
| -------------- | ------ | ----- | ------ | ------ | ------ | ----------------------------- |
| `MNET_025` | 0.4M | 1.7MB | 88.48% | 87.02% | 80.61% | Mobile/Edge devices |
| `MNET_050` | 1.0M | 2.6MB | 89.42% | 87.97% | 82.40% | Mobile/Edge devices |
| `MNET_V1` | 3.5M | 3.8MB | 90.59% | 89.14% | 84.13% | Balanced mobile |
| `MNET_V2` ⭐ | 3.2M | 3.5MB | 91.70% | 91.03% | 86.60% | **Recommended default** |
| `RESNET18` | 11.7M | 27MB | 92.50% | 91.02% | 86.63% | Server/High accuracy |
| `RESNET34` | 24.8M | 56MB | 94.16% | 93.12% | 88.90% | Maximum accuracy |
**Accuracy**: WIDER FACE validation set (Easy/Medium/Hard subsets) - from [RetinaFace paper](https://arxiv.org/abs/1905.00641)
**Speed**: Benchmark on your own hardware using `scripts/run_detection.py --iterations 100`
@@ -46,10 +46,10 @@ detector = RetinaFace(
SCRFD (Sample and Computation Redistribution for Efficient Face Detection) models offer state-of-the-art speed-accuracy tradeoffs.
| Model Name | Params | Size | Easy | Medium | Hard | Use Case |
|-----------------|--------|-------|--------|--------|--------|----------------------------|
| `SCRFD_500M` | 0.6M | 2.5MB | 90.57% | 88.12% | 68.51% | Real-time applications |
| `SCRFD_10G` | 4.2M | 17MB | 95.16% | 93.87% | 83.05% | **High accuracy + speed** |
| Model Name | Params | Size | Easy | Medium | Hard | Use Case |
| ---------------- | ------ | ----- | ------ | ------ | ------ | ------------------------------- |
| `SCRFD_500M` | 0.6M | 2.5MB | 90.57% | 88.12% | 68.51% | Real-time applications |
| `SCRFD_10G` ⭐ | 4.2M | 17MB | 95.16% | 93.87% | 83.05% | **High accuracy + speed** |
**Accuracy**: WIDER FACE validation set - from [SCRFD paper](https://arxiv.org/abs/2105.04714)
**Speed**: Benchmark on your own hardware using `scripts/run_detection.py --iterations 100`
@@ -76,16 +76,66 @@ detector = SCRFD(
---
### YOLOv5-Face Family
YOLOv5-Face models provide excellent detection accuracy with 5-point facial landmarks, optimized for real-time applications.
| Model Name | Size | Easy | Medium | Hard | Use Case |
| -------------- | ---- | ------ | ------ | ------ | ------------------------------ |
| `YOLOV5N` | 11MB | 93.61% | 91.52% | 80.53% | Lightweight/Mobile |
| `YOLOV5S` ⭐ | 28MB | 94.33% | 92.61% | 83.15% | **Real-time + accuracy** |
| `YOLOV5M` | 82MB | 95.30% | 93.76% | 85.28% | High accuracy |
**Accuracy**: WIDER FACE validation set - from [YOLOv5-Face paper](https://arxiv.org/abs/2105.12931)
**Speed**: Benchmark on your own hardware using `scripts/run_detection.py --iterations 100`
**Note**: Fixed input size of 640×640. Models exported to ONNX from [deepcam-cn/yolov5-face](https://github.com/deepcam-cn/yolov5-face)
#### Usage
```python
from uniface import YOLOv5Face
from uniface.constants import YOLOv5FaceWeights
# Lightweight/Mobile
detector = YOLOv5Face(
model_name=YOLOv5FaceWeights.YOLOV5N,
conf_thresh=0.6,
nms_thresh=0.5
)
# Real-time detection (recommended)
detector = YOLOv5Face(
model_name=YOLOv5FaceWeights.YOLOV5S,
conf_thresh=0.6,
nms_thresh=0.5
)
# High accuracy
detector = YOLOv5Face(
model_name=YOLOv5FaceWeights.YOLOV5M,
conf_thresh=0.6
)
# Detect faces with landmarks
faces = detector.detect(image)
for face in faces:
bbox = face['bbox'] # [x1, y1, x2, y2]
confidence = face['confidence']
landmarks = face['landmarks'] # 5-point landmarks (5, 2)
```
---
## Face Recognition Models
### ArcFace
State-of-the-art face recognition using additive angular margin loss.
| Model Name | Backbone | Params | Size | Use Case |
|-------------|-------------|--------|-------|----------------------------|
| `MNET` | MobileNet | 2.0M | 8MB | **Balanced (recommended)** |
| `RESNET` | ResNet50 | 43.6M | 166MB | Maximum accuracy |
| Model Name | Backbone | Params | Size | Use Case |
| ----------- | --------- | ------ | ----- | -------------------------------- |
| `MNET` ⭐ | MobileNet | 2.0M | 8MB | **Balanced (recommended)** |
| `RESNET` | ResNet50 | 43.6M | 166MB | Maximum accuracy |
**Dataset**: Trained on MS1M-V2 (5.8M images, 85K identities)
**Accuracy**: Benchmark on your own dataset or use standard face verification benchmarks
@@ -113,12 +163,12 @@ embedding = recognizer.get_normalized_embedding(image, landmarks)
Lightweight face recognition optimized for mobile devices.
| Model Name | Backbone | Params | Size | LFW | CALFW | CPLFW | AgeDB-30 | Use Case |
|-----------------|-----------------|--------|------|-------|-------|-------|----------|--------------------|
| `MNET_025` | MobileNetV1 0.25| 0.36M | 1MB | 98.76%| 92.02%| 82.37%| 90.02% | Ultra-lightweight |
| `MNET_V2` ⭐ | MobileNetV2 | 2.29M | 4MB | 99.55%| 94.87%| 86.89%| 95.16% | **Mobile/Edge** |
| `MNET_V3_SMALL` | MobileNetV3-S | 1.25M | 3MB | 99.30%| 93.77%| 85.29%| 92.79% | Mobile optimized |
| `MNET_V3_LARGE` | MobileNetV3-L | 3.52M | 10MB | 99.53%| 94.56%| 86.79%| 95.13% | Balanced mobile |
| Model Name | Backbone | Params | Size | LFW | CALFW | CPLFW | AgeDB-30 | Use Case |
| ----------------- | ---------------- | ------ | ---- | ------ | ------ | ------ | -------- | --------------------- |
| `MNET_025` | MobileNetV1 0.25 | 0.36M | 1MB | 98.76% | 92.02% | 82.37% | 90.02% | Ultra-lightweight |
| `MNET_V2` ⭐ | MobileNetV2 | 2.29M | 4MB | 99.55% | 94.87% | 86.89% | 95.16% | **Mobile/Edge** |
| `MNET_V3_SMALL` | MobileNetV3-S | 1.25M | 3MB | 99.30% | 93.77% | 85.29% | 92.79% | Mobile optimized |
| `MNET_V3_LARGE` | MobileNetV3-L | 3.52M | 10MB | 99.53% | 94.56% | 86.79% | 95.13% | Balanced mobile |
**Dataset**: Trained on MS1M-V2 (5.8M images, 85K identities)
**Accuracy**: Evaluated on LFW, CALFW, CPLFW, and AgeDB-30 benchmarks
@@ -140,10 +190,10 @@ recognizer = MobileFace(model_name=MobileFaceWeights.MNET_V2)
Face recognition using angular softmax loss.
| Model Name | Backbone | Params | Size | LFW | CALFW | CPLFW | AgeDB-30 | Use Case |
|-------------|----------|--------|------|-------|-------|-------|----------|----------------------|
| `SPHERE20` | Sphere20 | 24.5M | 50MB | 99.67%| 95.61%| 88.75%| 96.58% | Research/Comparison |
| `SPHERE36` | Sphere36 | 34.6M | 92MB | 99.72%| 95.64%| 89.92%| 96.83% | Research/Comparison |
| Model Name | Backbone | Params | Size | LFW | CALFW | CPLFW | AgeDB-30 | Use Case |
| ------------ | -------- | ------ | ---- | ------ | ------ | ------ | -------- | ------------------- |
| `SPHERE20` | Sphere20 | 24.5M | 50MB | 99.67% | 95.61% | 88.75% | 96.58% | Research/Comparison |
| `SPHERE36` | Sphere36 | 34.6M | 92MB | 99.72% | 95.64% | 89.92% | 96.83% | Research/Comparison |
**Dataset**: Trained on MS1M-V2 (5.8M images, 85K identities)
**Accuracy**: Evaluated on LFW, CALFW, CPLFW, and AgeDB-30 benchmarks
@@ -166,9 +216,9 @@ recognizer = SphereFace(model_name=SphereFaceWeights.SPHERE20)
High-precision facial landmark localization.
| Model Name | Points | Params | Size | Use Case |
|------------|--------|--------|------|-----------------------------|
| `2D106` | 106 | 3.7M | 14MB | Face alignment, analysis |
| Model Name | Points | Params | Size | Use Case |
| ---------- | ------ | ------ | ---- | ------------------------ |
| `2D106` | 106 | 3.7M | 14MB | Face alignment, analysis |
**Note**: Provides 106 facial keypoints for detailed face analysis and alignment
@@ -183,6 +233,7 @@ landmarks = landmarker.get_landmarks(image, bbox)
```
**Landmark Groups:**
- Face contour: 0-32 (33 points)
- Eyebrows: 33-50 (18 points)
- Nose: 51-62 (12 points)
@@ -195,9 +246,9 @@ landmarks = landmarker.get_landmarks(image, bbox)
### Age & Gender Detection
| Model Name | Attributes | Params | Size | Use Case |
|------------|-------------|--------|------|-------------------|
| `DEFAULT` | Age, Gender | 2.1M | 8MB | General purpose |
| Model Name | Attributes | Params | Size | Use Case |
| ----------- | ----------- | ------ | ---- | --------------- |
| `DEFAULT` | Age, Gender | 2.1M | 8MB | General purpose |
**Dataset**: Trained on CelebA
**Note**: Accuracy varies by demographic and image quality. Test on your specific use case.
@@ -208,19 +259,19 @@ landmarks = landmarker.get_landmarks(image, bbox)
from uniface import AgeGender
predictor = AgeGender()
gender_id, age = predictor.predict(image, bbox)
# Returns: (gender_id, age_in_years)
# gender_id: 0 for Female, 1 for Male
gender, age = predictor.predict(image, bbox)
# Returns: (gender, age_in_years)
# gender: 0 for Female, 1 for Male
```
---
### Emotion Detection
| Model Name | Classes | Params | Size | Use Case |
|--------------|---------|--------|------|-----------------------|
| `AFFECNET7` | 7 | 0.5M | 2MB | 7-class emotion |
| `AFFECNET8` | 8 | 0.5M | 2MB | 8-class emotion |
| Model Name | Classes | Params | Size | Use Case |
| ------------- | ------- | ------ | ---- | --------------- |
| `AFFECNET7` | 7 | 0.5M | 2MB | 7-class emotion |
| `AFFECNET8` | 8 | 0.5M | 2MB | 8-class emotion |
**Classes (7)**: Neutral, Happy, Sad, Surprise, Fear, Disgust, Anger
**Classes (8)**: Above + Contempt
@@ -240,115 +291,44 @@ emotion, confidence = predictor.predict(image, landmarks)
---
## Model Selection Guide
## Gaze Estimation Models
### By Use Case
### MobileGaze Family
#### Mobile/Edge Devices
- **Detection**: `RetinaFace(MNET_025)` or `SCRFD(SCRFD_500M)`
- **Recognition**: `MobileFace(MNET_V2)`
- **Priority**: Speed, small model size
Real-time gaze direction prediction models trained on Gaze360 dataset. Returns pitch (vertical) and yaw (horizontal) angles in radians.
#### Real-Time Applications (Webcam, Video)
- **Detection**: `RetinaFace(MNET_V2)` or `SCRFD(SCRFD_500M)`
- **Recognition**: `ArcFace(MNET)`
- **Priority**: Speed-accuracy balance
| Model Name | Params | Size | MAE* | Use Case |
| -------------- | ------ | ------- | ----- | ----------------------------- |
| `RESNET18` | 11.7M | 43 MB | 12.84 | Balanced accuracy/speed |
| `RESNET34` ⭐ | 24.8M | 81.6 MB | 11.33 | **Recommended default** |
| `RESNET50` | 25.6M | 91.3 MB | 11.34 | High accuracy |
| `MOBILENET_V2` | 3.5M | 9.59 MB | 13.07 | Mobile/Edge devices |
| `MOBILEONE_S0` | 2.1M | 4.8 MB | 12.58 | Lightweight/Real-time |
