mirror of
https://github.com/yakhyo/uniface.git
synced 2025-12-30 09:02:25 +00:00
Compare commits
3 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
bb1d209f3b | ||
|
|
54b769c0f1 | ||
|
|
4d1921e531 |
@@ -58,3 +58,6 @@ Open an issue or start a discussion on GitHub.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
116
MODELS.md
116
MODELS.md
@@ -291,6 +291,119 @@ emotion, confidence = predictor.predict(image, landmarks)
|
||||
|
||||
---
|
||||
|
||||
## Gaze Estimation Models
|
||||
|
||||
### MobileGaze Family
|
||||
|
||||
Real-time gaze direction prediction models trained on Gaze360 dataset. Returns pitch (vertical) and yaw (horizontal) angles in radians.
|
||||
|
||||
| Model Name | Params | Size | MAE* | Use Case |
|
||||
| -------------- | ------ | ------- | ----- | ----------------------------- |
|
||||
| `RESNET18` | 11.7M | 43 MB | 12.84 | Balanced accuracy/speed |
|
||||
| `RESNET34` ⭐ | 24.8M | 81.6 MB | 11.33 | **Recommended default** |
|
||||
| `RESNET50` | 25.6M | 91.3 MB | 11.34 | High accuracy |
|
||||
| `MOBILENET_V2` | 3.5M | 9.59 MB | 13.07 | Mobile/Edge devices |
|
||||
| `MOBILEONE_S0` | 2.1M | 4.8 MB | 12.58 | Lightweight/Real-time |
|
||||
|
||||
*MAE (Mean Absolute Error) in degrees on Gaze360 test set - lower is better
|
||||
|
||||
**Dataset**: Trained on Gaze360 (indoor/outdoor scenes with diverse head poses)
|
||||
**Training**: 200 epochs with classification-based approach (binned angles)
|
||||
|
||||
#### Usage
|
||||
|
||||
```python
|
||||
from uniface import MobileGaze
|
||||
from uniface.constants import GazeWeights
|
||||
import numpy as np
|
||||
|
||||
# Default (recommended)
|
||||
gaze_estimator = MobileGaze() # Uses RESNET34
|
||||
|
||||
# Lightweight model
|
||||
gaze_estimator = MobileGaze(model_name=GazeWeights.MOBILEONE_S0)
|
||||
|
||||
# Estimate gaze from face crop
|
||||
pitch, yaw = gaze_estimator.estimate(face_crop)
|
||||
print(f"Pitch: {np.degrees(pitch):.1f}°, Yaw: {np.degrees(yaw):.1f}°")
|
||||
```
|
||||
|
||||
**Note**: Requires face crop as input. Use face detection first to obtain bounding boxes.
|
||||
|
||||
---
|
||||
|
||||
## Face Parsing Models
|
||||
|
||||
### BiSeNet Family
|
||||
|
||||
BiSeNet (Bilateral Segmentation Network) models for semantic face parsing. Segments face images into 19 facial component classes.
|
||||
|
||||
| Model Name | Params | Size | Classes | Use Case |
|
||||
| -------------- | ------ | ------- | ------- | ----------------------------- |
|
||||
| `RESNET18` ⭐ | 13.3M | 50.7 MB | 19 | **Recommended default** |
|
||||
| `RESNET34` | 24.1M | 89.2 MB | 19 | Higher accuracy |
|
||||
|
||||
**19 Facial Component Classes:**
|
||||
1. Background
|
||||
2. Skin
|
||||
3. Left Eyebrow
|
||||
4. Right Eyebrow
|
||||
5. Left Eye
|
||||
6. Right Eye
|
||||
7. Eye Glasses
|
||||
8. Left Ear
|
||||
9. Right Ear
|
||||
10. Ear Ring
|
||||
11. Nose
|
||||
12. Mouth
|
||||
13. Upper Lip
|
||||
14. Lower Lip
|
||||
15. Neck
|
||||
16. Neck Lace
|
||||
17. Cloth
|
||||
18. Hair
|
||||
19. Hat
|
||||
|
||||
**Dataset**: Trained on CelebAMask-HQ
|
||||
**Architecture**: BiSeNet with ResNet backbone
|
||||
**Input Size**: 512×512 (automatically resized)
|
||||
|
||||
#### Usage
|
||||
|
||||
```python
|
||||
from uniface.parsing import BiSeNet
|
||||
from uniface.constants import ParsingWeights
|
||||
from uniface.visualization import vis_parsing_maps
|
||||
import cv2
|
||||
|
||||
# Default (recommended)
|
||||
parser = BiSeNet() # Uses RESNET18
|
||||
|
||||
# Higher accuracy model
|
||||
parser = BiSeNet(model_name=ParsingWeights.RESNET34)
|
||||
|
||||
# Parse face image (already cropped)
|
||||
mask = parser.parse(face_image)
|
||||
|
||||
# Visualize with overlay
|
||||
face_rgb = cv2.cvtColor(face_image, cv2.COLOR_BGR2RGB)
|
||||
vis_result = vis_parsing_maps(face_rgb, mask, save_image=False)
|
||||
|
||||
# mask shape: (H, W) with values 0-18 representing classes
|
||||
print(f"Detected {len(np.unique(mask))} facial components")
|
||||
```
|
||||
|
||||
**Applications:**
|
||||
- Face makeup and beauty applications
|
||||
- Virtual try-on systems
|
||||
- Face editing and manipulation
|
||||
- Facial feature extraction
|
||||
- Portrait segmentation
|
||||
|
||||
**Note**: Input should be a cropped face image. For full pipeline, use face detection first to obtain face crops.
|
||||
|
||||
---
|
||||
|
||||
## Model Updates
|
||||
|
||||
Models are automatically downloaded and cached on first use. Cache location: `~/.uniface/models/`
|
||||
@@ -330,6 +443,8 @@ python scripts/download_model.py --model MNET_V2
|
||||
- **YOLOv5-Face Original**: [deepcam-cn/yolov5-face](https://github.com/deepcam-cn/yolov5-face) - Original PyTorch implementation
|
||||
- **YOLOv5-Face ONNX**: [yakhyo/yolov5-face-onnx-inference](https://github.com/yakhyo/yolov5-face-onnx-inference) - ONNX inference implementation
|
||||
- **Face Recognition Training**: [yakhyo/face-recognition](https://github.com/yakhyo/face-recognition) - ArcFace, MobileFace, SphereFace training code
|
||||
- **Gaze Estimation Training**: [yakhyo/gaze-estimation](https://github.com/yakhyo/gaze-estimation) - MobileGaze training code and pretrained weights
|
||||
- **Face Parsing Training**: [yakhyo/face-parsing](https://github.com/yakhyo/face-parsing) - BiSeNet training code and pretrained weights
|
||||
- **InsightFace**: [deepinsight/insightface](https://github.com/deepinsight/insightface) - Model architectures and pretrained weights
|
||||
|
||||
### Papers
|
||||
@@ -339,3 +454,4 @@ python scripts/download_model.py --model MNET_V2
|
||||
- **YOLOv5-Face**: [YOLO5Face: Why Reinventing a Face Detector](https://arxiv.org/abs/2105.12931)
|
||||
- **ArcFace**: [Additive Angular Margin Loss for Deep Face Recognition](https://arxiv.org/abs/1801.07698)
|
||||
- **SphereFace**: [Deep Hypersphere Embedding for Face Recognition](https://arxiv.org/abs/1704.08063)
|
||||
- **BiSeNet**: [Bilateral Segmentation Network for Real-time Semantic Segmentation](https://arxiv.org/abs/1808.00897)
|
||||
|
||||
123
QUICKSTART.md
123
QUICKSTART.md
@@ -242,7 +242,93 @@ if faces:
|
||||
|
||||
---
|
||||
|
||||
## 7. Batch Processing (3 minutes)
|
||||
## 7. Gaze Estimation (2 minutes)
|
||||
|
||||
Estimate where a person is looking:
|
||||
|
||||
```python
|
||||
import cv2
|
||||
import numpy as np
|
||||
from uniface import RetinaFace, MobileGaze
|
||||
from uniface.visualization import draw_gaze
|
||||
|
||||
# Initialize models
|
||||
detector = RetinaFace()
|
||||
gaze_estimator = MobileGaze()
|
||||
|
||||
# Load image
|
||||
image = cv2.imread("photo.jpg")
|
||||
faces = detector.detect(image)
|
||||
|
||||
# Estimate gaze for each face
|
||||
for i, face in enumerate(faces):
|
||||
bbox = face['bbox']
|
||||
x1, y1, x2, y2 = map(int, bbox[:4])
|
||||
face_crop = image[y1:y2, x1:x2]
|
||||
|
||||
if face_crop.size > 0:
|
||||
pitch, yaw = gaze_estimator.estimate(face_crop)
|
||||
print(f"Face {i+1}: pitch={np.degrees(pitch):.1f}°, yaw={np.degrees(yaw):.1f}°")
|
||||
|
||||
# Draw gaze direction
|
||||
draw_gaze(image, bbox, pitch, yaw)
|
||||
|
||||
cv2.imwrite("gaze_output.jpg", image)
|
||||
```
|
||||
|
||||
**Output:**
|
||||
|
||||
```
|
||||
Face 1: pitch=5.2°, yaw=-12.3°
|
||||
Face 2: pitch=-8.1°, yaw=15.7°
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 8. Face Parsing (2 minutes)
|
||||
|
||||
Segment face into semantic components (skin, eyes, nose, mouth, hair, etc.):
|
||||
|
||||
```python
|
||||
import cv2
|
||||
import numpy as np
|
||||
from uniface.parsing import BiSeNet
|
||||
from uniface.visualization import vis_parsing_maps
|
||||
|
||||
# Initialize parser
|
||||
parser = BiSeNet() # Uses ResNet18 by default
|
||||
|
||||
# Load face image (already cropped)
|
||||
face_image = cv2.imread("face.jpg")
|
||||
|
||||
# Parse face into 19 components
|
||||
mask = parser.parse(face_image)
|
||||
|
||||
# Visualize with overlay
|
||||
face_rgb = cv2.cvtColor(face_image, cv2.COLOR_BGR2RGB)
|
||||
vis_result = vis_parsing_maps(face_rgb, mask, save_image=False)
|
||||
|
||||
# Convert back to BGR for saving
|
||||
vis_bgr = cv2.cvtColor(vis_result, cv2.COLOR_RGB2BGR)
|
||||
cv2.imwrite("parsed_face.jpg", vis_bgr)
|
||||
|
||||
print(f"Detected {len(np.unique(mask))} facial components")
|
||||
```
|
||||
|
||||
**Output:**
|
||||
|
||||
```
|
||||
Detected 12 facial components
|
||||
```
|
||||
|
||||
**19 Facial Component Classes:**
|
||||
- Background, Skin, Eyebrows (L/R), Eyes (L/R), Eye Glasses
|
||||
- Ears (L/R), Ear Ring, Nose, Mouth, Lips (Upper/Lower)
|
||||
- Neck, Neck Lace, Cloth, Hair, Hat
|
||||
|
||||
---
|
||||
|
||||
## 9. Batch Processing (3 minutes)
|
||||
|
||||
Process multiple images:
|
||||
|
||||
@@ -275,7 +361,7 @@ print("Done!")
|
||||
|
||||
---
|
||||
|
||||
## 8. Model Selection
|
||||
## 10. Model Selection
|
||||
|
||||
Choose the right model for your use case:
|
||||
|
||||
@@ -326,6 +412,35 @@ recognizer = MobileFace(model_name=MobileFaceWeights.MNET_V2) # Fast, small siz
|
||||
recognizer = SphereFace(model_name=SphereFaceWeights.SPHERE20) # Alternative method
|
||||
```
|
||||
|
||||
### Gaze Estimation Models
|
||||
|
||||
```python
|
||||
from uniface import MobileGaze
|
||||
from uniface.constants import GazeWeights
|
||||
|
||||
# Default (recommended)
|
||||
gaze_estimator = MobileGaze() # Uses RESNET34
|
||||
|
||||
# Lightweight (mobile/edge devices)
|
||||
gaze_estimator = MobileGaze(model_name=GazeWeights.MOBILEONE_S0)
|
||||
|
||||
# High accuracy
|
||||
gaze_estimator = MobileGaze(model_name=GazeWeights.RESNET50)
|
||||
```
|
||||
|
||||
### Face Parsing Models
|
||||
|
||||
```python
|
||||
from uniface.parsing import BiSeNet
|
||||
from uniface.constants import ParsingWeights
|
||||
|
||||
# Default (recommended, 50.7 MB)
|
||||
parser = BiSeNet() # Uses RESNET18
|
||||
|
||||
# Higher accuracy (89.2 MB)
|
||||
parser = BiSeNet(model_name=ParsingWeights.RESNET34)
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Common Issues
|
||||
@@ -387,6 +502,8 @@ Explore interactive examples for common tasks:
|
||||
| **Face Recognition** | Extract face embeddings and compare faces | [face_analyzer.ipynb](examples/face_analyzer.ipynb) |
|
||||
| **Face Verification** | Compare two faces to verify identity | [face_verification.ipynb](examples/face_verification.ipynb) |
|
||||
| **Face Search** | Find a person in a group photo | [face_search.ipynb](examples/face_search.ipynb) |
|
||||
| **Face Parsing** | Segment face into semantic components | [face_parsing.ipynb](examples/face_parsing.ipynb) |
|
||||
| **Gaze Estimation** | Estimate gaze direction | [gaze_estimation.ipynb](examples/gaze_estimation.ipynb) |
|
||||
|
||||
### Additional Resources
|
||||
|
||||
@@ -400,4 +517,6 @@ Explore interactive examples for common tasks:
|
||||
- **RetinaFace Training**: [yakhyo/retinaface-pytorch](https://github.com/yakhyo/retinaface-pytorch)
|
||||
- **YOLOv5-Face ONNX**: [yakhyo/yolov5-face-onnx-inference](https://github.com/yakhyo/yolov5-face-onnx-inference)
|
||||
- **Face Recognition Training**: [yakhyo/face-recognition](https://github.com/yakhyo/face-recognition)
|
||||
- **Gaze Estimation Training**: [yakhyo/gaze-estimation](https://github.com/yakhyo/gaze-estimation)
|
||||
- **Face Parsing Training**: [yakhyo/face-parsing](https://github.com/yakhyo/face-parsing)
|
||||
- **InsightFace**: [deepinsight/insightface](https://github.com/deepinsight/insightface)
|
||||
|
||||
66
README.md
66
README.md
@@ -11,7 +11,7 @@
|
||||
<img src=".github/logos/logo_web.webp" width=75%>
|
||||
</div>
|
||||
|
||||
**UniFace** is a lightweight, production-ready face analysis library built on ONNX Runtime. It provides high-performance face detection, recognition, landmark detection, and attribute analysis with hardware acceleration support across platforms.
|
||||
**UniFace** is a lightweight, production-ready face analysis library built on ONNX Runtime. It provides high-performance face detection, recognition, landmark detection, face parsing, gaze estimation, and attribute analysis with hardware acceleration support across platforms.
|
||||
|
||||
---
|
||||
|
||||
@@ -20,6 +20,8 @@
|
||||
- **High-Speed Face Detection**: ONNX-optimized RetinaFace, SCRFD, and YOLOv5-Face models
|
||||
- **Facial Landmark Detection**: Accurate 106-point landmark localization
|
||||
- **Face Recognition**: ArcFace, MobileFace, and SphereFace embeddings
|
||||
- **Face Parsing**: BiSeNet-based semantic segmentation with 19 facial component classes
|
||||
- **Gaze Estimation**: Real-time gaze direction prediction with MobileGaze
|
||||
- **Attribute Analysis**: Age, gender, and emotion detection
|
||||
- **Face Alignment**: Precise alignment for downstream tasks
|
||||
- **Hardware Acceleration**: ARM64 optimizations (Apple Silicon), CUDA (NVIDIA), CPU fallback
|
||||
@@ -152,6 +154,50 @@ gender_str = 'Female' if gender == 0 else 'Male'
|
||||
print(f"{gender_str}, {age} years old")
|
||||
```
|
||||
|
||||
### Gaze Estimation
|
||||
|
||||
```python
|
||||
from uniface import RetinaFace, MobileGaze
|
||||
from uniface.visualization import draw_gaze
|
||||
import numpy as np
|
||||
|
||||
detector = RetinaFace()
|
||||
gaze_estimator = MobileGaze()
|
||||
|
||||
faces = detector.detect(image)
|
||||
for face in faces:
|
||||
bbox = face['bbox']
|
||||
x1, y1, x2, y2 = map(int, bbox[:4])
|
||||
face_crop = image[y1:y2, x1:x2]
|
||||
|
||||
pitch, yaw = gaze_estimator.estimate(face_crop)
|
||||
print(f"Gaze: pitch={np.degrees(pitch):.1f}°, yaw={np.degrees(yaw):.1f}°")
|
||||
|
||||
# Visualize
|
||||
draw_gaze(image, bbox, pitch, yaw)
|
||||
```
|
||||
|
||||
### Face Parsing
|
||||
|
||||
```python
|
||||
from uniface.parsing import BiSeNet
|
||||
from uniface.visualization import vis_parsing_maps
|
||||
|
||||
# Initialize parser
|
||||
parser = BiSeNet() # Uses ResNet18 by default
|
||||
|
||||
# Parse face image (already cropped)
|
||||
mask = parser.parse(face_image)
|
||||
|
||||
# Visualize with overlay
|
||||
import cv2
|
||||
face_rgb = cv2.cvtColor(face_image, cv2.COLOR_BGR2RGB)
|
||||
vis_result = vis_parsing_maps(face_rgb, mask, save_image=False)