#### High-Accuracy Applications (Security, Verification)
- **Detection**: `SCRFD(SCRFD_10G)` or `RetinaFace(RESNET34)`
- **Recognition**: `ArcFace(RESNET)`
- **Priority**: Maximum accuracy
*MAE (Mean Absolute Error) in degrees on Gaze360 test set - lower is better
#### Server/Cloud Deployment
- **Detection**: `SCRFD(SCRFD_10G)`
- **Recognition**: `ArcFace(RESNET)`
- **Priority**: Accuracy, batch processing
**Dataset**: Trained on Gaze360 (indoor/outdoor scenes with diverse head poses)
**Training**: 200 epochs with classification-based approach (binned angles)
---
#### Usage
### By Hardware
```python
from uniface import MobileGaze
from uniface.constants import GazeWeights
import numpy as np
#### Apple Silicon (M1/M2/M3/M4)
**Recommended**: All models work well with ARM64 optimizations (automatically included)
# Default (recommended)
gaze_estimator = MobileGaze() # Uses RESNET34
```bash
pip install uniface
# Lightweight model
gaze_estimator = MobileGaze(model_name=GazeWeights.MOBILEONE_S0)
# Estimate gaze from face crop
pitch, yaw = gaze_estimator.estimate(face_crop)
print(f"Pitch: {np.degrees(pitch):.1f}°, Yaw: {np.degrees(yaw):.1f}°")
```
**Recommended models**:
- **Fast**: `SCRFD(SCRFD_500M)` - Lightweight, real-time capable
- **Balanced**: `RetinaFace(MNET_V2)` - Good accuracy/speed tradeoff
- **Accurate**: `SCRFD(SCRFD_10G)` - High accuracy
**Benchmark on your M4**: `python scripts/run_detection.py --iterations 100`
#### NVIDIA GPU (CUDA)
**Recommended**: Larger models for maximum throughput
```bash
pip install uniface[gpu]
```
**Recommended models**:
- **Fast**: `SCRFD(SCRFD_500M)` - Maximum throughput
- **Balanced**: `SCRFD(SCRFD_10G)` - Best overall
- **Accurate**: `RetinaFace(RESNET34)` - Highest accuracy
#### CPU Only
**Recommended**: Lightweight models
**Recommended models**:
- **Fast**: `RetinaFace(MNET_025)` - Smallest, fastest
- **Balanced**: `RetinaFace(MNET_V2)` - Recommended default
- **Accurate**: `SCRFD(SCRFD_10G)` - Best accuracy on CPU
**Note**: FPS values vary significantly based on image size, number of faces, and hardware. Always benchmark on your specific setup.
---
## Benchmark Details
### How to Benchmark
Run benchmarks on your own hardware:
```bash
# Detection speed
python scripts/run_detection.py --image assets/test.jpg --iterations 100
# Compare models
python scripts/run_detection.py --image assets/test.jpg --method retinaface --iterations 100
python scripts/run_detection.py --image assets/test.jpg --method scrfd --iterations 100
```
### Accuracy Metrics Explained
- **WIDER FACE**: Standard face detection benchmark with three difficulty levels
- **Easy**: Large faces (>50px), clear backgrounds
- **Medium**: Medium-sized faces (30-50px), moderate occlusion
- **Hard**: Small faces (<30px), heavy occlusion, blur
*Accuracy values are from the original papers - see references below*
- **Model Size**: ONNX model file size (affects download time and memory)
- **Params**: Number of model parameters (affects inference speed)
### Important Notes
1. **Speed varies by**:
- Image resolution
- Number of faces in image
- Hardware (CPU/GPU/CoreML)
- Batch size
- Operating system
2. **Accuracy varies by**:
- Image quality
- Lighting conditions
- Face pose and occlusion
- Demographic factors
3. **Always benchmark on your specific use case** before choosing a model
**Note**: Requires face crop as input. Use face detection first to obtain bounding boxes.
---
@@ -388,13 +368,16 @@ python scripts/download_model.py --model MNET_V2
### Model Training & Architectures
- **RetinaFace Training**: [yakhyo/retinaface-pytorch](https://github.com/yakhyo/retinaface-pytorch) - PyTorch implementation and training code
- **YOLOv5-Face Original**: [deepcam-cn/yolov5-face](https://github.com/deepcam-cn/yolov5-face) - Original PyTorch implementation
- **YOLOv5-Face ONNX**: [yakhyo/yolov5-face-onnx-inference](https://github.com/yakhyo/yolov5-face-onnx-inference) - ONNX inference implementation
- **Face Recognition Training**: [yakhyo/face-recognition](https://github.com/yakhyo/face-recognition) - ArcFace, MobileFace, SphereFace training code
- **Gaze Estimation Training**: [yakhyo/gaze-estimation](https://github.com/yakhyo/gaze-estimation) - MobileGaze training code and pretrained weights
- **InsightFace**: [deepinsight/insightface](https://github.com/deepinsight/insightface) - Model architectures and pretrained weights
### Papers
- **RetinaFace**: [Single-Shot Multi-Level Face Localisation in the Wild](https://arxiv.org/abs/1905.00641)
- **SCRFD**: [Sample and Computation Redistribution for Efficient Face Detection](https://arxiv.org/abs/2105.04714)
- **YOLOv5-Face**: [YOLO5Face: Why Reinventing a Face Detector](https://arxiv.org/abs/2105.12931)
- **ArcFace**: [Additive Angular Margin Loss for Deep Face Recognition](https://arxiv.org/abs/1801.07698)
- **SphereFace**: [Deep Hypersphere Embedding for Face Recognition](https://arxiv.org/abs/1704.08063)

View File

@@ -75,7 +75,13 @@ scores = [f['confidence'] for f in faces]
landmarks = [f['landmarks'] for f in faces]
# Draw on image
draw_detections(image, bboxes, scores, landmarks, vis_threshold=0.6)
draw_detections(
image=image,
bboxes=bboxes,
scores=scores,
landmarks=landmarks,
vis_threshold=0.6,
)
# Save result
cv2.imwrite("output.jpg", image)
@@ -156,7 +162,12 @@ while True:
bboxes = [f['bbox'] for f in faces]
scores = [f['confidence'] for f in faces]
landmarks = [f['landmarks'] for f in faces]
draw_detections(frame, bboxes, scores, landmarks)
draw_detections(
image=frame,
bboxes=bboxes,
scores=scores,
landmarks=landmarks,
)
# Show frame
cv2.imshow("UniFace - Press 'q' to quit", frame)
@@ -188,9 +199,9 @@ faces = detector.detect(image)
# Predict attributes
for i, face in enumerate(faces):
gender_id, age = age_gender.predict(image, face['bbox'])
gender = 'Female' if gender_id == 0 else 'Male'
print(f"Face {i+1}: {gender}, {age} years old")
gender, age = age_gender.predict(image, face['bbox'])
gender_str = 'Female' if gender == 0 else 'Male'
print(f"Face {i+1}: {gender_str}, {age} years old")
```
**Output:**
@@ -231,7 +242,50 @@ if faces:
---
## 7. Batch Processing (3 minutes)
## 7. Gaze Estimation (2 minutes)
Estimate where a person is looking:
```python
import cv2
import numpy as np
from uniface import RetinaFace, MobileGaze
from uniface.visualization import draw_gaze
# Initialize models
detector = RetinaFace()
gaze_estimator = MobileGaze()
# Load image
image = cv2.imread("photo.jpg")
faces = detector.detect(image)
# Estimate gaze for each face
for i, face in enumerate(faces):
bbox = face['bbox']
x1, y1, x2, y2 = map(int, bbox[:4])
face_crop = image[y1:y2, x1:x2]
if face_crop.size > 0:
pitch, yaw = gaze_estimator.estimate(face_crop)
print(f"Face {i+1}: pitch={np.degrees(pitch):.1f}°, yaw={np.degrees(yaw):.1f}°")
# Draw gaze direction
draw_gaze(image, bbox, pitch, yaw)
cv2.imwrite("gaze_output.jpg", image)
```
**Output:**
```
Face 1: pitch=5.2°, yaw=-12.3°
Face 2: pitch=-8.1°, yaw=15.7°
```
---
## 8. Batch Processing (3 minutes)
Process multiple images:
@@ -264,15 +318,15 @@ print("Done!")
---
## 8. Model Selection
## 9. Model Selection
Choose the right model for your use case:
### Detection Models
```python
from uniface.detection import RetinaFace, SCRFD
from uniface.constants import RetinaFaceWeights, SCRFDWeights
from uniface.detection import RetinaFace, SCRFD, YOLOv5Face
from uniface.constants import RetinaFaceWeights, SCRFDWeights, YOLOv5FaceWeights
# Fast detection (mobile/edge devices)
detector = RetinaFace(
@@ -285,6 +339,13 @@ detector = RetinaFace(
model_name=RetinaFaceWeights.MNET_V2
)
# Real-time with high accuracy
detector = YOLOv5Face(
model_name=YOLOv5FaceWeights.YOLOV5S,
conf_thresh=0.6,
nms_thresh=0.5
)
# High accuracy (server/GPU)
detector = SCRFD(
model_name=SCRFDWeights.SCRFD_10G_KPS,
@@ -308,6 +369,22 @@ recognizer = MobileFace(model_name=MobileFaceWeights.MNET_V2) # Fast, small siz
recognizer = SphereFace(model_name=SphereFaceWeights.SPHERE20) # Alternative method
```
### Gaze Estimation Models
```python
from uniface import MobileGaze
from uniface.constants import GazeWeights
# Default (recommended)
gaze_estimator = MobileGaze() # Uses RESNET34
# Lightweight (mobile/edge devices)
gaze_estimator = MobileGaze(model_name=GazeWeights.MOBILEONE_S0)
# High accuracy
gaze_estimator = MobileGaze(model_name=GazeWeights.RESNET50)
```
---
## Common Issues
@@ -358,7 +435,20 @@ from uniface import retinaface # Module, not class
## Next Steps
- **Detailed Examples**: Check the [examples/](examples/) folder for Jupyter notebooks
### Jupyter Notebook Examples
Explore interactive examples for common tasks:
| Example | Description | Notebook |
|---------|-------------|----------|
| **Face Detection** | Detect faces and facial landmarks | [face_detection.ipynb](examples/face_detection.ipynb) |
| **Face Alignment** | Align and crop faces for recognition | [face_alignment.ipynb](examples/face_alignment.ipynb) |
| **Face Recognition** | Extract face embeddings and compare faces | [face_analyzer.ipynb](examples/face_analyzer.ipynb) |
| **Face Verification** | Compare two faces to verify identity | [face_verification.ipynb](examples/face_verification.ipynb) |
| **Face Search** | Find a person in a group photo | [face_search.ipynb](examples/face_search.ipynb) |
### Additional Resources
- **Model Benchmarks**: See [MODELS.md](MODELS.md) for performance comparisons
- **Full Documentation**: Read [README.md](README.md) for complete API reference
@@ -367,9 +457,7 @@ from uniface import retinaface # Module, not class
## References
- **RetinaFace Training**: [yakhyo/retinaface-pytorch](https://github.com/yakhyo/retinaface-pytorch)
- **YOLOv5-Face ONNX**: [yakhyo/yolov5-face-onnx-inference](https://github.com/yakhyo/yolov5-face-onnx-inference)
- **Face Recognition Training**: [yakhyo/face-recognition](https://github.com/yakhyo/face-recognition)
- **Gaze Estimation Training**: [yakhyo/gaze-estimation](https://github.com/yakhyo/gaze-estimation)
- **InsightFace**: [deepinsight/insightface](https://github.com/deepinsight/insightface)
---
Happy coding! 🚀