|
||||
|
||||
# mask contains 19 classes: skin, eyes, nose, mouth, hair, etc.
|
||||
print(f"Unique classes: {len(np.unique(mask))}")
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Documentation
|
||||
@@ -252,6 +298,18 @@ faces = detect_faces(image, method='retinaface', conf_thresh=0.8) # methods: re
|
||||
| `AgeGender` | `model_name=AgeGenderWeights.DEFAULT`; `input_size` auto-detected | Requires bbox; ONNXRuntime |
|
||||
| `Emotion` | `model_weights=DDAMFNWeights.AFFECNET7`, `input_size=(112, 112)` | Requires 5-point landmarks; TorchScript |
|
||||
|
||||
**Gaze Estimation**
|
||||
|
||||
| Class | Key params (defaults) | Notes |
|
||||
| ------------- | ------------------------------------------ | ------------------------------------ |
|
||||
| `MobileGaze` | `model_name=GazeWeights.RESNET34` | Returns (pitch, yaw) angles in radians; trained on Gaze360 |
|
||||
|
||||
**Face Parsing**
|
||||
|
||||
| Class | Key params (defaults) | Notes |
|
||||
| ---------- | ---------------------------------------- | ------------------------------------ |
|
||||
| `BiSeNet` | `model_name=ParsingWeights.RESNET18`, `input_size=(512, 512)` | 19 facial component classes; BiSeNet architecture with ResNet backbone |
|
||||
|
||||
---
|
||||
|
||||
## Model Performance
|
||||
@@ -298,6 +356,8 @@ Interactive examples covering common face analysis tasks:
|
||||
| **Face Recognition** | Extract face embeddings and compare faces | [face_analyzer.ipynb](examples/face_analyzer.ipynb) |
|
||||
| **Face Verification** | Compare two faces to verify identity | [face_verification.ipynb](examples/face_verification.ipynb) |
|
||||
| **Face Search** | Find a person in a group photo | [face_search.ipynb](examples/face_search.ipynb) |
|
||||
| **Face Parsing** | Segment face into semantic components | [face_parsing.ipynb](examples/face_parsing.ipynb) |
|
||||
| **Gaze Estimation** | Estimate gaze direction from face images | [gaze_estimation.ipynb](examples/gaze_estimation.ipynb) |
|
||||
|
||||
### Webcam Face Detection
|
||||
|
||||
@@ -488,6 +548,8 @@ uniface/
|
||||
│ ├── detection/ # Face detection models
|
||||
│ ├── recognition/ # Face recognition models
|
||||
│ ├── landmark/ # Landmark detection
|
||||
│ ├── parsing/ # Face parsing
|
||||
│ ├── gaze/ # Gaze estimation
|
||||
│ ├── attribute/ # Age, gender, emotion
|
||||
│ ├── onnx_utils.py # ONNX Runtime utilities
|
||||
│ ├── model_store.py # Model download & caching
|
||||
@@ -504,6 +566,8 @@ uniface/
|
||||
- **RetinaFace Training**: [yakhyo/retinaface-pytorch](https://github.com/yakhyo/retinaface-pytorch) - PyTorch implementation and training code
|
||||
- **YOLOv5-Face ONNX**: [yakhyo/yolov5-face-onnx-inference](https://github.com/yakhyo/yolov5-face-onnx-inference) - ONNX inference implementation
|
||||
- **Face Recognition Training**: [yakhyo/face-recognition](https://github.com/yakhyo/face-recognition) - ArcFace, MobileFace, SphereFace training code
|
||||
- **Face Parsing Training**: [yakhyo/face-parsing](https://github.com/yakhyo/face-parsing) - BiSeNet face parsing training code and pretrained weights
|
||||
- **Gaze Estimation Training**: [yakhyo/gaze-estimation](https://github.com/yakhyo/gaze-estimation) - MobileGaze training code and pretrained weights
|
||||
- **InsightFace**: [deepinsight/insightface](https://github.com/deepinsight/insightface) - Model architectures and pretrained weights
|
||||
|
||||
## Contributing
|
||||
|
||||
387
examples/face_parsing.ipynb
Normal file
387
examples/face_parsing.ipynb
Normal file
File diff suppressed because one or more lines are too long
271
examples/gaze_estimation.ipynb
Normal file
271
examples/gaze_estimation.ipynb
Normal file
File diff suppressed because one or more lines are too long
@@ -1,7 +1,7 @@
|
||||
[project]
|
||||
name = "uniface"
|
||||
version = "1.3.2"
|
||||
description = "UniFace: A Comprehensive Library for Face Detection, Recognition, Landmark Analysis, Age, and Gender Detection"
|
||||
version = "1.5.0"
|
||||
description = "UniFace: A Comprehensive Library for Face Detection, Recognition, Landmark Analysis, Face Parsing, Gaze Estimation, Age, and Gender Detection"
|
||||
readme = "README.md"
|
||||
license = { text = "MIT" }
|
||||
authors = [{ name = "Yakhyokhuja Valikhujaev", email = "yakhyo9696@gmail.com" }]
|
||||
@@ -14,6 +14,9 @@ keywords = [
|
||||
"face-detection",
|
||||
"face-recognition",
|
||||
"facial-landmarks",
|
||||
"face-parsing",
|
||||
"face-segmentation",
|
||||
"gaze-estimation",
|
||||
"age-detection",
|
||||
"gender-detection",
|
||||
"computer-vision",
|
||||
@@ -21,6 +24,7 @@ keywords = [
|
||||
"onnx",
|
||||
"onnxruntime",
|
||||
"face-analysis",
|
||||
"bisenet",
|
||||
]
|
||||
|
||||
classifiers = [
|
||||
|
||||
@@ -9,6 +9,7 @@ Scripts for testing UniFace features.
|
||||
| `run_detection.py` | Face detection on image or webcam |
|
||||
| `run_age_gender.py` | Age and gender prediction |
|
||||
| `run_emotion.py` | Emotion detection (7 or 8 emotions) |
|
||||
| `run_gaze_estimation.py` | Gaze direction estimation |
|
||||
| `run_landmarks.py` | 106-point facial landmark detection |
|
||||
| `run_recognition.py` | Face embedding extraction and comparison |
|
||||
| `run_face_analyzer.py` | Complete face analysis (detection + recognition + attributes) |
|
||||
@@ -33,6 +34,10 @@ python scripts/run_age_gender.py --webcam
|
||||
python scripts/run_emotion.py --image assets/test.jpg
|
||||
python scripts/run_emotion.py --webcam
|
||||
|
||||
# Gaze estimation
|
||||
python scripts/run_gaze_estimation.py --image assets/test.jpg
|
||||
python scripts/run_gaze_estimation.py --webcam
|
||||
|
||||
# Landmarks
|
||||
python scripts/run_landmarks.py --image assets/test.jpg
|
||||
python scripts/run_landmarks.py --webcam
|
||||
|
||||
@@ -79,7 +79,9 @@ def run_webcam(detector, age_gender, threshold: float = 0.6):
|
||||
bboxes = [f['bbox'] for f in faces]
|
||||
scores = [f['confidence'] for f in faces]
|
||||
landmarks = [f['landmarks'] for f in faces]
|
||||
draw_detections(frame, bboxes, scores, landmarks, vis_threshold=threshold)
|
||||
draw_detections(
|
||||
image=frame, bboxes=bboxes, scores=scores, landmarks=landmarks, vis_threshold=threshold, fancy_bbox=True
|
||||
)
|
||||
|
||||
for face in faces:
|
||||
gender_id, age = age_gender.predict(frame, face['bbox']) # predict per face
|
||||
|
||||
@@ -98,7 +98,7 @@ def main():
|
||||
else:
|
||||
from uniface.constants import YOLOv5FaceWeights
|
||||
|
||||
detector = YOLOv5Face(model_name=YOLOv5FaceWeights.YOLOV5N)
|
||||
detector = YOLOv5Face(model_name=YOLOv5FaceWeights.YOLOV5M)
|
||||
|
||||
if args.webcam:
|
||||
run_webcam(detector, args.threshold)
|
||||
|
||||
126
scripts/run_face_parsing.py
Normal file
126
scripts/run_face_parsing.py
Normal file
@@ -0,0 +1,126 @@
|
||||
# Face parsing on detected faces
|
||||
# Usage: python run_face_parsing.py --image path/to/image.jpg
|
||||
# python run_face_parsing.py --webcam
|
||||
|
||||
import argparse
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
import cv2
|
||||
|
||||
from uniface import RetinaFace
|
||||
from uniface.constants import ParsingWeights
|
||||
from uniface.parsing import BiSeNet
|
||||
from uniface.visualization import vis_parsing_maps
|
||||
|
||||
|
||||
def process_image(detector, parser, image_path: str, save_dir: str = 'outputs'):
|
||||
image = cv2.imread(image_path)
|
||||
if image is None:
|
||||
print(f"Error: Failed to load image from '{image_path}'")
|
||||
return
|
||||
|
||||
faces = detector.detect(image)
|
||||
print(f'Detected {len(faces)} face(s)')
|
||||
|
||||
result_image = image.copy()
|
||||
|
||||
for i, face in enumerate(faces):
|
||||
bbox = face['bbox']
|
||||
x1, y1, x2, y2 = map(int, bbox[:4])
|
||||
face_crop = image[y1:y2, x1:x2]
|
||||
|
||||
if face_crop.size == 0:
|
||||
continue
|
||||
|
||||
# Parse the face
|
||||
mask = parser.parse(face_crop)
|
||||
print(f' Face {i + 1}: parsed with {len(set(mask.flatten()))} unique classes')
|
||||
|
||||
# Visualize the parsing result
|
||||
face_crop_rgb = cv2.cvtColor(face_crop, cv2.COLOR_BGR2RGB)
|
||||
vis_result = vis_parsing_maps(face_crop_rgb, mask, save_image=False)
|
||||
|
||||
# Place the visualization back on the original image
|
||||
result_image[y1:y2, x1:x2] = vis_result
|
||||
|
||||
# Draw bounding box
|
||||
cv2.rectangle(result_image, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
||||
|
||||
os.makedirs(save_dir, exist_ok=True)
|
||||
output_path = os.path.join(save_dir, f'{Path(image_path).stem}_parsing.jpg')
|
||||
cv2.imwrite(output_path, result_image)
|
||||
print(f'Output saved: {output_path}')
|
||||
|
||||
|
||||
def run_webcam(detector, parser):
|
||||
cap = cv2.VideoCapture(0)
|
||||
if not cap.isOpened():
|
||||
print('Cannot open webcam')
|
||||
return
|
||||
|
||||
print("Press 'q' to quit")
|
||||
|
||||
while True:
|
||||
ret, frame = cap.read()
|
||||
if not ret:
|
||||
break
|
||||
|
||||
frame = cv2.flip(frame, 1)
|
||||
faces = detector.detect(frame)
|
||||
|
||||
for face in faces:
|
||||
bbox = face['bbox']
|
||||
x1, y1, x2, y2 = map(int, bbox[:4])
|
||||
face_crop = frame[y1:y2, x1:x2]
|
||||
|
||||
if face_crop.size == 0:
|
||||
continue
|
||||
|
||||
# Parse the face
|
||||
mask = parser.parse(face_crop)
|
||||
|
||||
# Visualize the parsing result
|
||||
face_crop_rgb = cv2.cvtColor(face_crop, cv2.COLOR_BGR2RGB)
|
||||
vis_result = vis_parsing_maps(face_crop_rgb, mask, save_image=False)
|
||||
|
||||
# Place the visualization back on the frame
|
||||
frame[y1:y2, x1:x2] = vis_result
|
||||
|
||||
# Draw bounding box
|
||||
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
||||
|
||||
cv2.putText(frame, f'Faces: {len(faces)}', (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
|
||||
cv2.imshow('Face Parsing', frame)
|
||||
|
||||
if cv2.waitKey(1) & 0xFF == ord('q'):
|
||||
break
|
||||
|
||||
cap.release()
|
||||
cv2.destroyAllWindows()
|
||||
|
||||
|
||||
def main():
|
||||
parser_arg = argparse.ArgumentParser(description='Run face parsing')
|
||||
parser_arg.add_argument('--image', type=str, help='Path to input image')
|
||||
parser_arg.add_argument('--webcam', action='store_true', help='Use webcam')
|
||||
parser_arg.add_argument('--save_dir', type=str, default='outputs')
|
||||
parser_arg.add_argument(
|
||||
'--model', type=str, default=ParsingWeights.RESNET18, choices=[ParsingWeights.RESNET18, ParsingWeights.RESNET34]
|
||||
)
|
||||
args = parser_arg.parse_args()
|
||||
|
||||
if not args.image and not args.webcam:
|
||||
parser_arg.error('Either --image or --webcam must be specified')
|
||||
|
||||
detector = RetinaFace()
|
||||
parser = BiSeNet(model_name=ParsingWeights.RESNET34)
|
||||
|
||||
if args.webcam:
|
||||
run_webcam(detector, parser)
|
||||
else:
|
||||
process_image(detector, parser, args.image, args.save_dir)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
104
scripts/run_gaze_estimation.py
Normal file
104
scripts/run_gaze_estimation.py
Normal file
@@ -0,0 +1,104 @@
|
||||
# Gaze estimation on detected faces
|
||||
# Usage: python run_gaze_estimation.py --image path/to/image.jpg
|
||||
# python run_gaze_estimation.py --webcam
|
||||
|
||||
import argparse
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
from uniface import RetinaFace
|
||||
from uniface.gaze import MobileGaze
|
||||
from uniface.visualization import draw_gaze
|
||||
|
||||
|
||||
def process_image(detector, gaze_estimator, image_path: str, save_dir: str = 'outputs'):
|
||||
image = cv2.imread(image_path)
|
||||
if image is None:
|
||||
print(f"Error: Failed to load image from '{image_path}'")
|
||||
return
|
||||
|
||||
faces = detector.detect(image)
|
||||
print(f'Detected {len(faces)} face(s)')
|
||||
|
||||
for i, face in enumerate(faces):
|
||||
bbox = face['bbox']
|
||||
x1, y1, x2, y2 = map(int, bbox[:4])
|
||||
face_crop = image[y1:y2, x1:x2]
|
||||
|
||||
if face_crop.size == 0:
|
||||
continue
|
||||
|
||||
pitch, yaw = gaze_estimator.estimate(face_crop)
|
||||
print(f' Face {i + 1}: pitch={np.degrees(pitch):.1f}°, yaw={np.degrees(yaw):.1f}°')
|
||||
|
||||
# Draw both bbox and gaze arrow with angle text
|
||||
draw_gaze(image, bbox, pitch, yaw, draw_angles=True)
|
||||
|
||||
os.makedirs(save_dir, exist_ok=True)
|
||||
output_path = os.path.join(save_dir, f'{Path(image_path).stem}_gaze.jpg')
|
||||
cv2.imwrite(output_path, image)
|
||||
print(f'Output saved: {output_path}')
|
||||
|
||||
|
||||
def run_webcam(detector, gaze_estimator):
|
||||
cap = cv2.VideoCapture(0)
|
||||
if not cap.isOpened():
|
||||
print('Cannot open webcam')
|
||||
return
|
||||
|
||||
print("Press 'q' to quit")
|
||||
|
||||
while True:
|
||||
ret, frame = cap.read()
|
||||
if not ret:
|
||||
break
|
||||
|
||||
frame = cv2.flip(frame, 1)
|
||||
faces = detector.detect(frame)
|
||||
|
||||
for face in faces:
|
||||
bbox = face['bbox']
|
||||
x1, y1, x2, y2 = map(int, bbox[:4])
|
||||
face_crop = frame[y1:y2, x1:x2]
|
||||
|
||||
if face_crop.size == 0:
|
||||
continue
|
||||
|
||||
pitch, yaw = gaze_estimator.estimate(face_crop)
|
||||
# Draw both bbox and gaze arrow
|
||||
draw_gaze(frame, bbox, pitch, yaw)
|
||||
|
||||
cv2.putText(frame, f'Faces: {len(faces)}', (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
|
||||
cv2.imshow('Gaze Estimation', frame)
|
||||
|
||||
if cv2.waitKey(1) & 0xFF == ord('q'):
|
||||
break
|
||||
|
||||
cap.release()
|
||||
cv2.destroyAllWindows()
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(description='Run gaze estimation')
|
||||
parser.add_argument('--image', type=str, help='Path to input image')
|
||||
parser.add_argument('--webcam', action='store_true', help='Use webcam')
|
||||
parser.add_argument('--save_dir', type=str, default='outputs')
|
||||
args = parser.parse_args()
|
||||
|
||||
if not args.image and not args.webcam:
|
||||
parser.error('Either --image or --webcam must be specified')
|
||||
|
||||
detector = RetinaFace()
|
||||
gaze_estimator = MobileGaze()
|
||||
|
||||
if args.webcam:
|
||||
run_webcam(detector, gaze_estimator)
|
||||
else:
|
||||
process_image(detector, gaze_estimator, args.image, args.save_dir)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
118
tests/test_parsing.py
Normal file
118
tests/test_parsing.py
Normal file
@@ -0,0 +1,118 @@
|
||||
# Copyright 2025 Yakhyokhuja Valikhujaev
|
||||
# Author: Yakhyokhuja Valikhujaev
|
||||
# GitHub: https://github.com/yakhyo
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from uniface.constants import ParsingWeights
|
||||
from uniface.parsing import BiSeNet, create_face_parser
|
||||
|
||||
|
||||
def test_bisenet_initialization():
|
||||
"""Test BiSeNet initialization."""