127
README.md
View File

@@ -5,7 +5,7 @@
[![PyPI](https://img.shields.io/pypi/v/uniface.svg)](https://pypi.org/project/uniface/)
[![CI](https://github.com/yakhyo/uniface/actions/workflows/ci.yml/badge.svg)](https://github.com/yakhyo/uniface/actions)
[![Downloads](https://pepy.tech/badge/uniface)](https://pepy.tech/project/uniface)
[![Ruff](https://img.shields.io/badge/Ruff-Checked-red)](https://github.com/astral-sh/ruff)
[![DeepWiki](https://img.shields.io/badge/DeepWiki-yakhyo%2Funiface-blue.svg?logo=)](https://deepwiki.com/yakhyo/uniface)
<div align="center">
<img src=".github/logos/logo_web.webp" width=75%>
@@ -17,9 +17,10 @@
## Features
- **High-Speed Face Detection**: ONNX-optimized RetinaFace and SCRFD models
- **High-Speed Face Detection**: ONNX-optimized RetinaFace, SCRFD, and YOLOv5-Face models
- **Facial Landmark Detection**: Accurate 106-point landmark localization
- **Face Recognition**: ArcFace, MobileFace, and SphereFace embeddings
- **Gaze Estimation**: Real-time gaze direction prediction with MobileGaze
- **Attribute Analysis**: Age, gender, and emotion detection
- **Face Alignment**: Precise alignment for downstream tasks
- **Hardware Acceleration**: ARM64 optimizations (Apple Silicon), CUDA (NVIDIA), CPU fallback
@@ -147,9 +148,32 @@ detector = RetinaFace()
age_gender = AgeGender()
faces = detector.detect(image)
gender_id, age = age_gender.predict(image, faces[0]['bbox'])
gender = 'Female' if gender_id == 0 else 'Male'
print(f"{gender}, {age} years old")
gender, age = age_gender.predict(image, faces[0]['bbox'])
gender_str = 'Female' if gender == 0 else 'Male'
print(f"{gender_str}, {age} years old")
```
### Gaze Estimation
```python
from uniface import RetinaFace, MobileGaze
from uniface.visualization import draw_gaze
import numpy as np
detector = RetinaFace()
gaze_estimator = MobileGaze()
faces = detector.detect(image)
for face in faces:
bbox = face['bbox']
x1, y1, x2, y2 = map(int, bbox[:4])
face_crop = image[y1:y2, x1:x2]
pitch, yaw = gaze_estimator.estimate(face_crop)
print(f"Gaze: pitch={np.degrees(pitch):.1f}°, yaw={np.degrees(yaw):.1f}°")
# Visualize
draw_gaze(image, bbox, pitch, yaw)
```
---
@@ -171,15 +195,18 @@ from uniface.detection import RetinaFace, SCRFD
from uniface.recognition import ArcFace
from uniface.landmark import Landmark106
from uniface.constants import SCRFDWeights
# Create detector with default settings
detector = RetinaFace()
# Create with custom config
detector = SCRFD(
model_name='scrfd_10g_kps',
conf_thresh=0.8,
model_name=SCRFDWeights.SCRFD_10G_KPS, # SCRFDWeights.SCRFD_500M_KPS
conf_thresh=0.4,
input_size=(640, 640)
)
# Or with defaults settings: detector = SCRFD()
# Recognition and landmarks
recognizer = ArcFace()
@@ -189,8 +216,8 @@ landmarker = Landmark106()
### Direct Model Instantiation
```python
from uniface import RetinaFace, SCRFD, ArcFace, MobileFace, SphereFace
from uniface.constants import RetinaFaceWeights
from uniface import RetinaFace, SCRFD, YOLOv5Face, ArcFace, MobileFace, SphereFace
from uniface.constants import RetinaFaceWeights, YOLOv5FaceWeights
# Detection
detector = RetinaFace(
@@ -198,6 +225,15 @@ detector = RetinaFace(
conf_thresh=0.5,
nms_thresh=0.4
)
# Or detector = RetinaFace()
# YOLOv5-Face detection
detector = YOLOv5Face(
model_name=YOLOv5FaceWeights.YOLOV5S,
conf_thresh=0.6,
nms_thresh=0.5
)
# Or detector = YOLOv5Face
# Recognition
recognizer = ArcFace() # Uses default weights
@@ -211,9 +247,41 @@ recognizer = SphereFace() # Angular softmax alternative
from uniface import detect_faces
# One-line face detection
faces = detect_faces(image, method='retinaface', conf_thresh=0.8)
faces = detect_faces(image, method='retinaface', conf_thresh=0.8) # methods: retinaface, scrfd, yolov5face
```
### Key Parameters (quick reference)
**Detection**
| Class | Key params (defaults) | Notes |
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------ | ---------------------------------------------- |
| `RetinaFace` | `model_name=RetinaFaceWeights.MNET_V2`, `conf_thresh=0.5`, `nms_thresh=0.4`, `input_size=(640, 640)`, `dynamic_size=False` | Supports 5-point landmarks |
| `SCRFD` | `model_name=SCRFDWeights.SCRFD_10G_KPS`, `conf_thresh=0.5`, `nms_thresh=0.4`, `input_size=(640, 640)` | Supports 5-point landmarks |
| `YOLOv5Face` | `model_name=YOLOv5FaceWeights.YOLOV5S`, `conf_thresh=0.6`, `nms_thresh=0.5`, `input_size=640` (fixed) | Supports 5-point landmarks; models: YOLOV5N/S/M; `input_size` must be 640 |
**Recognition**
| Class | Key params (defaults) | Notes |
| -------------- | ----------------------------------------- | ------------------------------------- |
| `ArcFace` | `model_name=ArcFaceWeights.MNET` | Returns 512-dim normalized embeddings |
| `MobileFace` | `model_name=MobileFaceWeights.MNET_V2` | Lightweight embeddings |
| `SphereFace` | `model_name=SphereFaceWeights.SPHERE20` | Angular softmax variant |
**Landmark & Attributes**
| Class | Key params (defaults) | Notes |
| --------------- | --------------------------------------------------------------------- | --------------------------------------- |
| `Landmark106` | No required params | 106-point landmarks |
| `AgeGender` | `model_name=AgeGenderWeights.DEFAULT`; `input_size` auto-detected | Requires bbox; ONNXRuntime |
| `Emotion` | `model_weights=DDAMFNWeights.AFFECNET7`, `input_size=(112, 112)` | Requires 5-point landmarks; TorchScript |
**Gaze Estimation**
| Class | Key params (defaults) | Notes |
| ------------- | ------------------------------------------ | ------------------------------------ |
| `MobileGaze` | `model_name=GazeWeights.RESNET34` | Returns (pitch, yaw) angles in radians; trained on Gaze360 |
---
## Model Performance
@@ -227,8 +295,11 @@ faces = detect_faces(image, method='retinaface', conf_thresh=0.8)
| retinaface_r34 | 94.16% | 93.12% | 88.90% | High accuracy |
| scrfd_500m | 90.57% | 88.12% | 68.51% | Real-time applications |
| scrfd_10g | 95.16% | 93.87% | 83.05% | Best accuracy/speed |
| yolov5n_face | 93.61% | 91.52% | 80.53% | Lightweight/Mobile |
| yolov5s_face | 94.33% | 92.61% | 83.15% | Real-time + accuracy |
| yolov5m_face | 95.30% | 93.76% | 85.28% | High accuracy |
_Accuracy values from original papers: [RetinaFace](https://arxiv.org/abs/1905.00641), [SCRFD](https://arxiv.org/abs/2105.04714)_
_Accuracy values from original papers: [RetinaFace](https://arxiv.org/abs/1905.00641), [SCRFD](https://arxiv.org/abs/2105.04714), [YOLOv5-Face](https://arxiv.org/abs/2105.12931)_
**Benchmark on your hardware:**
@@ -246,6 +317,19 @@ See [MODELS.md](MODELS.md) for detailed model information and selection guide.
## Examples
### Jupyter Notebooks
Interactive examples covering common face analysis tasks:
| Example | Description | Notebook |
|---------|-------------|----------|
| **Face Detection** | Detect faces and facial landmarks | [face_detection.ipynb](examples/face_detection.ipynb) |
| **Face Alignment** | Align and crop faces for recognition | [face_alignment.ipynb](examples/face_alignment.ipynb) |
| **Face Recognition** | Extract face embeddings and compare faces | [face_analyzer.ipynb](examples/face_analyzer.ipynb) |
| **Face Verification** | Compare two faces to verify identity | [face_verification.ipynb](examples/face_verification.ipynb) |
| **Face Search** | Find a person in a group photo | [face_search.ipynb](examples/face_search.ipynb) |
| **Gaze Estimation** | Estimate gaze direction from face images | [gaze_estimation.ipynb](examples/gaze_estimation.ipynb) |
### Webcam Face Detection
```python
@@ -268,7 +352,13 @@ while True:
scores = [f['confidence'] for f in faces]
landmarks = [f['landmarks'] for f in faces]
draw_detections(frame, bboxes, scores, landmarks, vis_threshold=0.6)
draw_detections(
image=frame,
bboxes=bboxes,
scores=scores,
landmarks=landmarks,
vis_threshold=0.6,
)
cv2.imshow("Face Detection", frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
@@ -429,6 +519,7 @@ uniface/
│ ├── detection/ # Face detection models
│ ├── recognition/ # Face recognition models
│ ├── landmark/ # Landmark detection
│ ├── gaze/ # Gaze estimation
│ ├── attribute/ # Age, gender, emotion
│ ├── onnx_utils.py # ONNX Runtime utilities
│ ├── model_store.py # Model download & caching
@@ -442,20 +533,12 @@ uniface/
## References
### Model Training & Architectures
- **RetinaFace Training**: [yakhyo/retinaface-pytorch](https://github.com/yakhyo/retinaface-pytorch) - PyTorch implementation and training code
- **YOLOv5-Face ONNX**: [yakhyo/yolov5-face-onnx-inference](https://github.com/yakhyo/yolov5-face-onnx-inference) - ONNX inference implementation
- **Face Recognition Training**: [yakhyo/face-recognition](https://github.com/yakhyo/face-recognition) - ArcFace, MobileFace, SphereFace training code
- **Gaze Estimation Training**: [yakhyo/gaze-estimation](https://github.com/yakhyo/gaze-estimation) - MobileGaze training code and pretrained weights
- **InsightFace**: [deepinsight/insightface](https://github.com/deepinsight/insightface) - Model architectures and pretrained weights
### Papers
- **RetinaFace**: [Single-Shot Multi-Level Face Localisation in the Wild](https://arxiv.org/abs/1905.00641)
- **SCRFD**: [Sample and Computation Redistribution for Efficient Face Detection](https://arxiv.org/abs/2105.04714)
- **ArcFace**: [Additive Angular Margin Loss for Deep Face Recognition](https://arxiv.org/abs/1801.07698)
---
## Contributing
Contributions are welcome! Please open an issue or submit a pull request on [GitHub](https://github.com/yakhyo/uniface).

BIN
assets/einstien.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.3 MiB

BIN
assets/scientists.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.9 MiB

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

368
examples/face_search.ipynb Normal file

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@@ -1,7 +1,7 @@
[project]
name = "uniface"
version = "1.1.2"
description = "UniFace: A Comprehensive Library for Face Detection, Recognition, Landmark Analysis, Age, and Gender Detection"
version = "1.4.0"
description = "UniFace: A Comprehensive Library for Face Detection, Recognition, Landmark Analysis, Gaze Estimation, Age, and Gender Detection"
readme = "README.md"
license = { text = "MIT" }
authors = [{ name = "Yakhyokhuja Valikhujaev", email = "yakhyo9696@gmail.com" }]
@@ -14,6 +14,7 @@ keywords = [
"face-detection",
"face-recognition",
"facial-landmarks",
"gaze-estimation",
"age-detection",
"gender-detection",
"computer-vision",

View File

@@ -9,6 +9,7 @@ Scripts for testing UniFace features.
| `run_detection.py` | Face detection on image or webcam |
| `run_age_gender.py` | Age and gender prediction |
| `run_emotion.py` | Emotion detection (7 or 8 emotions) |
| `run_gaze_estimation.py` | Gaze direction estimation |
| `run_landmarks.py` | 106-point facial landmark detection |
| `run_recognition.py` | Face embedding extraction and comparison |
| `run_face_analyzer.py` | Complete face analysis (detection + recognition + attributes) |
@@ -33,6 +34,10 @@ python scripts/run_age_gender.py --webcam
python scripts/run_emotion.py --image assets/test.jpg
python scripts/run_emotion.py --webcam
# Gaze estimation
python scripts/run_gaze_estimation.py --image assets/test.jpg
python scripts/run_gaze_estimation.py --webcam
# Landmarks
python scripts/run_landmarks.py --image assets/test.jpg
python scripts/run_landmarks.py --webcam
@@ -63,8 +68,8 @@ python scripts/download_model.py # downloads all
|--------|-------------|
| `--image` | Path to input image |
| `--webcam` | Use webcam instead of image |
| `--detector` | Choose detector: `retinaface` or `scrfd` |
| `--threshold` | Visualization confidence threshold (default: 0.6) |
| `--method` | Choose detector: `retinaface`, `scrfd`, `yolov5face` |
| `--threshold` | Visualization confidence threshold (default: 0.25) |
| `--save_dir` | Output directory (default: `outputs`) |
## Quick Test

View File

@@ -31,7 +31,9 @@ def process_image(detector, image_path: Path, output_path: Path, threshold: floa
bboxes = [f['bbox'] for f in faces]
scores = [f['confidence'] for f in faces]
landmarks = [f['landmarks'] for f in faces]
draw_detections(image, bboxes, scores, landmarks, vis_threshold=threshold)
draw_detections(
image=image, bboxes=bboxes, scores=scores, landmarks=landmarks, vis_threshold=threshold, fancy_bbox=True
)
cv2.putText(
image,

View File

@@ -43,7 +43,9 @@ def process_image(
bboxes = [f['bbox'] for f in faces]
scores = [f['confidence'] for f in faces]
landmarks = [f['landmarks'] for f in faces]
draw_detections(image, bboxes, scores, landmarks, vis_threshold=threshold)
draw_detections(
image=image, bboxes=bboxes, scores=scores, landmarks=landmarks, vis_threshold=threshold, fancy_bbox=True
)
for i, face in enumerate(faces):
gender_id, age = age_gender.predict(image, face['bbox'])
@@ -77,7 +79,9 @@ def run_webcam(detector, age_gender, threshold: float = 0.6):
bboxes = [f['bbox'] for f in faces]
scores = [f['confidence'] for f in faces]
landmarks = [f['landmarks'] for f in faces]
draw_detections(frame, bboxes, scores, landmarks, vis_threshold=threshold)
draw_detections(
image=frame, bboxes=bboxes, scores=scores, landmarks=landmarks, vis_threshold=threshold, fancy_bbox=True
)
for face in faces:
gender_id, age = age_gender.predict(frame, face['bbox']) # predict per face