|
||||
parser = BiSeNet()
|
||||
assert parser is not None
|
||||
assert parser.input_size == (512, 512)
|
||||
|
||||
|
||||
def test_bisenet_with_different_models():
|
||||
"""Test BiSeNet with different model weights."""
|
||||
parser_resnet18 = BiSeNet(model_name=ParsingWeights.RESNET18)
|
||||
parser_resnet34 = BiSeNet(model_name=ParsingWeights.RESNET34)
|
||||
|
||||
assert parser_resnet18 is not None
|
||||
assert parser_resnet34 is not None
|
||||
|
||||
|
||||
def test_bisenet_preprocess():
|
||||
"""Test preprocessing."""
|
||||
parser = BiSeNet()
|
||||
|
||||
# Create a dummy face image
|
||||
face_image = np.random.randint(0, 255, (256, 256, 3), dtype=np.uint8)
|
||||
|
||||
# Preprocess
|
||||
preprocessed = parser.preprocess(face_image)
|
||||
|
||||
assert preprocessed.shape == (1, 3, 512, 512)
|
||||
assert preprocessed.dtype == np.float32
|
||||
|
||||
|
||||
def test_bisenet_postprocess():
|
||||
"""Test postprocessing."""
|
||||
parser = BiSeNet()
|
||||
|
||||
# Create dummy model output (batch_size=1, num_classes=19, H=512, W=512)
|
||||
dummy_output = np.random.randn(1, 19, 512, 512).astype(np.float32)
|
||||
|
||||
# Postprocess
|
||||
mask = parser.postprocess(dummy_output, original_size=(256, 256))
|
||||
|
||||
assert mask.shape == (256, 256)
|
||||
assert mask.dtype == np.uint8
|
||||
assert mask.min() >= 0
|
||||
assert mask.max() < 19 # 19 classes (0-18)
|
||||
|
||||
|
||||
def test_bisenet_parse():
|
||||
"""Test end-to-end parsing."""
|
||||
parser = BiSeNet()
|
||||
|
||||
# Create a dummy face image
|
||||
face_image = np.random.randint(0, 255, (256, 256, 3), dtype=np.uint8)
|
||||
|
||||
# Parse
|
||||
mask = parser.parse(face_image)
|
||||
|
||||
assert mask.shape == (256, 256)
|
||||
assert mask.dtype == np.uint8
|
||||
assert mask.min() >= 0
|
||||
assert mask.max() < 19
|
||||
|
||||
|
||||
def test_bisenet_callable():
|
||||
"""Test that BiSeNet is callable."""
|
||||
parser = BiSeNet()
|
||||
face_image = np.random.randint(0, 255, (256, 256, 3), dtype=np.uint8)
|
||||
|
||||
# Should work as callable
|
||||
mask = parser(face_image)
|
||||
|
||||
assert mask.shape == (256, 256)
|
||||
assert mask.dtype == np.uint8
|
||||
|
||||
|
||||
def test_create_face_parser_with_enum():
|
||||
"""Test factory function with enum."""
|
||||
parser = create_face_parser(ParsingWeights.RESNET18)
|
||||
assert parser is not None
|
||||
assert isinstance(parser, BiSeNet)
|
||||
|
||||
|
||||
def test_create_face_parser_with_string():
|
||||
"""Test factory function with string."""
|
||||
parser = create_face_parser('parsing_resnet18')
|
||||
assert parser is not None
|
||||
assert isinstance(parser, BiSeNet)
|
||||
|
||||
|
||||
def test_create_face_parser_invalid_model():
|
||||
"""Test factory function with invalid model name."""
|
||||
with pytest.raises(ValueError, match='Unknown face parsing model'):
|
||||
create_face_parser('invalid_model')
|
||||
|
||||
|
||||
def test_bisenet_different_input_sizes():
|
||||
"""Test parsing with different input image sizes."""
|
||||
parser = BiSeNet()
|
||||
|
||||
# Test with different sizes
|
||||
sizes = [(128, 128), (256, 256), (512, 512), (640, 480)]
|
||||
|
||||
for h, w in sizes:
|
||||
face_image = np.random.randint(0, 255, (h, w, 3), dtype=np.uint8)
|
||||
mask = parser.parse(face_image)
|
||||
|
||||
assert mask.shape == (h, w), f'Failed for size {h}x{w}'
|
||||
assert mask.dtype == np.uint8
|
||||
@@ -13,13 +13,13 @@
|
||||
|
||||
__license__ = 'MIT'
|
||||
__author__ = 'Yakhyokhuja Valikhujaev'
|
||||
__version__ = '1.3.2'
|
||||
__version__ = '1.5.0'
|
||||
|
||||
|
||||
from uniface.face_utils import compute_similarity, face_alignment
|
||||
from uniface.log import Logger, enable_logging
|
||||
from uniface.model_store import verify_model_weights
|
||||
from uniface.visualization import draw_detections
|
||||
from uniface.visualization import draw_detections, vis_parsing_maps
|
||||
|
||||
from .analyzer import FaceAnalyzer
|
||||
from .attribute import AgeGender
|
||||
@@ -37,7 +37,9 @@ from .detection import (
|
||||
detect_faces,
|
||||
list_available_detectors,
|
||||
)
|
||||
from .gaze import MobileGaze, create_gaze_estimator
|
||||
from .landmark import Landmark106, create_landmarker
|
||||
from .parsing import BiSeNet, create_face_parser
|
||||
from .recognition import ArcFace, MobileFace, SphereFace, create_recognizer
|
||||
|
||||
__all__ = [
|
||||
@@ -49,6 +51,8 @@ __all__ = [
|
||||
'FaceAnalyzer',
|
||||
# Factory functions
|
||||
'create_detector',
|
||||
'create_face_parser',
|
||||
'create_gaze_estimator',
|
||||
'create_landmarker',
|
||||
'create_recognizer',
|
||||
'detect_faces',
|
||||
@@ -63,12 +67,17 @@ __all__ = [
|
||||
'SphereFace',
|
||||
# Landmark models
|
||||
'Landmark106',
|
||||
# Gaze models
|
||||
'MobileGaze',
|
||||
# Parsing models
|
||||
'BiSeNet',
|
||||
# Attribute models
|
||||
'AgeGender',
|
||||
'Emotion',
|
||||
# Utilities
|
||||
'compute_similarity',
|
||||
'draw_detections',
|
||||
'vis_parsing_maps',
|
||||
'face_alignment',
|
||||
'verify_model_weights',
|
||||
'Logger',
|
||||
|
||||
@@ -96,6 +96,29 @@ class LandmarkWeights(str, Enum):
|
||||
DEFAULT = "2d_106"
|
||||
|
||||
|
||||
class GazeWeights(str, Enum):
|
||||
"""
|
||||
MobileGaze: Real-Time Gaze Estimation models.
|
||||
Trained on Gaze360 dataset.
|
||||
https://github.com/yakhyo/gaze-estimation
|
||||
"""
|
||||
RESNET18 = "gaze_resnet18"
|
||||
RESNET34 = "gaze_resnet34"
|
||||
RESNET50 = "gaze_resnet50"
|
||||
MOBILENET_V2 = "gaze_mobilenetv2"
|
||||
MOBILEONE_S0 = "gaze_mobileone_s0"
|
||||
|
||||
|
||||
class ParsingWeights(str, Enum):
|
||||
"""
|
||||
Face Parsing: Semantic Segmentation of Facial Components.
|
||||
Trained on CelebAMask-HQ dataset.