View File

@@ -7,7 +7,7 @@ import os
import cv2
from uniface.detection import SCRFD, RetinaFace
from uniface.detection import SCRFD, RetinaFace, YOLOv5Face
from uniface.visualization import draw_detections
@@ -51,7 +51,15 @@ def run_webcam(detector, threshold: float = 0.6):
bboxes = [f['bbox'] for f in faces]
scores = [f['confidence'] for f in faces]
landmarks = [f['landmarks'] for f in faces]
draw_detections(frame, bboxes, scores, landmarks, vis_threshold=threshold)
draw_detections(
image=frame,
bboxes=bboxes,
scores=scores,
landmarks=landmarks,
vis_threshold=threshold,
draw_score=True,
fancy_bbox=True,
)
cv2.putText(
frame,
@@ -75,15 +83,22 @@ def main():
parser = argparse.ArgumentParser(description='Run face detection')
parser.add_argument('--image', type=str, help='Path to input image')
parser.add_argument('--webcam', action='store_true', help='Use webcam')
parser.add_argument('--method', type=str, default='retinaface', choices=['retinaface', 'scrfd'])
parser.add_argument('--threshold', type=float, default=0.6, help='Visualization threshold')
parser.add_argument('--method', type=str, default='retinaface', choices=['retinaface', 'scrfd', 'yolov5face'])
parser.add_argument('--threshold', type=float, default=0.25, help='Visualization threshold')
parser.add_argument('--save_dir', type=str, default='outputs')
args = parser.parse_args()
if not args.image and not args.webcam:
parser.error('Either --image or --webcam must be specified')
detector = RetinaFace() if args.method == 'retinaface' else SCRFD()
if args.method == 'retinaface':
detector = RetinaFace()
elif args.method == 'scrfd':
detector = SCRFD()
else:
from uniface.constants import YOLOv5FaceWeights
detector = YOLOv5Face(model_name=YOLOv5FaceWeights.YOLOV5M)
if args.webcam:
run_webcam(detector, args.threshold)

View File

@@ -42,7 +42,9 @@ def process_image(
bboxes = [f['bbox'] for f in faces]
scores = [f['confidence'] for f in faces]
landmarks = [f['landmarks'] for f in faces]
draw_detections(image, bboxes, scores, landmarks, vis_threshold=threshold)
draw_detections(
image=image, bboxes=bboxes, scores=scores, landmarks=landmarks, vis_threshold=threshold, fancy_bbox=True
)
for i, face in enumerate(faces):
emotion, confidence = emotion_predictor.predict(image, face['landmarks'])

View File

@@ -16,8 +16,8 @@ def draw_face_info(image, face, face_id):
"""Draw face ID and attributes above bounding box."""
x1, y1, x2, y2 = map(int, face.bbox)
lines = [f'ID: {face_id}', f'Conf: {face.confidence:.2f}']
if face.age and face.gender:
lines.append(f'{face.gender}, {face.age}y')
if face.age and face.sex:
lines.append(f'{face.sex}, {face.age}y')
for i, line in enumerate(lines):
y_pos = y1 - 10 - (len(lines) - 1 - i) * 25
@@ -41,7 +41,7 @@ def process_image(analyzer, image_path: str, save_dir: str = 'outputs', show_sim
return
for i, face in enumerate(faces, 1):
info = f' Face {i}: {face.gender}, {face.age}y' if face.age and face.gender else f' Face {i}'
info = f' Face {i}: {face.sex}, {face.age}y' if face.age and face.sex else f' Face {i}'
if face.embedding is not None:
info += f' (embedding: {face.embedding.shape})'
print(info)
@@ -82,7 +82,7 @@ def process_image(analyzer, image_path: str, save_dir: str = 'outputs', show_sim
bboxes = [f.bbox for f in faces]
scores = [f.confidence for f in faces]
landmarks = [f.landmarks for f in faces]
draw_detections(image, bboxes, scores, landmarks)
draw_detections(image=image, bboxes=bboxes, scores=scores, landmarks=landmarks, fancy_bbox=True)
for i, face in enumerate(faces, 1):
draw_face_info(image, face, i)

View File

@@ -0,0 +1,104 @@
# Gaze estimation on detected faces
# Usage: python run_gaze_estimation.py --image path/to/image.jpg
# python run_gaze_estimation.py --webcam
import argparse
import os
from pathlib import Path
import cv2
import numpy as np
from uniface import RetinaFace
from uniface.gaze import MobileGaze
from uniface.visualization import draw_gaze
def process_image(detector, gaze_estimator, image_path: str, save_dir: str = 'outputs'):
image = cv2.imread(image_path)
if image is None:
print(f"Error: Failed to load image from '{image_path}'")
return
faces = detector.detect(image)
print(f'Detected {len(faces)} face(s)')
for i, face in enumerate(faces):
bbox = face['bbox']
x1, y1, x2, y2 = map(int, bbox[:4])
face_crop = image[y1:y2, x1:x2]
if face_crop.size == 0:
continue
pitch, yaw = gaze_estimator.estimate(face_crop)
print(f' Face {i + 1}: pitch={np.degrees(pitch):.1f}°, yaw={np.degrees(yaw):.1f}°')
# Draw both bbox and gaze arrow with angle text
draw_gaze(image, bbox, pitch, yaw, draw_angles=True)
os.makedirs(save_dir, exist_ok=True)
output_path = os.path.join(save_dir, f'{Path(image_path).stem}_gaze.jpg')
cv2.imwrite(output_path, image)
print(f'Output saved: {output_path}')
def run_webcam(detector, gaze_estimator):
cap = cv2.VideoCapture(0)
if not cap.isOpened():
print('Cannot open webcam')
return
print("Press 'q' to quit")
while True:
ret, frame = cap.read()
if not ret:
break
frame = cv2.flip(frame, 1)
faces = detector.detect(frame)
for face in faces:
bbox = face['bbox']
x1, y1, x2, y2 = map(int, bbox[:4])
face_crop = frame[y1:y2, x1:x2]
if face_crop.size == 0:
continue
pitch, yaw = gaze_estimator.estimate(face_crop)
# Draw both bbox and gaze arrow
draw_gaze(frame, bbox, pitch, yaw)
cv2.putText(frame, f'Faces: {len(faces)}', (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
cv2.imshow('Gaze Estimation', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
def main():
parser = argparse.ArgumentParser(description='Run gaze estimation')
parser.add_argument('--image', type=str, help='Path to input image')
parser.add_argument('--webcam', action='store_true', help='Use webcam')
parser.add_argument('--save_dir', type=str, default='outputs')
args = parser.parse_args()
if not args.image and not args.webcam:
parser.error('Either --image or --webcam must be specified')
detector = RetinaFace()
gaze_estimator = MobileGaze()
if args.webcam:
run_webcam(detector, gaze_estimator)
else:
process_image(detector, gaze_estimator, args.image, args.save_dir)
if __name__ == '__main__':
main()

View File

@@ -55,7 +55,9 @@ def process_video(
bboxes = [f['bbox'] for f in faces]
scores = [f['confidence'] for f in faces]
landmarks = [f['landmarks'] for f in faces]
draw_detections(frame, bboxes, scores, landmarks, vis_threshold=threshold)
draw_detections(
image=frame, bboxes=bboxes, scores=scores, landmarks=landmarks, vis_threshold=threshold, fancy_bbox=True
)
cv2.putText(
frame,

View File

@@ -263,7 +263,7 @@ def test_factory_returns_correct_types():
"""
Test that factory functions return instances of the correct types.
"""
from uniface import RetinaFace, ArcFace, Landmark106
from uniface import ArcFace, Landmark106, RetinaFace
detector = create_detector('retinaface')
recognizer = create_recognizer('arcface')

View File

@@ -13,7 +13,7 @@
__license__ = 'MIT'
__author__ = 'Yakhyokhuja Valikhujaev'
__version__ = '1.1.2'
__version__ = '1.4.0'
from uniface.face_utils import compute_similarity, face_alignment
@@ -32,10 +32,12 @@ except ImportError:
from .detection import (
SCRFD,
RetinaFace,
YOLOv5Face,
create_detector,
detect_faces,
list_available_detectors,
)
from .gaze import MobileGaze, create_gaze_estimator
from .landmark import Landmark106, create_landmarker
from .recognition import ArcFace, MobileFace, SphereFace, create_recognizer
@@ -48,6 +50,7 @@ __all__ = [
'FaceAnalyzer',
# Factory functions
'create_detector',
'create_gaze_estimator',
'create_landmarker',
'create_recognizer',
'detect_faces',
@@ -55,12 +58,15 @@ __all__ = [
# Detection models
'RetinaFace',
'SCRFD',
'YOLOv5Face',
# Recognition models
'ArcFace',
'MobileFace',
'SphereFace',
# Landmark models
'Landmark106',
# Gaze models
'MobileGaze',
# Attribute models
'AgeGender',
'Emotion',

View File

@@ -53,12 +53,11 @@ class FaceAnalyzer:
except Exception as e:
Logger.warning(f' Face {idx + 1}: Failed to extract embedding: {e}')
age, gender_id = None, None
age, gender = None, None
if self.age_gender is not None:
try:
gender_id, age = self.age_gender.predict(image, bbox)
gender_str = 'Female' if gender_id == 0 else 'Male'
Logger.debug(f' Face {idx + 1}: Age={age}, Gender={gender_str}')
gender, age = self.age_gender.predict(image, bbox)
Logger.debug(f' Face {idx + 1}: Age={age}, Gender={gender}')
except Exception as e:
Logger.warning(f' Face {idx + 1}: Failed to predict age/gender: {e}')
@@ -68,7 +67,7 @@ class FaceAnalyzer:
landmarks=landmarks,
embedding=embedding,
age=age,
gender_id=gender_id,
gender=gender,
)
faces.append(face)

View File

@@ -2,7 +2,7 @@
# Author: Yakhyokhuja Valikhujaev
# GitHub: https://github.com/yakhyo
from typing import List, Tuple, Union
from typing import List, Optional, Tuple, Union
import cv2
import numpy as np
@@ -24,18 +24,30 @@ class AgeGender(Attribute):
This class inherits from the base `Attribute` class and implements the
functionality for predicting age (in years) and gender ID (0 for Female,
1 for Male) from a face image. It requires a bounding box to locate the face.
Args:
model_name (AgeGenderWeights): The enum specifying the model weights to load.
Defaults to `AgeGenderWeights.DEFAULT`.
input_size (Optional[Tuple[int, int]]): Input size (height, width).
If None, automatically detected from model metadata. Defaults to None.
"""
def __init__(self, model_name: AgeGenderWeights = AgeGenderWeights.DEFAULT) -> None:
def __init__(
self,
model_name: AgeGenderWeights = AgeGenderWeights.DEFAULT,
input_size: Optional[Tuple[int, int]] = None,
) -> None:
"""
Initializes the AgeGender prediction model.
Args:
model_name (AgeGenderWeights): The enum specifying the model weights
to load.
model_name (AgeGenderWeights): The enum specifying the model weights to load.
input_size (Optional[Tuple[int, int]]): Input size (height, width).
If None, automatically detected from model metadata. Defaults to None.
"""
Logger.info(f'Initializing AgeGender with model={model_name.name}')
self.model_path = verify_model_weights(model_name)
self._user_input_size = input_size # Store user preference
self._initialize_model()
def _initialize_model(self) -> None:
@@ -47,7 +59,19 @@ class AgeGender(Attribute):
# Get model input details from the loaded model
input_meta = self.session.get_inputs()[0]
self.input_name = input_meta.name
self.input_size = tuple(input_meta.shape[2:4]) # (height, width)
# Use user-provided size if given, otherwise auto-detect from model
model_input_size = tuple(input_meta.shape[2:4]) # (height, width)
if self._user_input_size is not None:
self.input_size = self._user_input_size
if self._user_input_size != model_input_size:
Logger.warning(
f'Using custom input_size {self.input_size}, '
f'but model expects {model_input_size}. This may affect accuracy.'
)
else:
self.input_size = model_input_size
self.output_names = [output.name for output in self.session.get_outputs()]
Logger.info(f'Successfully initialized AgeGender model with input size {self.input_size}')
except Exception as e:

View File

@@ -55,6 +55,22 @@ class SCRFDWeights(str, Enum):
SCRFD_500M_KPS = "scrfd_500m"
class YOLOv5FaceWeights(str, Enum):
"""
Trained on WIDER FACE dataset.
Original implementation: https://github.com/deepcam-cn/yolov5-face
Exported to ONNX from: https://github.com/yakhyo/yolov5-face-onnx-inference
Model Performance (WIDER FACE):
- YOLOV5N: 11MB, 93.61% Easy / 91.52% Medium / 80.53% Hard
- YOLOV5S: 28MB, 94.33% Easy / 92.61% Medium / 83.15% Hard
- YOLOV5M: 82MB, 95.30% Easy / 93.76% Medium / 85.28% Hard
"""
YOLOV5N = "yolov5n"
YOLOV5S = "yolov5s"
YOLOV5M = "yolov5m"
class DDAMFNWeights(str, Enum):
"""
Trained on AffectNet dataset.
@@ -80,6 +96,19 @@ class LandmarkWeights(str, Enum):
DEFAULT = "2d_106"
class GazeWeights(str, Enum):
"""
MobileGaze: Real-Time Gaze Estimation models.
Trained on Gaze360 dataset.
https://github.com/yakhyo/gaze-estimation
"""
RESNET18 = "gaze_resnet18"
RESNET34 = "gaze_resnet34"
RESNET50 = "gaze_resnet50"
MOBILENET_V2 = "gaze_mobilenetv2"
MOBILEONE_S0 = "gaze_mobileone_s0"
MODEL_URLS: Dict[Enum, str] = {
# RetinaFace
RetinaFaceWeights.MNET_025: 'https://github.com/yakhyo/uniface/releases/download/weights/retinaface_mv1_0.25.onnx',
@@ -102,6 +131,10 @@ MODEL_URLS: Dict[Enum, str] = {
# SCRFD
SCRFDWeights.SCRFD_10G_KPS: 'https://github.com/yakhyo/uniface/releases/download/weights/scrfd_10g_kps.onnx',
SCRFDWeights.SCRFD_500M_KPS: 'https://github.com/yakhyo/uniface/releases/download/weights/scrfd_500m_kps.onnx',
# YOLOv5-Face
YOLOv5FaceWeights.YOLOV5N: 'https://github.com/yakhyo/yolov5-face-onnx-inference/releases/download/weights/yolov5n_face.onnx',
YOLOv5FaceWeights.YOLOV5S: 'https://github.com/yakhyo/yolov5-face-onnx-inference/releases/download/weights/yolov5s_face.onnx',
YOLOv5FaceWeights.YOLOV5M: 'https://github.com/yakhyo/yolov5-face-onnx-inference/releases/download/weights/yolov5m_face.onnx',
# DDAFM
DDAMFNWeights.AFFECNET7: 'https://github.com/yakhyo/uniface/releases/download/weights/affecnet7.script',
DDAMFNWeights.AFFECNET8: 'https://github.com/yakhyo/uniface/releases/download/weights/affecnet8.script',
@@ -109,6 +142,12 @@ MODEL_URLS: Dict[Enum, str] = {
AgeGenderWeights.DEFAULT: 'https://github.com/yakhyo/uniface/releases/download/weights/genderage.onnx',
# Landmarks
LandmarkWeights.DEFAULT: 'https://github.com/yakhyo/uniface/releases/download/weights/2d106det.onnx',
# Gaze (MobileGaze)
GazeWeights.RESNET18: 'https://github.com/yakhyo/gaze-estimation/releases/download/weights/resnet18_gaze.onnx',
GazeWeights.RESNET34: 'https://github.com/yakhyo/gaze-estimation/releases/download/weights/resnet34_gaze.onnx',
GazeWeights.RESNET50: 'https://github.com/yakhyo/gaze-estimation/releases/download/weights/resnet50_gaze.onnx',
GazeWeights.MOBILENET_V2: 'https://github.com/yakhyo/gaze-estimation/releases/download/weights/mobilenetv2_gaze.onnx',
GazeWeights.MOBILEONE_S0: 'https://github.com/yakhyo/gaze-estimation/releases/download/weights/mobileone_s0_gaze.onnx',
}
MODEL_SHA256: Dict[Enum, str] = {
@@ -133,6 +172,10 @@ MODEL_SHA256: Dict[Enum, str] = {
# SCRFD
SCRFDWeights.SCRFD_10G_KPS: '5838f7fe053675b1c7a08b633df49e7af5495cee0493c7dcf6697200b85b5b91',
SCRFDWeights.SCRFD_500M_KPS: '5e4447f50245bbd7966bd6c0fa52938c61474a04ec7def48753668a9d8b4ea3a',
# YOLOv5-Face
YOLOv5FaceWeights.YOLOV5N: 'eb244a06e36999db732b317c2b30fa113cd6cfc1a397eaf738f2d6f33c01f640',
YOLOv5FaceWeights.YOLOV5S: 'fc682801cd5880e1e296184a14aea0035486b5146ec1a1389d2e7149cb134bb2',
YOLOv5FaceWeights.YOLOV5M: '04302ce27a15bde3e20945691b688e2dd018a10e92dd8932146bede6a49207b2',
# DDAFM
DDAMFNWeights.AFFECNET7: '10535bf8b6afe8e9d6ae26cea6c3add9a93036e9addb6adebfd4a972171d015d',
DDAMFNWeights.AFFECNET8: '8c66963bc71db42796a14dfcbfcd181b268b65a3fc16e87147d6a3a3d7e0f487',
@@ -140,6 +183,12 @@ MODEL_SHA256: Dict[Enum, str] = {
AgeGenderWeights.DEFAULT: '4fde69b1c810857b88c64a335084f1c3fe8f01246c9a191b48c7bb756d6652fb',
# Landmark
LandmarkWeights.DEFAULT: 'f001b856447c413801ef5c42091ed0cd516fcd21f2d6b79635b1e733a7109dbf',
# MobileGaze (trained on Gaze360)
GazeWeights.RESNET18: '23d5d7e4f6f40dce8c35274ce9d08b45b9e22cbaaf5af73182f473229d713d31',
GazeWeights.RESNET34: '4457ee5f7acd1a5ab02da4b61f02fc3a0b17adbf3844dd0ba3cd4288f2b5e1de',
GazeWeights.RESNET50: 'e1eaf98f5ec7c89c6abe7cfe39f7be83e747163f98d1ff945c0603b3c521be22',
GazeWeights.MOBILENET_V2: 'fdcdb84e3e6421b5a79e8f95139f249fc258d7f387eed5ddac2b80a9a15ce076',
GazeWeights.MOBILEONE_S0: 'c0b5a4f4a0ffd24f76ab3c1452354bb2f60110899fd9a88b464c75bafec0fde8',
}
CHUNK_SIZE = 8192

View File

@@ -10,6 +10,7 @@ import numpy as np
from .base import BaseDetector
from .retinaface import RetinaFace
from .scrfd import SCRFD
from .yolov5 import YOLOv5Face
# Global cache for detector instances
_detector_cache: Dict[str, BaseDetector] = {}
@@ -21,7 +22,7 @@ def detect_faces(image: np.ndarray, method: str = 'retinaface', **kwargs) -> Lis
Args:
image (np.ndarray): Input image as numpy array.
method (str): Detection method to use. Options: 'retinaface', 'scrfd'.
method (str): Detection method to use. Options: 'retinaface', 'scrfd', 'yolov5face'.
**kwargs: Additional arguments passed to the detector.
Returns:
@@ -59,6 +60,7 @@ def create_detector(method: str = 'retinaface', **kwargs) -> BaseDetector:
method (str): Detection method. Options:
- 'retinaface': RetinaFace detector (default)
- 'scrfd': SCRFD detector (fast and accurate)
- 'yolov5face': YOLOv5-Face detector (accurate with landmarks)
**kwargs: Detector-specific parameters
Returns:
@@ -86,6 +88,14 @@ def create_detector(method: str = 'retinaface', **kwargs) -> BaseDetector:
... conf_thresh=0.8,
... nms_thresh=0.4
... )
>>> # YOLOv5-Face detector
>>> detector = create_detector(
... 'yolov5face',
... model_name=YOLOv5FaceWeights.YOLOV5S,
... conf_thresh=0.25,
... nms_thresh=0.45
... )
"""
method = method.lower()
@@ -95,8 +105,11 @@ def create_detector(method: str = 'retinaface', **kwargs) -> BaseDetector:
elif method == 'scrfd':
return SCRFD(**kwargs)
elif method == 'yolov5face':
return YOLOv5Face(**kwargs)
else:
available_methods = ['retinaface', 'scrfd']
available_methods = ['retinaface', 'scrfd', 'yolov5face']
raise ValueError(f"Unsupported detection method: '{method}'. Available methods: {available_methods}")
@@ -130,6 +143,17 @@ def list_available_detectors() -> Dict[str, Dict[str, Any]]:
'input_size': (640, 640),
},
},
'yolov5face': {
'description': 'YOLOv5-Face detector - accurate face detection with landmarks',
'supports_landmarks': True,
'paper': 'https://arxiv.org/abs/2105.12931',
'default_params': {
'model_name': 'yolov5s_face',
'conf_thresh': 0.25,
'nms_thresh': 0.45,
'input_size': 640,
},
},
}
@@ -139,5 +163,6 @@ __all__ = [
'list_available_detectors',
'SCRFD',
'RetinaFace',
'YOLOv5Face',
'BaseDetector',
]

View File

@@ -27,17 +27,19 @@ class RetinaFace(BaseDetector):
Title: "RetinaFace: Single-stage Dense Face Localisation in the Wild"
Paper: https://arxiv.org/abs/1905.00641
Code: https://github.com/yakhyo/retinaface-pytorch
Args:
**kwargs: Keyword arguments passed to BaseDetector and RetinaFace. Supported keys include:
model_name (RetinaFaceWeights, optional): Model weights to use. Defaults to `RetinaFaceWeights.MNET_V2`.
conf_thresh (float, optional): Confidence threshold for filtering detections. Defaults to 0.5.
nms_thresh (float, optional): Non-maximum suppression (NMS) IoU threshold. Defaults to 0.4.
pre_nms_topk (int, optional): Number of top-scoring boxes considered before NMS. Defaults to 5000.
post_nms_topk (int, optional): Max number of detections kept after NMS. Defaults to 750.
dynamic_size (bool, optional): If True, generate anchors dynamically per input image. Defaults to False.
input_size (Tuple[int, int], optional): Fixed input size (width, height) if `dynamic_size=False`.
Defaults to (640, 640).
model_name (RetinaFaceWeights): Model weights to use. Defaults to `RetinaFaceWeights.MNET_V2`.
conf_thresh (float): Confidence threshold for filtering detections. Defaults to 0.5.
nms_thresh (float): Non-maximum suppression (NMS) IoU threshold. Defaults to 0.4.
input_size (Tuple[int, int]): Fixed input size (width, height) if `dynamic_size=False`.
Defaults to (640, 640).
Note: Non-default sizes may cause slower inference and CoreML compatibility issues.
**kwargs: Advanced options:
pre_nms_topk (int): Number of top-scoring boxes considered before NMS. Defaults to 5000.
post_nms_topk (int): Max number of detections kept after NMS. Defaults to 750.
dynamic_size (bool): If True, generate anchors dynamically per input image. Defaults to False.
Attributes:
model_name (RetinaFaceWeights): Selected model variant.
@@ -56,17 +58,33 @@ class RetinaFace(BaseDetector):
RuntimeError: If the ONNX model fails to load or initialize.
"""
def __init__(self, **kwargs) -> None:
super().__init__(**kwargs)
def __init__(
self,
*,
model_name: RetinaFaceWeights = RetinaFaceWeights.MNET_V2,
conf_thresh: float = 0.5,
nms_thresh: float = 0.4,
input_size: Tuple[int, int] = (640, 640),
**kwargs: Any,
) -> None:
super().__init__(
model_name=model_name,
conf_thresh=conf_thresh,
nms_thresh=nms_thresh,
input_size=input_size,
**kwargs,
)
self._supports_landmarks = True # RetinaFace supports landmarks
self.model_name = kwargs.get('model_name', RetinaFaceWeights.MNET_V2)
self.conf_thresh = kwargs.get('conf_thresh', 0.5)
self.nms_thresh = kwargs.get('nms_thresh', 0.4)
self.model_name = model_name
self.conf_thresh = conf_thresh
self.nms_thresh = nms_thresh
self.input_size = input_size
# Advanced options from kwargs
self.pre_nms_topk = kwargs.get('pre_nms_topk', 5000)
self.post_nms_topk = kwargs.get('post_nms_topk', 750)
self.dynamic_size = kwargs.get('dynamic_size', False)
self.input_size = kwargs.get('input_size', (640, 640))
Logger.info(
f'Initializing RetinaFace with model={self.model_name}, conf_thresh={self.conf_thresh}, '
@@ -132,6 +150,7 @@ class RetinaFace(BaseDetector):
def detect(
self,
image: np.ndarray,
*,
max_num: int = 0,
metric: Literal['default', 'max'] = 'max',
center_weight: float = 2.0,
@@ -211,9 +230,9 @@ class RetinaFace(BaseDetector):
faces = []
for i in range(detections.shape[0]):
face_dict = {
'bbox': detections[i, :4].astype(np.float32),
'bbox': detections[i, :4],
'confidence': float(detections[i, 4]),
'landmarks': landmarks[i].astype(np.float32),
'landmarks': landmarks[i],
}
faces.append(face_dict)
@@ -274,7 +293,7 @@ class RetinaFace(BaseDetector):
landmarks[: self.post_nms_topk],
)
landmarks = landmarks.reshape(-1, 5, 2).astype(np.int32)
landmarks = landmarks.reshape(-1, 5, 2).astype(np.float32)
return detections, landmarks

View File

@@ -24,16 +24,20 @@ class SCRFD(BaseDetector):
Title: "Sample and Computation Redistribution for Efficient Face Detection"
Paper: https://arxiv.org/abs/2105.04714
Code: https://github.com/insightface/insightface
Args:
**kwargs: Keyword arguments passed to BaseDetector and SCRFD. Supported keys include:
model_name (SCRFDWeights, optional): Predefined model enum (e.g., `SCRFD_10G_KPS`).
Specifies the SCRFD variant to load. Defaults to SCRFD_10G_KPS.
conf_thresh (float, optional): Confidence threshold for filtering detections. Defaults to 0.5.
nms_thresh (float, optional): Non-Maximum Suppression threshold. Defaults to 0.4.
input_size (Tuple[int, int], optional): Input image size (width, height). Defaults to (640, 640).
model_name (SCRFDWeights): Predefined model enum (e.g., `SCRFD_10G_KPS`).
Specifies the SCRFD variant to load. Defaults to SCRFD_10G_KPS.
conf_thresh (float): Confidence threshold for filtering detections. Defaults to 0.5.
nms_thresh (float): Non-Maximum Suppression threshold. Defaults to 0.4.
input_size (Tuple[int, int]): Input image size (width, height).
Defaults to (640, 640).
Note: Non-default sizes may cause slower inference and CoreML compatibility issues.
**kwargs: Reserved for future advanced options.
Attributes:
model_name (SCRFDWeights): Selected model variant.
conf_thresh (float): Threshold used to filter low-confidence detections.
nms_thresh (float): Threshold used during NMS to suppress overlapping boxes.
input_size (Tuple[int, int]): Image size to which inputs are resized before inference.
@@ -48,15 +52,25 @@ class SCRFD(BaseDetector):
RuntimeError: If the ONNX model fails to load or initialize.
"""
def __init__(self, **kwargs) -> None:
super().__init__(**kwargs)
def __init__(
self,
*,
model_name: SCRFDWeights = SCRFDWeights.SCRFD_10G_KPS,
conf_thresh: float = 0.5,
nms_thresh: float = 0.4,
input_size: Tuple[int, int] = (640, 640),
**kwargs: Any,
) -> None:
super().__init__(
model_name=model_name,
conf_thresh=conf_thresh,
nms_thresh=nms_thresh,
input_size=input_size,
**kwargs,
)
self._supports_landmarks = True # SCRFD supports landmarks
model_name = kwargs.get('model_name', SCRFDWeights.SCRFD_10G_KPS)
conf_thresh = kwargs.get('conf_thresh', 0.5)
nms_thresh = kwargs.get('nms_thresh', 0.4)
input_size = kwargs.get('input_size', (640, 640))
self.model_name = model_name
self.conf_thresh = conf_thresh
self.nms_thresh = nms_thresh
self.input_size = input_size
@@ -69,12 +83,12 @@ class SCRFD(BaseDetector):
# ---------------------------------
Logger.info(
f'Initializing SCRFD with model={model_name}, conf_thresh={conf_thresh}, nms_thresh={nms_thresh}, '
f'input_size={input_size}'
f'Initializing SCRFD with model={self.model_name}, conf_thresh={self.conf_thresh}, '
f'nms_thresh={self.nms_thresh}, input_size={self.input_size}'
)
# Get path to model weights
self._model_path = verify_model_weights(model_name)
self._model_path = verify_model_weights(self.model_name)
Logger.info(f'Verified model weights located at: {self._model_path}')
# Initialize model
@@ -175,9 +189,10 @@ class SCRFD(BaseDetector):
def detect(
self,
image: np.ndarray,
*,
max_num: int = 0,
metric: Literal['default', 'max'] = 'max',
center_weight: float = 2,
center_weight: float = 2.0,
) -> List[Dict[str, Any]]:
"""
Perform face detection on an input image and return bounding boxes and facial landmarks.
@@ -236,7 +251,7 @@ class SCRFD(BaseDetector):
detections = pre_det[keep, :]
landmarks = landmarks[order, :, :]
landmarks = landmarks[keep, :, :].astype(np.int32)
landmarks = landmarks[keep, :, :].astype(np.float32)
if 0 < max_num < detections.shape[0]:
# Calculate area of detections
@@ -266,9 +281,9 @@ class SCRFD(BaseDetector):
faces = []
for i in range(detections.shape[0]):
face_dict = {
'bbox': detections[i, :4].astype(np.float32),
'bbox': detections[i, :4],
'confidence': float(detections[i, 4]),
'landmarks': landmarks[i].astype(np.float32),
'landmarks': landmarks[i],
}
faces.append(face_dict)

340
uniface/detection/yolov5.py Normal file
View File

@@ -0,0 +1,340 @@
# Copyright 2025 Yakhyokhuja Valikhujaev
# Author: Yakhyokhuja Valikhujaev
# GitHub: https://github.com/yakhyo
from typing import Any, Dict, List, Literal, Tuple
import cv2
import numpy as np
from uniface.common import non_max_suppression
from uniface.constants import YOLOv5FaceWeights
from uniface.log import Logger
from uniface.model_store import verify_model_weights
from uniface.onnx_utils import create_onnx_session
from .base import BaseDetector
__all__ = ['YOLOv5Face']
class YOLOv5Face(BaseDetector):
"""
Face detector based on the YOLOv5-Face architecture.
Title: "YOLO5Face: Why Reinventing a Face Detector"
Paper: https://arxiv.org/abs/2105.12931
Code: https://github.com/yakhyo/yolov5-face-onnx-inference (ONNX inference implementation)
Args:
model_name (YOLOv5FaceWeights): Predefined model enum (e.g., `YOLOV5S`).
Specifies the YOLOv5-Face variant to load. Defaults to YOLOV5S.
conf_thresh (float): Confidence threshold for filtering detections. Defaults to 0.6.
nms_thresh (float): Non-Maximum Suppression threshold. Defaults to 0.5.
input_size (int): Input image size. Defaults to 640.
Note: ONNX model is fixed at 640. Changing this will cause inference errors.
**kwargs: Advanced options:
max_det (int): Maximum number of detections to return. Defaults to 750.
Attributes:
model_name (YOLOv5FaceWeights): Selected model variant.
conf_thresh (float): Threshold used to filter low-confidence detections.
nms_thresh (float): Threshold used during NMS to suppress overlapping boxes.
input_size (int): Image size to which inputs are resized before inference.
max_det (int): Maximum number of detections to return.
_model_path (str): Absolute path to the downloaded/verified model weights.
Raises:
ValueError: If the model weights are invalid or not found.
RuntimeError: If the ONNX model fails to load or initialize.
"""
def __init__(
self,
*,
model_name: YOLOv5FaceWeights = YOLOv5FaceWeights.YOLOV5S,
conf_thresh: float = 0.6,
nms_thresh: float = 0.5,
input_size: int = 640,
**kwargs: Any,
) -> None:
super().__init__(
model_name=model_name,
conf_thresh=conf_thresh,
nms_thresh=nms_thresh,
input_size=input_size,
**kwargs,
)
self._supports_landmarks = True # YOLOv5-Face supports landmarks
# Validate input size
if input_size != 640:
raise ValueError(
f'YOLOv5Face only supports input_size=640 (got {input_size}). The ONNX model has a fixed input shape.'
)
self.model_name = model_name
self.conf_thresh = conf_thresh
self.nms_thresh = nms_thresh
self.input_size = input_size
# Advanced options from kwargs
self.max_det = kwargs.get('max_det', 750)
Logger.info(
f'Initializing YOLOv5Face with model={self.model_name}, conf_thresh={self.conf_thresh}, '
f'nms_thresh={self.nms_thresh}, input_size={self.input_size}'
)
# Get path to model weights
self._model_path = verify_model_weights(self.model_name)
Logger.info(f'Verified model weights located at: {self._model_path}')
# Initialize model
self._initialize_model(self._model_path)
def _initialize_model(self, model_path: str) -> None:
"""
Initializes an ONNX model session from the given path.
Args:
model_path (str): The file path to the ONNX model.
Raises:
RuntimeError: If the model fails to load, logs an error and raises an exception.
"""
try:
self.session = create_onnx_session(model_path)
self.input_names = self.session.get_inputs()[0].name
self.output_names = [x.name for x in self.session.get_outputs()]
Logger.info(f'Successfully initialized the model from {model_path}')
except Exception as e:
Logger.error(f"Failed to load model from '{model_path}': {e}", exc_info=True)
raise RuntimeError(f"Failed to initialize model session for '{model_path}'") from e
def preprocess(self, image: np.ndarray) -> Tuple[np.ndarray, float, Tuple[int, int]]:
"""
Preprocess image for inference.
Args:
image (np.ndarray): Input image (BGR format)
Returns:
Tuple[np.ndarray, float, Tuple[int, int]]: Preprocessed image, scale ratio, and padding
"""
# Get original image shape
img_h, img_w = image.shape[:2]
# Calculate scale ratio
scale = min(self.input_size / img_h, self.input_size / img_w)
new_h, new_w = int(img_h * scale), int(img_w * scale)
# Resize image
img_resized = cv2.resize(image, (new_w, new_h), interpolation=cv2.INTER_LINEAR)
# Create padded image
img_padded = np.full((self.input_size, self.input_size, 3), 114, dtype=np.uint8)
# Calculate padding
pad_h = (self.input_size - new_h) // 2
pad_w = (self.input_size - new_w) // 2
# Place resized image in center
img_padded[pad_h : pad_h + new_h, pad_w : pad_w + new_w] = img_resized
# Convert to RGB and normalize
img_rgb = cv2.cvtColor(img_padded, cv2.COLOR_BGR2RGB)
img_normalized = img_rgb.astype(np.float32) / 255.0
# Transpose to CHW format (HWC -> CHW) and add batch dimension
img_transposed = np.transpose(img_normalized, (2, 0, 1))
img_batch = np.expand_dims(img_transposed, axis=0)
img_batch = np.ascontiguousarray(img_batch)
return img_batch, scale, (pad_w, pad_h)
def inference(self, input_tensor: np.ndarray) -> List[np.ndarray]:
"""Perform model inference on the preprocessed image tensor.
Args:
input_tensor (np.ndarray): Preprocessed input tensor.
Returns:
List[np.ndarray]: Raw model outputs.
"""
return self.session.run(self.output_names, {self.input_names: input_tensor})
def postprocess(
self,
predictions: np.ndarray,
scale: float,
padding: Tuple[int, int],
) -> Tuple[np.ndarray, np.ndarray]:
"""
Postprocess model predictions.
Args:
predictions (np.ndarray): Raw model output
scale (float): Scale ratio used in preprocessing
padding (Tuple[int, int]): Padding used in preprocessing
Returns:
Tuple[np.ndarray, np.ndarray]: Filtered detections and landmarks
- detections: [x1, y1, x2, y2, conf]
- landmarks: [5, 2] for each detection
"""
# predictions shape: (1, 25200, 16)
# 16 = [x, y, w, h, obj_conf, cls_conf, 10 landmarks (5 points * 2 coords)]
predictions = predictions[0] # Remove batch dimension
# Filter by confidence
mask = predictions[:, 4] >= self.conf_thresh
predictions = predictions[mask]
if len(predictions) == 0:
return np.array([]), np.array([])
# Convert from xywh to xyxy
boxes = self._xywh2xyxy(predictions[:, :4])
# Get confidence scores
scores = predictions[:, 4]
# Get landmarks (5 points, 10 coordinates)
landmarks = predictions[:, 5:15].copy()
# Apply NMS
detections_for_nms = np.hstack((boxes, scores[:, None])).astype(np.float32, copy=False)
keep = non_max_suppression(detections_for_nms, self.nms_thresh)
if len(keep) == 0:
return np.array([]), np.array([])
# Filter detections and limit to max_det
keep = keep[: self.max_det]
boxes = boxes[keep]
scores = scores[keep]
landmarks = landmarks[keep]
# Scale back to original image coordinates
pad_w, pad_h = padding
boxes[:, [0, 2]] = (boxes[:, [0, 2]] - pad_w) / scale
boxes[:, [1, 3]] = (boxes[:, [1, 3]] - pad_h) / scale
# Scale landmarks
for i in range(5):
landmarks[:, i * 2] = (landmarks[:, i * 2] - pad_w) / scale
landmarks[:, i * 2 + 1] = (landmarks[:, i * 2 + 1] - pad_h) / scale
# Reshape landmarks to (N, 5, 2)
landmarks = landmarks.reshape(-1, 5, 2)
# Combine results
detections = np.concatenate([boxes, scores[:, None]], axis=1)
return detections, landmarks
def _xywh2xyxy(self, x: np.ndarray) -> np.ndarray:
"""
Convert bounding box format from xywh to xyxy.
Args:
x (np.ndarray): Boxes in [x, y, w, h] format
Returns:
np.ndarray: Boxes in [x1, y1, x2, y2] format
"""
y = np.copy(x)
y[..., 0] = x[..., 0] - x[..., 2] / 2 # x1
y[..., 1] = x[..., 1] - x[..., 3] / 2 # y1
y[..., 2] = x[..., 0] + x[..., 2] / 2 # x2
y[..., 3] = x[..., 1] + x[..., 3] / 2 # y2
return y
def detect(
self,
image: np.ndarray,
*,
max_num: int = 0,
metric: Literal['default', 'max'] = 'max',
center_weight: float = 2.0,
) -> List[Dict[str, Any]]:
"""
Perform face detection on an input image and return bounding boxes and facial landmarks.
Args:
image (np.ndarray): Input image as a NumPy array of shape (H, W, C).
max_num (int): Maximum number of detections to return. Use 0 to return all detections. Defaults to 0.
metric (Literal["default", "max"]): Metric for ranking detections when `max_num` is limited.
- "default": Prioritize detections closer to the image center.
- "max": Prioritize detections with larger bounding box areas.
center_weight (float): Weight for penalizing detections farther from the image center
when using the "default" metric. Defaults to 2.0.
Returns:
List[Dict[str, Any]]: List of face detection dictionaries, each containing:
- 'bbox' (np.ndarray): Bounding box coordinates with shape (4,) as [x1, y1, x2, y2]
- 'confidence' (float): Detection confidence score (0.0 to 1.0)
- 'landmarks' (np.ndarray): 5-point facial landmarks with shape (5, 2)
Example:
>>> faces = detector.detect(image)
>>> for face in faces:
... bbox = face['bbox'] # np.ndarray with shape (4,)
... confidence = face['confidence'] # float
... landmarks = face['landmarks'] # np.ndarray with shape (5, 2)
... # Can pass landmarks directly to recognition
... embedding = recognizer.get_normalized_embedding(image, landmarks)
"""
original_height, original_width = image.shape[:2]
# Preprocess
image_tensor, scale, padding = self.preprocess(image)
# ONNXRuntime inference
outputs = self.inference(image_tensor)
# Postprocess
detections, landmarks = self.postprocess(outputs[0], scale, padding)
# Handle case when no faces are detected
if len(detections) == 0:
return []
if 0 < max_num < detections.shape[0]:
# Calculate area of detections
area = (detections[:, 2] - detections[:, 0]) * (detections[:, 3] - detections[:, 1])
# Calculate offsets from image center
center = (original_height // 2, original_width // 2)
offsets = np.vstack(
[
(detections[:, 0] + detections[:, 2]) / 2 - center[1],
(detections[:, 1] + detections[:, 3]) / 2 - center[0],
]
)
# Calculate scores based on the chosen metric
offset_dist_squared = np.sum(np.power(offsets, 2.0), axis=0)
if metric == 'max':
values = area
else:
values = area - offset_dist_squared * center_weight
# Sort by scores and select top `max_num`
sorted_indices = np.argsort(values)[::-1][:max_num]
detections = detections[sorted_indices]
landmarks = landmarks[sorted_indices]
faces = []
for i in range(detections.shape[0]):
face_dict = {
'bbox': detections[i, :4],
'confidence': float(detections[i, 4]),
'landmarks': landmarks[i],
}
faces.append(face_dict)
return faces