|
||||
https://github.com/yakhyo/face-parsing
|
||||
"""
|
||||
RESNET18 = "parsing_resnet18"
|
||||
RESNET34 = "parsing_resnet34"
|
||||
|
||||
|
||||
MODEL_URLS: Dict[Enum, str] = {
|
||||
# RetinaFace
|
||||
RetinaFaceWeights.MNET_025: 'https://github.com/yakhyo/uniface/releases/download/weights/retinaface_mv1_0.25.onnx',
|
||||
@@ -129,6 +152,15 @@ MODEL_URLS: Dict[Enum, str] = {
|
||||
AgeGenderWeights.DEFAULT: 'https://github.com/yakhyo/uniface/releases/download/weights/genderage.onnx',
|
||||
# Landmarks
|
||||
LandmarkWeights.DEFAULT: 'https://github.com/yakhyo/uniface/releases/download/weights/2d106det.onnx',
|
||||
# Gaze (MobileGaze)
|
||||
GazeWeights.RESNET18: 'https://github.com/yakhyo/gaze-estimation/releases/download/weights/resnet18_gaze.onnx',
|
||||
GazeWeights.RESNET34: 'https://github.com/yakhyo/gaze-estimation/releases/download/weights/resnet34_gaze.onnx',
|
||||
GazeWeights.RESNET50: 'https://github.com/yakhyo/gaze-estimation/releases/download/weights/resnet50_gaze.onnx',
|
||||
GazeWeights.MOBILENET_V2: 'https://github.com/yakhyo/gaze-estimation/releases/download/weights/mobilenetv2_gaze.onnx',
|
||||
GazeWeights.MOBILEONE_S0: 'https://github.com/yakhyo/gaze-estimation/releases/download/weights/mobileone_s0_gaze.onnx',
|
||||
# Parsing
|
||||
ParsingWeights.RESNET18: 'https://github.com/yakhyo/face-parsing/releases/download/weights/resnet18.onnx',
|
||||
ParsingWeights.RESNET34: 'https://github.com/yakhyo/face-parsing/releases/download/weights/resnet34.onnx',
|
||||
}
|
||||
|
||||
MODEL_SHA256: Dict[Enum, str] = {
|
||||
@@ -164,6 +196,15 @@ MODEL_SHA256: Dict[Enum, str] = {
|
||||
AgeGenderWeights.DEFAULT: '4fde69b1c810857b88c64a335084f1c3fe8f01246c9a191b48c7bb756d6652fb',
|
||||
# Landmark
|
||||
LandmarkWeights.DEFAULT: 'f001b856447c413801ef5c42091ed0cd516fcd21f2d6b79635b1e733a7109dbf',
|
||||
# MobileGaze (trained on Gaze360)
|
||||
GazeWeights.RESNET18: '23d5d7e4f6f40dce8c35274ce9d08b45b9e22cbaaf5af73182f473229d713d31',
|
||||
GazeWeights.RESNET34: '4457ee5f7acd1a5ab02da4b61f02fc3a0b17adbf3844dd0ba3cd4288f2b5e1de',
|
||||
GazeWeights.RESNET50: 'e1eaf98f5ec7c89c6abe7cfe39f7be83e747163f98d1ff945c0603b3c521be22',
|
||||
GazeWeights.MOBILENET_V2: 'fdcdb84e3e6421b5a79e8f95139f249fc258d7f387eed5ddac2b80a9a15ce076',
|
||||
GazeWeights.MOBILEONE_S0: 'c0b5a4f4a0ffd24f76ab3c1452354bb2f60110899fd9a88b464c75bafec0fde8',
|
||||
# Face Parsing
|
||||
ParsingWeights.RESNET18: '0d9bd318e46987c3bdbfacae9e2c0f461cae1c6ac6ea6d43bbe541a91727e33f',
|
||||
ParsingWeights.RESNET34: '5b805bba7b5660ab7070b5a381dcf75e5b3e04199f1e9387232a77a00095102e',
|
||||
}
|
||||
|
||||
CHUNK_SIZE = 8192
|
||||
|
||||
58
uniface/gaze/__init__.py
Normal file
58
uniface/gaze/__init__.py
Normal file
@@ -0,0 +1,58 @@
|
||||
# Copyright 2025 Yakhyokhuja Valikhujaev
|
||||
# Author: Yakhyokhuja Valikhujaev
|
||||
# GitHub: https://github.com/yakhyo
|
||||
|
||||
from .base import BaseGazeEstimator
|
||||
from .models import MobileGaze
|
||||
|
||||
|
||||
def create_gaze_estimator(method: str = 'mobilegaze', **kwargs) -> BaseGazeEstimator:
|
||||
"""
|
||||
Factory function to create gaze estimators.
|
||||
|
||||
This function initializes and returns a gaze estimator instance based on the
|
||||
specified method. It acts as a high-level interface to the underlying
|
||||
model classes.
|
||||
|
||||
Args:
|
||||
method (str): The gaze estimation method to use.
|
||||
Options: 'mobilegaze' (default).
|
||||
**kwargs: Model-specific parameters passed to the estimator's constructor.
|
||||
For example, `model_name` can be used to select a specific
|
||||
backbone from `GazeWeights` enum (RESNET18, RESNET34, RESNET50,
|
||||
MOBILENET_V2, MOBILEONE_S0).
|
||||
|
||||
Returns:
|
||||
BaseGazeEstimator: An initialized gaze estimator instance ready for use.
|
||||
|
||||
Raises:
|
||||
ValueError: If the specified `method` is not supported.
|
||||
|
||||
Examples:
|
||||
>>> # Create the default MobileGaze estimator (ResNet18 backbone)
|
||||
>>> estimator = create_gaze_estimator()
|
||||
|
||||
>>> # Create with MobileNetV2 backbone
|
||||
>>> from uniface.constants import GazeWeights
|
||||
>>> estimator = create_gaze_estimator(
|
||||
... 'mobilegaze',
|
||||
... model_name=GazeWeights.MOBILENET_V2
|
||||
... )
|
||||
|
||||
>>> # Use the estimator
|
||||
>>> pitch, yaw = estimator.estimate(face_crop)
|
||||
"""
|
||||
method = method.lower()
|
||||
|
||||
if method in ('mobilegaze', 'mobile_gaze', 'gaze'):
|
||||
return MobileGaze(**kwargs)
|
||||
else:
|
||||
available = ['mobilegaze']
|
||||
raise ValueError(f"Unsupported gaze estimation method: '{method}'. Available: {available}")
|
||||
|
||||
|
||||
__all__ = [
|
||||
'create_gaze_estimator',
|
||||
'MobileGaze',
|
||||
'BaseGazeEstimator',
|
||||
]
|
||||
108
uniface/gaze/base.py
Normal file
108
uniface/gaze/base.py
Normal file
@@ -0,0 +1,108 @@
|
||||
# Copyright 2025 Yakhyokhuja Valikhujaev
|
||||
# Author: Yakhyokhuja Valikhujaev
|
||||
# GitHub: https://github.com/yakhyo
|
||||
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Tuple
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
class BaseGazeEstimator(ABC):
|
||||
"""
|
||||
Abstract base class for all gaze estimation models.
|
||||
|
||||
This class defines the common interface that all gaze estimators must implement,
|
||||
ensuring consistency across different gaze estimation methods. Gaze estimation
|
||||
predicts the direction a person is looking based on their face image.
|
||||
|
||||
The gaze direction is represented as pitch and yaw angles in radians:
|
||||
- Pitch: Vertical angle (positive = looking up, negative = looking down)
|
||||
- Yaw: Horizontal angle (positive = looking right, negative = looking left)
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
def _initialize_model(self) -> None:
|
||||
"""
|
||||
Initialize the underlying model for inference.
|
||||
|
||||
This method should handle loading model weights, creating the
|
||||
inference session (e.g., ONNX Runtime), and any necessary
|
||||
setup procedures to prepare the model for prediction.
|
||||
|
||||
Raises:
|
||||
RuntimeError: If the model fails to load or initialize.
|
||||
"""
|
||||
raise NotImplementedError('Subclasses must implement the _initialize_model method.')
|
||||
|
||||
@abstractmethod
|
||||
def preprocess(self, face_image: np.ndarray) -> np.ndarray:
|
||||
"""
|
||||
Preprocess the input face image for model inference.
|
||||
|
||||
This method should take a raw face crop and convert it into the format
|
||||
expected by the model's inference engine (e.g., normalized tensor).
|
||||
|
||||
Args:
|
||||
face_image (np.ndarray): A cropped face image in BGR format with
|
||||
shape (H, W, C).
|
||||
|
||||
Returns:
|
||||
np.ndarray: The preprocessed image tensor ready for inference,
|
||||
typically with shape (1, C, H, W).
|
||||
"""
|
||||
raise NotImplementedError('Subclasses must implement the preprocess method.')
|
||||
|
||||
@abstractmethod
|
||||
def postprocess(self, outputs: Tuple[np.ndarray, np.ndarray]) -> Tuple[float, float]:
|
||||
"""
|
||||
Postprocess raw model outputs into gaze angles.
|
||||
|
||||
This method takes the raw output from the model's inference and
|
||||
converts it into pitch and yaw angles in radians.
|
||||
|
||||
Args:
|
||||
outputs: Raw outputs from the model inference. The format depends
|
||||
on the specific model architecture.
|
||||
|
||||
Returns:
|
||||
Tuple[float, float]: A tuple of (pitch, yaw) angles in radians.
|
||||
"""
|
||||
raise NotImplementedError('Subclasses must implement the postprocess method.')
|
||||
|
||||
@abstractmethod
|
||||
def estimate(self, face_image: np.ndarray) -> Tuple[float, float]:
|
||||
"""
|
||||
Perform end-to-end gaze estimation on a face image.