View File

@@ -14,14 +14,19 @@ __all__ = ['Face']
@dataclass
class Face:
"""Detected face with analysis results."""
"""
Detected face with analysis results.
"""
# Required attributes
bbox: np.ndarray
confidence: float
landmarks: np.ndarray
# Optional attributes
embedding: Optional[np.ndarray] = None
age: Optional[int] = None
gender_id: Optional[int] = None # 0: Female, 1: Male
gender: Optional[int] = None # 0 or 1
def compute_similarity(self, other: 'Face') -> float:
"""Compute cosine similarity with another face."""
@@ -34,18 +39,28 @@ class Face:
return asdict(self)
@property
def gender(self) -> str:
def sex(self) -> str:
"""Get gender as a string label (Female or Male)."""
if self.gender_id is None:
if self.gender is None:
return None
return 'Female' if self.gender_id == 0 else 'Male'
return 'Female' if self.gender == 0 else 'Male'
@property
def bbox_xyxy(self) -> np.ndarray:
"""Get bounding box coordinates in (x1, y1, x2, y2) format."""
return self.bbox.copy()
@property
def bbox_xywh(self) -> np.ndarray:
"""Get bounding box coordinates in (x1, y1, w, h) format."""
return np.array([self.bbox[0], self.bbox[1], self.bbox[2] - self.bbox[0], self.bbox[3] - self.bbox[1]])
def __repr__(self) -> str:
parts = [f'Face(confidence={self.confidence:.3f}']
if self.age is not None:
parts.append(f'age={self.age}')
if self.gender_id is not None:
parts.append(f'gender={self.gender}')
if self.gender is not None:
parts.append(f'sex={self.sex}')
if self.embedding is not None:
parts.append(f'embedding_dim={self.embedding.shape[0]}')
return ', '.join(parts) + ')'

58
uniface/gaze/__init__.py Normal file
View File

@@ -0,0 +1,58 @@
# Copyright 2025 Yakhyokhuja Valikhujaev
# Author: Yakhyokhuja Valikhujaev
# GitHub: https://github.com/yakhyo
from .base import BaseGazeEstimator
from .models import MobileGaze
def create_gaze_estimator(method: str = 'mobilegaze', **kwargs) -> BaseGazeEstimator:
"""
Factory function to create gaze estimators.
This function initializes and returns a gaze estimator instance based on the
specified method. It acts as a high-level interface to the underlying
model classes.
Args:
method (str): The gaze estimation method to use.
Options: 'mobilegaze' (default).
**kwargs: Model-specific parameters passed to the estimator's constructor.
For example, `model_name` can be used to select a specific
backbone from `GazeWeights` enum (RESNET18, RESNET34, RESNET50,
MOBILENET_V2, MOBILEONE_S0).
Returns:
BaseGazeEstimator: An initialized gaze estimator instance ready for use.
Raises:
ValueError: If the specified `method` is not supported.
Examples:
>>> # Create the default MobileGaze estimator (ResNet18 backbone)
>>> estimator = create_gaze_estimator()
>>> # Create with MobileNetV2 backbone
>>> from uniface.constants import GazeWeights
>>> estimator = create_gaze_estimator(
... 'mobilegaze',
... model_name=GazeWeights.MOBILENET_V2
... )
>>> # Use the estimator
>>> pitch, yaw = estimator.estimate(face_crop)
"""
method = method.lower()
if method in ('mobilegaze', 'mobile_gaze', 'gaze'):
return MobileGaze(**kwargs)
else:
available = ['mobilegaze']
raise ValueError(f"Unsupported gaze estimation method: '{method}'. Available: {available}")
__all__ = [
'create_gaze_estimator',
'MobileGaze',
'BaseGazeEstimator',
]

108
uniface/gaze/base.py Normal file
View File

@@ -0,0 +1,108 @@
# Copyright 2025 Yakhyokhuja Valikhujaev
# Author: Yakhyokhuja Valikhujaev
# GitHub: https://github.com/yakhyo
from abc import ABC, abstractmethod
from typing import Tuple
import numpy as np
class BaseGazeEstimator(ABC):
"""
Abstract base class for all gaze estimation models.
This class defines the common interface that all gaze estimators must implement,
ensuring consistency across different gaze estimation methods. Gaze estimation
predicts the direction a person is looking based on their face image.
The gaze direction is represented as pitch and yaw angles in radians:
- Pitch: Vertical angle (positive = looking up, negative = looking down)
- Yaw: Horizontal angle (positive = looking right, negative = looking left)
"""
@abstractmethod
def _initialize_model(self) -> None:
"""
Initialize the underlying model for inference.
This method should handle loading model weights, creating the
inference session (e.g., ONNX Runtime), and any necessary
setup procedures to prepare the model for prediction.
Raises:
RuntimeError: If the model fails to load or initialize.
"""
raise NotImplementedError('Subclasses must implement the _initialize_model method.')
@abstractmethod
def preprocess(self, face_image: np.ndarray) -> np.ndarray:
"""
Preprocess the input face image for model inference.
This method should take a raw face crop and convert it into the format
expected by the model's inference engine (e.g., normalized tensor).
Args:
face_image (np.ndarray): A cropped face image in BGR format with
shape (H, W, C).
Returns:
np.ndarray: The preprocessed image tensor ready for inference,
typically with shape (1, C, H, W).
"""
raise NotImplementedError('Subclasses must implement the preprocess method.')
@abstractmethod
def postprocess(self, outputs: Tuple[np.ndarray, np.ndarray]) -> Tuple[float, float]:
"""
Postprocess raw model outputs into gaze angles.
This method takes the raw output from the model's inference and
converts it into pitch and yaw angles in radians.
Args:
outputs: Raw outputs from the model inference. The format depends
on the specific model architecture.
Returns:
Tuple[float, float]: A tuple of (pitch, yaw) angles in radians.
"""
raise NotImplementedError('Subclasses must implement the postprocess method.')
@abstractmethod
def estimate(self, face_image: np.ndarray) -> Tuple[float, float]:
"""
Perform end-to-end gaze estimation on a face image.
This method orchestrates the full pipeline: preprocessing the input,
running inference, and postprocessing to return the gaze direction.
Args:
face_image (np.ndarray): A cropped face image in BGR format.
The face should be roughly centered and
well-framed within the image.
Returns:
Tuple[float, float]: A tuple of (pitch, yaw) angles in radians:
- pitch: Vertical gaze angle (positive = up, negative = down)
- yaw: Horizontal gaze angle (positive = right, negative = left)
Example:
>>> estimator = create_gaze_estimator()
>>> pitch, yaw = estimator.estimate(face_crop)
>>> print(f"Looking: pitch={np.degrees(pitch):.1f}°, yaw={np.degrees(yaw):.1f}°")
"""
raise NotImplementedError('Subclasses must implement the estimate method.')
def __call__(self, face_image: np.ndarray) -> Tuple[float, float]:
"""
Provides a convenient, callable shortcut for the `estimate` method.
Args:
face_image (np.ndarray): A cropped face image in BGR format.
Returns:
Tuple[float, float]: A tuple of (pitch, yaw) angles in radians.
"""
return self.estimate(face_image)

187
uniface/gaze/models.py Normal file
View File

@@ -0,0 +1,187 @@
# Copyright 2025 Yakhyokhuja Valikhujaev
# Author: Yakhyokhuja Valikhujaev
# GitHub: https://github.com/yakhyo
from typing import Tuple
import cv2
import numpy as np
from uniface.constants import GazeWeights
from uniface.log import Logger
from uniface.model_store import verify_model_weights
from uniface.onnx_utils import create_onnx_session
from .base import BaseGazeEstimator
__all__ = ['MobileGaze']
class MobileGaze(BaseGazeEstimator):
"""
MobileGaze: Real-Time Gaze Estimation with ONNX Runtime.
MobileGaze is a gaze estimation model that predicts gaze direction from a single
face image. It supports multiple backbone architectures including ResNet 18/34/50,
MobileNetV2, and MobileOne S0. The model uses a classification approach with binned
angles, which are then decoded to continuous pitch and yaw values.
The model outputs gaze direction as pitch (vertical) and yaw (horizontal) angles
in radians.
Reference:
https://github.com/yakhyo/gaze-estimation
Args:
model_name (GazeWeights): The enum specifying the gaze model backbone to load.
Options: RESNET18, RESNET34, RESNET50, MOBILENET_V2, MOBILEONE_S0.
Defaults to `GazeWeights.RESNET18`.
input_size (Tuple[int, int]): The resolution (width, height) for the model's
input. Defaults to (448, 448).
Attributes:
input_size (Tuple[int, int]): Model input dimensions.
input_mean (list): Per-channel mean values for normalization (ImageNet).
input_std (list): Per-channel std values for normalization (ImageNet).
Example:
>>> from uniface.gaze import MobileGaze
>>> from uniface import RetinaFace
>>>
>>> detector = RetinaFace()
>>> gaze_estimator = MobileGaze()
>>>
>>> # Detect faces and estimate gaze for each
>>> faces = detector.detect(image)
>>> for face in faces:
... bbox = face['bbox']
... x1, y1, x2, y2 = map(int, bbox[:4])
... face_crop = image[y1:y2, x1:x2]
... pitch, yaw = gaze_estimator.estimate(face_crop)
... print(f"Gaze: pitch={np.degrees(pitch):.1f}°, yaw={np.degrees(yaw):.1f}°")
"""
def __init__(
self,
model_name: GazeWeights = GazeWeights.RESNET34,
input_size: Tuple[int, int] = (448, 448),
) -> None:
Logger.info(f'Initializing MobileGaze with model={model_name}, input_size={input_size}')
self.input_size = input_size
self.input_mean = [0.485, 0.456, 0.406]
self.input_std = [0.229, 0.224, 0.225]
# Model specific parameters for bin-based classification (Gaze360 config)
self._bins = 90
self._binwidth = 4
self._angle_offset = 180
self._idx_tensor = np.arange(self._bins, dtype=np.float32)
self.model_path = verify_model_weights(model_name)
self._initialize_model()
def _initialize_model(self) -> None:
"""
Initialize the ONNX model from the stored model path.
Raises:
RuntimeError: If the model fails to load or initialize.
"""
try:
self.session = create_onnx_session(self.model_path)
# Get input configuration
input_cfg = self.session.get_inputs()[0]
input_shape = input_cfg.shape
self.input_name = input_cfg.name
self.input_size = tuple(input_shape[2:4][::-1]) # Update from model
# Get output configuration
outputs = self.session.get_outputs()
self.output_names = [output.name for output in outputs]
if len(self.output_names) != 2:
raise ValueError(f'Expected 2 output nodes (pitch, yaw), got {len(self.output_names)}')
Logger.info(f'MobileGaze initialized with input size {self.input_size}')
except Exception as e:
Logger.error(f"Failed to load gaze model from '{self.model_path}'", exc_info=True)
raise RuntimeError(f'Failed to initialize gaze model: {e}') from e
def preprocess(self, face_image: np.ndarray) -> np.ndarray:
"""
Preprocess a face crop for gaze estimation.
Args:
face_image (np.ndarray): A cropped face image in BGR format.
Returns:
np.ndarray: Preprocessed image tensor with shape (1, 3, H, W).
"""
# Convert BGR to RGB
image = cv2.cvtColor(face_image, cv2.COLOR_BGR2RGB)
# Resize to model input size
image = cv2.resize(image, self.input_size)
# Normalize to [0, 1] and apply normalization
image = image.astype(np.float32) / 255.0
mean = np.array(self.input_mean, dtype=np.float32)
std = np.array(self.input_std, dtype=np.float32)
image = (image - mean) / std
# HWC -> CHW -> NCHW
image = np.transpose(image, (2, 0, 1))
image = np.expand_dims(image, axis=0).astype(np.float32)
return image
def _softmax(self, x: np.ndarray) -> np.ndarray:
"""Apply softmax along axis 1."""
e_x = np.exp(x - np.max(x, axis=1, keepdims=True))
return e_x / e_x.sum(axis=1, keepdims=True)
def postprocess(self, outputs: Tuple[np.ndarray, np.ndarray]) -> Tuple[np.ndarray, np.ndarray]:
"""
Postprocess raw model outputs into gaze angles.
This method takes the raw output from the model's inference and
converts it into pitch and yaw angles in radians.
Args:
outputs: Raw outputs from the model inference. The format depends
on the specific model architecture.
Returns:
Tuple[np.ndarray, np.ndarray]: A tuple of (pitch, yaw) angles in radians.
"""
pitch_logits, yaw_logits = outputs
# Convert logits to probabilities
pitch_probs = self._softmax(pitch_logits)
yaw_probs = self._softmax(yaw_logits)
# Compute expected bin index (soft-argmax)
pitch_deg = np.sum(pitch_probs * self._idx_tensor, axis=1) * self._binwidth - self._angle_offset
yaw_deg = np.sum(yaw_probs * self._idx_tensor, axis=1) * self._binwidth - self._angle_offset
# Convert degrees to radians
pitch = np.radians(pitch_deg[0])
yaw = np.radians(yaw_deg[0])
return pitch, yaw
def estimate(self, face_image: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
"""
Perform end-to-end gaze estimation on a face image.
This method orchestrates the full pipeline: preprocessing the input,
running inference, and postprocessing to return the gaze direction.
"""
input_tensor = self.preprocess(face_image)
outputs = self.session.run(self.output_names, {self.input_name: input_tensor})
pitch, yaw = self.postprocess((outputs[0], outputs[1]))
return pitch, yaw

View File

@@ -2,59 +2,221 @@
# Author: Yakhyokhuja Valikhujaev
# GitHub: https://github.com/yakhyo
from typing import List, Union
from typing import List, Tuple, Union
import cv2
import numpy as np
def draw_detections(
*,
image: np.ndarray,
bboxes: Union[List[np.ndarray], List[List[float]]],
scores: Union[np.ndarray, List[float]],
landmarks: Union[List[np.ndarray], List[List[List[float]]]],
vis_threshold: float = 0.6,
draw_score: bool = False,
fancy_bbox: bool = True,
):
"""
Draws bounding boxes, scores, and landmarks from separate lists onto an image.
Draws bounding boxes, landmarks, and optional scores on an image.
Args:
image (np.ndarray): The image to draw on.
bboxes (List[np.ndarray] or List[List[float]]): List of bounding boxes. Each bbox can be
np.ndarray with shape (4,) or list [x1, y1, x2, y2].
scores (List[float] or np.ndarray): List or array of confidence scores.
landmarks (List[np.ndarray] or List[List[List[float]]]): List of landmark sets. Each landmark
set can be np.ndarray with shape (5, 2) or nested list [[[x,y],...],...].
vis_threshold (float): Confidence threshold for filtering which detections to draw.
image: Input image to draw on.
bboxes: List of bounding boxes [x1, y1, x2, y2].
scores: List of confidence scores.
landmarks: List of landmark sets with shape (5, 2).
vis_threshold: Confidence threshold for filtering. Defaults to 0.6.
draw_score: Whether to draw confidence scores. Defaults to False.
"""
_colors = [(0, 0, 255), (0, 255, 255), (255, 0, 255), (0, 255, 0), (255, 0, 0)]
colors = [(0, 0, 255), (0, 255, 255), (255, 0, 255), (0, 255, 0), (255, 0, 0)]
# Filter detections by score
# Calculate line thickness based on image size
line_thickness = max(round(sum(image.shape[:2]) / 2 * 0.003), 2)
# Filter detections by confidence threshold
keep_indices = [i for i, score in enumerate(scores) if score >= vis_threshold]
# Draw the filtered detections
for i in keep_indices:
bbox = np.array(bboxes[i], dtype=np.int32)
score = scores[i]
landmark_set = np.array(landmarks[i], dtype=np.int32)
# Calculate adaptive thickness
thickness = max(1, int(min(bbox[2] - bbox[0], bbox[3] - bbox[1]) / 100))
# Calculate dynamic font scale based on bbox height
bbox_h = bbox[3] - bbox[1]
font_scale = max(0.4, min(0.7, bbox_h / 200))
font_thickness = 2
# Draw bounding box
cv2.rectangle(image, tuple(bbox[:2]), tuple(bbox[2:]), (0, 0, 255), thickness)
if fancy_bbox:
draw_fancy_bbox(image, bbox, color=(0, 255, 0), thickness=line_thickness, proportion=0.2)
else:
cv2.rectangle(image, tuple(bbox[:2]), tuple(bbox[2:]), (0, 255, 0), line_thickness)
# Draw score
cv2.putText(
image,
f'{score:.2f}',
(bbox[0], bbox[1] - 10),
cv2.FONT_HERSHEY_SIMPLEX,
0.5,
(255, 255, 255),
thickness,
)
# Draw confidence score with background
if draw_score:
text = f'{score:.2f}'
(text_width, text_height), baseline = cv2.getTextSize(
text, cv2.FONT_HERSHEY_SIMPLEX, font_scale, font_thickness
)
# Draw background rectangle
cv2.rectangle(
image,
(bbox[0], bbox[1] - text_height - baseline - 10),
(bbox[0] + text_width + 10, bbox[1]),
(0, 255, 0),
-1,
)
# Draw text
cv2.putText(
image,
text,
(bbox[0] + 5, bbox[1] - 5),
cv2.FONT_HERSHEY_SIMPLEX,
font_scale,
(0, 0, 0),
font_thickness,
)
# Draw landmarks
for j, point in enumerate(landmark_set):
cv2.circle(image, tuple(point), thickness + 1, _colors[j], -1)
cv2.circle(image, tuple(point), line_thickness + 1, colors[j], -1)
def draw_fancy_bbox(
image: np.ndarray,
bbox: np.ndarray,
color: Tuple[int, int, int] = (0, 255, 0),
thickness: int = 3,
proportion: float = 0.2,
):
"""
Draws a bounding box with fancy corners on an image.
Args:
image: Input image to draw on.
bbox: Bounding box coordinates [x1, y1, x2, y2].
color: Color of the bounding box. Defaults to green.
thickness: Thickness of the bounding box lines. Defaults to 3.
proportion: Proportion of the corner length to the width/height of the bounding box. Defaults to 0.2.
"""
x1, y1, x2, y2 = map(int, bbox)
width = x2 - x1
height = y2 - y1
corner_length = int(proportion * min(width, height))
# Draw the rectangle
cv2.rectangle(image, (x1, y1), (x2, y2), color, 1)
# Top-left corner
cv2.line(image, (x1, y1), (x1 + corner_length, y1), color, thickness)
cv2.line(image, (x1, y1), (x1, y1 + corner_length), color, thickness)
# Top-right corner
cv2.line(image, (x2, y1), (x2 - corner_length, y1), color, thickness)
cv2.line(image, (x2, y1), (x2, y1 + corner_length), color, thickness)
# Bottom-left corner
cv2.line(image, (x1, y2), (x1, y2 - corner_length), color, thickness)
cv2.line(image, (x1, y2), (x1 + corner_length, y2), color, thickness)
# Bottom-right corner
cv2.line(image, (x2, y2), (x2, y2 - corner_length), color, thickness)
cv2.line(image, (x2, y2), (x2 - corner_length, y2), color, thickness)
def draw_gaze(
image: np.ndarray,
bbox: np.ndarray,
pitch: np.ndarray,
yaw: np.ndarray,
*,
draw_bbox: bool = True,
fancy_bbox: bool = True,
draw_angles: bool = True,
):
"""
Draws gaze direction with optional bounding box on an image.
Args:
image: Input image to draw on (modified in-place).
bbox: Face bounding box [x1, y1, x2, y2].
pitch: Vertical gaze angle in radians.
yaw: Horizontal gaze angle in radians.
draw_bbox: Whether to draw the bounding box. Defaults to True.
fancy_bbox: Use fancy corner-style bbox. Defaults to True.
draw_angles: Whether to display pitch/yaw values as text. Defaults to False.
"""
x_min, y_min, x_max, y_max = map(int, bbox[:4])
# Calculate dynamic line thickness based on image size (same as draw_detections)
line_thickness = max(round(sum(image.shape[:2]) / 2 * 0.003), 2)
# Calculate dynamic font scale based on bbox height (same as draw_detections)
bbox_h = y_max - y_min
font_scale = max(0.4, min(0.7, bbox_h / 200))
font_thickness = 2
# Draw bounding box if requested
if draw_bbox:
if fancy_bbox:
draw_fancy_bbox(image, bbox, color=(0, 255, 0), thickness=line_thickness)
else:
cv2.rectangle(image, (x_min, y_min), (x_max, y_max), (0, 255, 0), line_thickness)
# Calculate center of the bounding box
x_center = (x_min + x_max) // 2
y_center = (y_min + y_max) // 2
# Calculate the direction of the gaze
length = x_max - x_min
dx = int(-length * np.sin(pitch) * np.cos(yaw))
dy = int(-length * np.sin(yaw))
point1 = (x_center, y_center)
point2 = (x_center + dx, y_center + dy)
# Calculate dynamic center point radius based on line thickness
center_radius = max(line_thickness + 1, 4)
# Draw gaze direction
cv2.circle(image, (x_center, y_center), radius=center_radius, color=(0, 0, 255), thickness=-1)
cv2.arrowedLine(
image,
point1,
point2,
color=(0, 0, 255),
thickness=line_thickness,
line_type=cv2.LINE_AA,
tipLength=0.25,
)
# Draw angle values
if draw_angles:
text = f'P:{np.degrees(pitch):.0f}deg Y:{np.degrees(yaw):.0f}deg'
(text_width, text_height), baseline = cv2.getTextSize(
text, cv2.FONT_HERSHEY_SIMPLEX, font_scale, font_thickness
)
# Draw background rectangle for text
cv2.rectangle(
image,
(x_min, y_min - text_height - baseline - 10),
(x_min + text_width + 10, y_min),
(0, 0, 255),
-1,
)
# Draw text
cv2.putText(
image,
text,
(x_min + 5, y_min - 5),
cv2.FONT_HERSHEY_SIMPLEX,
font_scale,
(255, 255, 255),
font_thickness,
)