|
||||
|
||||
This method orchestrates the full pipeline: preprocessing the input,
|
||||
running inference, and postprocessing to return the gaze direction.
|
||||
|
||||
Args:
|
||||
face_image (np.ndarray): A cropped face image in BGR format.
|
||||
The face should be roughly centered and
|
||||
well-framed within the image.
|
||||
|
||||
Returns:
|
||||
Tuple[float, float]: A tuple of (pitch, yaw) angles in radians:
|
||||
- pitch: Vertical gaze angle (positive = up, negative = down)
|
||||
- yaw: Horizontal gaze angle (positive = right, negative = left)
|
||||
|
||||
Example:
|
||||
>>> estimator = create_gaze_estimator()
|
||||
>>> pitch, yaw = estimator.estimate(face_crop)
|
||||
>>> print(f"Looking: pitch={np.degrees(pitch):.1f}°, yaw={np.degrees(yaw):.1f}°")
|
||||
"""
|
||||
raise NotImplementedError('Subclasses must implement the estimate method.')
|
||||
|
||||
def __call__(self, face_image: np.ndarray) -> Tuple[float, float]:
|
||||
"""
|
||||
Provides a convenient, callable shortcut for the `estimate` method.
|
||||
|
||||
Args:
|
||||
face_image (np.ndarray): A cropped face image in BGR format.
|
||||
|
||||
Returns:
|
||||
Tuple[float, float]: A tuple of (pitch, yaw) angles in radians.
|
||||
"""
|
||||
return self.estimate(face_image)
|
||||
187
uniface/gaze/models.py
Normal file
187
uniface/gaze/models.py
Normal file
@@ -0,0 +1,187 @@
|
||||
# Copyright 2025 Yakhyokhuja Valikhujaev
|
||||
# Author: Yakhyokhuja Valikhujaev
|
||||
# GitHub: https://github.com/yakhyo
|
||||
|
||||
from typing import Tuple
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
from uniface.constants import GazeWeights
|
||||
from uniface.log import Logger
|
||||
from uniface.model_store import verify_model_weights
|
||||
from uniface.onnx_utils import create_onnx_session
|
||||
|
||||
from .base import BaseGazeEstimator
|
||||
|
||||
__all__ = ['MobileGaze']
|
||||
|
||||
|
||||
class MobileGaze(BaseGazeEstimator):
|
||||
"""
|
||||
MobileGaze: Real-Time Gaze Estimation with ONNX Runtime.
|
||||
|
||||
MobileGaze is a gaze estimation model that predicts gaze direction from a single
|
||||
face image. It supports multiple backbone architectures including ResNet 18/34/50,
|
||||
MobileNetV2, and MobileOne S0. The model uses a classification approach with binned
|
||||
angles, which are then decoded to continuous pitch and yaw values.
|
||||
|
||||
The model outputs gaze direction as pitch (vertical) and yaw (horizontal) angles
|
||||
in radians.
|
||||
|
||||
Reference:
|
||||
https://github.com/yakhyo/gaze-estimation
|
||||
|
||||
Args:
|
||||
model_name (GazeWeights): The enum specifying the gaze model backbone to load.
|
||||
Options: RESNET18, RESNET34, RESNET50, MOBILENET_V2, MOBILEONE_S0.
|
||||
Defaults to `GazeWeights.RESNET18`.
|
||||
input_size (Tuple[int, int]): The resolution (width, height) for the model's
|
||||
input. Defaults to (448, 448).
|
||||
|
||||
Attributes:
|
||||
input_size (Tuple[int, int]): Model input dimensions.
|
||||
input_mean (list): Per-channel mean values for normalization (ImageNet).
|
||||
input_std (list): Per-channel std values for normalization (ImageNet).
|
||||
|
||||
Example:
|
||||
>>> from uniface.gaze import MobileGaze
|
||||
>>> from uniface import RetinaFace
|
||||
>>>
|
||||
>>> detector = RetinaFace()
|
||||
>>> gaze_estimator = MobileGaze()
|
||||
>>>
|
||||
>>> # Detect faces and estimate gaze for each
|
||||
>>> faces = detector.detect(image)
|
||||
>>> for face in faces:
|
||||
... bbox = face['bbox']
|
||||
... x1, y1, x2, y2 = map(int, bbox[:4])
|
||||
... face_crop = image[y1:y2, x1:x2]
|
||||
... pitch, yaw = gaze_estimator.estimate(face_crop)
|
||||
... print(f"Gaze: pitch={np.degrees(pitch):.1f}°, yaw={np.degrees(yaw):.1f}°")
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model_name: GazeWeights = GazeWeights.RESNET34,
|
||||
input_size: Tuple[int, int] = (448, 448),
|
||||
) -> None:
|
||||
Logger.info(f'Initializing MobileGaze with model={model_name}, input_size={input_size}')
|
||||
|
||||
self.input_size = input_size
|
||||
self.input_mean = [0.485, 0.456, 0.406]
|
||||
self.input_std = [0.229, 0.224, 0.225]
|
||||
|
||||
# Model specific parameters for bin-based classification (Gaze360 config)
|
||||
self._bins = 90
|
||||
self._binwidth = 4
|
||||
self._angle_offset = 180
|
||||
self._idx_tensor = np.arange(self._bins, dtype=np.float32)
|
||||
|
||||
self.model_path = verify_model_weights(model_name)
|
||||
self._initialize_model()
|
||||
|
||||
def _initialize_model(self) -> None:
|
||||
"""
|
||||
Initialize the ONNX model from the stored model path.
|
||||
|
||||
Raises:
|
||||
RuntimeError: If the model fails to load or initialize.
|
||||
"""
|
||||
try:
|
||||
self.session = create_onnx_session(self.model_path)
|
||||
|
||||
# Get input configuration
|
||||
input_cfg = self.session.get_inputs()[0]
|
||||
input_shape = input_cfg.shape
|
||||
self.input_name = input_cfg.name
|
||||
self.input_size = tuple(input_shape[2:4][::-1]) # Update from model
|
||||
|
||||
# Get output configuration
|
||||
outputs = self.session.get_outputs()
|
||||
self.output_names = [output.name for output in outputs]
|
||||
|
||||
if len(self.output_names) != 2:
|
||||
raise ValueError(f'Expected 2 output nodes (pitch, yaw), got {len(self.output_names)}')
|
||||
|
||||
Logger.info(f'MobileGaze initialized with input size {self.input_size}')
|
||||
|
||||
except Exception as e:
|
||||
Logger.error(f"Failed to load gaze model from '{self.model_path}'", exc_info=True)
|
||||
raise RuntimeError(f'Failed to initialize gaze model: {e}') from e
|
||||
|
||||
def preprocess(self, face_image: np.ndarray) -> np.ndarray:
|
||||
"""
|
||||
Preprocess a face crop for gaze estimation.
|
||||
|
||||
Args:
|
||||
face_image (np.ndarray): A cropped face image in BGR format.
|
||||
|
||||
Returns:
|
||||
np.ndarray: Preprocessed image tensor with shape (1, 3, H, W).
|
||||
"""
|
||||
# Convert BGR to RGB
|
||||
image = cv2.cvtColor(face_image, cv2.COLOR_BGR2RGB)
|
||||
|
||||
# Resize to model input size
|
||||
image = cv2.resize(image, self.input_size)
|
||||
|
||||
# Normalize to [0, 1] and apply normalization
|
||||
image = image.astype(np.float32) / 255.0
|
||||
mean = np.array(self.input_mean, dtype=np.float32)
|
||||
std = np.array(self.input_std, dtype=np.float32)
|
||||
image = (image - mean) / std
|
||||
|
||||
# HWC -> CHW -> NCHW
|
||||
image = np.transpose(image, (2, 0, 1))
|
||||
image = np.expand_dims(image, axis=0).astype(np.float32)
|
||||
|
||||
return image
|
||||
|
||||
def _softmax(self, x: np.ndarray) -> np.ndarray:
|
||||
"""Apply softmax along axis 1."""
|
||||
e_x = np.exp(x - np.max(x, axis=1, keepdims=True))
|
||||
return e_x / e_x.sum(axis=1, keepdims=True)
|
||||
|
||||
def postprocess(self, outputs: Tuple[np.ndarray, np.ndarray]) -> Tuple[np.ndarray, np.ndarray]:
|
||||
"""
|
||||
Postprocess raw model outputs into gaze angles.
|
||||
|
||||
This method takes the raw output from the model's inference and
|
||||
converts it into pitch and yaw angles in radians.
|
||||
|
||||
Args:
|
||||
outputs: Raw outputs from the model inference. The format depends
|
||||
on the specific model architecture.
|
||||
|
||||
Returns:
|
||||
Tuple[np.ndarray, np.ndarray]: A tuple of (pitch, yaw) angles in radians.
|
||||
"""
|
||||
pitch_logits, yaw_logits = outputs
|
||||
|
||||
# Convert logits to probabilities
|
||||
pitch_probs = self._softmax(pitch_logits)
|
||||
yaw_probs = self._softmax(yaw_logits)
|
||||
|
||||
# Compute expected bin index (soft-argmax)
|
||||
pitch_deg = np.sum(pitch_probs * self._idx_tensor, axis=1) * self._binwidth - self._angle_offset
|
||||
yaw_deg = np.sum(yaw_probs * self._idx_tensor, axis=1) * self._binwidth - self._angle_offset
|
||||
|
||||
# Convert degrees to radians
|
||||
pitch = np.radians(pitch_deg[0])
|
||||
yaw = np.radians(yaw_deg[0])
|
||||
|
||||
return pitch, yaw
|
||||
|
||||
def estimate(self, face_image: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
|
||||
"""
|
||||
Perform end-to-end gaze estimation on a face image.
|
||||
|
||||
This method orchestrates the full pipeline: preprocessing the input,
|
||||
running inference, and postprocessing to return the gaze direction.
|
||||
"""
|
||||
input_tensor = self.preprocess(face_image)
|
||||
outputs = self.session.run(self.output_names, {self.input_name: input_tensor})
|
||||
pitch, yaw = self.postprocess((outputs[0], outputs[1]))
|
||||
|
||||
return pitch, yaw
|
||||
61
uniface/parsing/__init__.py
Normal file
61
uniface/parsing/__init__.py
Normal file
@@ -0,0 +1,61 @@
|
||||
# Copyright 2025 Yakhyokhuja Valikhujaev
|
||||
# Author: Yakhyokhuja Valikhujaev
|
||||
# GitHub: https://github.com/yakhyo
|
||||
|
||||
from typing import Union
|
||||
|
||||
from uniface.constants import ParsingWeights
|
||||
|
||||
from .base import BaseFaceParser
|
||||
from .bisenet import BiSeNet
|
||||
|
||||
__all__ = ['BaseFaceParser', 'BiSeNet', 'create_face_parser']
|
||||
|
||||
|
||||
def create_face_parser(
|
||||
model_name: Union[str, ParsingWeights] = ParsingWeights.RESNET18,
|
||||
) -> BaseFaceParser:
|
||||
"""
|
||||
Factory function to create a face parsing model instance.
|
||||
|
||||
This function provides a convenient way to instantiate face parsing models
|
||||
without directly importing the specific model classes. It supports both
|
||||
string-based and enum-based model selection.
|
||||
|
||||
Args:
|
||||
model_name (Union[str, ParsingWeights]): The face parsing model to create.
|
||||
Can be either a string or a ParsingWeights enum value.
|
||||
Available options:
|
||||
- 'parsing_resnet18' or ParsingWeights.RESNET18 (default)
|
||||
- 'parsing_resnet34' or ParsingWeights.RESNET34
|
||||
|
||||
Returns:
|
||||
BaseFaceParser: An instance of the requested face parsing model.
|
||||
|
||||
Raises:
|
||||
ValueError: If the model_name is not recognized.
|
||||
|
||||
Examples:
|
||||
>>> # Using enum
|
||||
>>> from uniface.parsing import create_face_parser
|
||||
>>> from uniface.constants import ParsingWeights
|
||||
>>> parser = create_face_parser(ParsingWeights.RESNET18)
|
||||
>>>
|
||||
>>> # Using string
|
||||
>>> parser = create_face_parser('parsing_resnet18')
|
||||
>>>
|
||||
>>> # Parse a face image
|
||||
>>> mask = parser.parse(face_crop)
|
||||
"""
|
||||
# Convert string to enum if necessary
|
||||
if isinstance(model_name, str):
|
||||
try:
|
||||
model_name = ParsingWeights(model_name)
|
||||
except ValueError as e:
|
||||
valid_models = [e.value for e in ParsingWeights]
|
||||
raise ValueError(
|
||||
f"Unknown face parsing model: '{model_name}'. Valid options are: {', '.join(valid_models)}"
|
||||
) from e
|
||||
|
||||
# All parsing models use the same BiSeNet class
|
||||
return BiSeNet(model_name=model_name)
|
||||
106
uniface/parsing/base.py
Normal file
106
uniface/parsing/base.py
Normal file
@@ -0,0 +1,106 @@
|
||||
# Copyright 2025 Yakhyokhuja Valikhujaev
|
||||
# Author: Yakhyokhuja Valikhujaev
|
||||
# GitHub: https://github.com/yakhyo
|
||||
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Tuple
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
class BaseFaceParser(ABC):
|
||||
"""
|
||||
Abstract base class for all face parsing models.
|
||||
|
||||
This class defines the common interface that all face parsing models must implement,
|
||||
ensuring consistency across different parsing methods. Face parsing segments a face
|
||||
image into semantic regions such as skin, eyes, nose, mouth, hair, etc.
|
||||
|
||||
The output is a segmentation mask where each pixel is assigned a class label
|
||||
representing a facial component.
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
def _initialize_model(self) -> None:
|
||||
"""
|
||||
Initialize the underlying model for inference.
|
||||
|
||||
This method should handle loading model weights, creating the
|
||||
inference session (e.g., ONNX Runtime), and any necessary
|
||||
setup procedures to prepare the model for prediction.
|
||||
|
||||
Raises:
|
||||
RuntimeError: If the model fails to load or initialize.
|
||||
"""
|
||||
raise NotImplementedError('Subclasses must implement the _initialize_model method.')
|
||||
|
||||
@abstractmethod
|
||||
def preprocess(self, face_image: np.ndarray) -> np.ndarray:
|
||||
"""
|
||||
Preprocess the input face image for model inference.
|
||||
|
||||
This method should take a raw face crop and convert it into the format
|
||||
expected by the model's inference engine (e.g., normalized tensor).
|
||||
|
||||
Args:
|
||||
face_image (np.ndarray): A face image in BGR format with
|
||||
shape (H, W, C).
|
||||
|
||||
Returns:
|
||||
np.ndarray: The preprocessed image tensor ready for inference,
|
||||
typically with shape (1, C, H, W).
|
||||
"""
|
||||
raise NotImplementedError('Subclasses must implement the preprocess method.')
|
||||
|
||||
@abstractmethod
|
||||
def postprocess(self, outputs: np.ndarray, original_size: Tuple[int, int]) -> np.ndarray:
|
||||
"""
|
||||
Postprocess raw model outputs into a segmentation mask.
|
||||
|
||||
This method takes the raw output from the model's inference and
|
||||
converts it into a segmentation mask at the original image size.
|
||||
|
||||
Args:
|
||||
outputs (np.ndarray): Raw outputs from the model inference.
|
||||
original_size (Tuple[int, int]): Original image size (width, height).
|
||||
|
||||
Returns:
|
||||
np.ndarray: Segmentation mask with the same size as the original image.
|
||||
"""
|
||||
raise NotImplementedError('Subclasses must implement the postprocess method.')
|
||||
|
||||
@abstractmethod
|
||||
def parse(self, face_image: np.ndarray) -> np.ndarray:
|
||||
"""
|
||||
Perform end-to-end face parsing on a face image.
|
||||
|
||||
This method orchestrates the full pipeline: preprocessing the input,
|
||||
running inference, and postprocessing to return the segmentation mask.
|
||||
|
||||
Args:
|
||||
face_image (np.ndarray): A face image in BGR format.
|
||||
The face should be roughly centered and
|
||||
well-framed within the image.
|
||||
|
||||
Returns:
|
||||
np.ndarray: Segmentation mask with the same size as input image,
|
||||
where each pixel value represents a facial component class.
|
||||
|
||||
Example:
|
||||
>>> parser = create_face_parser()
|
||||
>>> mask = parser.parse(face_crop)
|
||||
>>> print(f"Mask shape: {mask.shape}, unique classes: {np.unique(mask)}")
|
||||
"""
|
||||
raise NotImplementedError('Subclasses must implement the parse method.')
|
||||
|
||||
def __call__(self, face_image: np.ndarray) -> np.ndarray:
|
||||
"""
|
||||
Provides a convenient, callable shortcut for the `parse` method.
|
||||
|
||||
Args:
|
||||
face_image (np.ndarray): A face image in BGR format.
|
||||
|
||||
Returns:
|
||||
np.ndarray: Segmentation mask with the same size as input image.
|
||||
"""
|
||||
return self.parse(face_image)
|
||||
166
uniface/parsing/bisenet.py
Normal file
166
uniface/parsing/bisenet.py
Normal file
@@ -0,0 +1,166 @@
|
||||
# Copyright 2025 Yakhyokhuja Valikhujaev
|
||||
# Author: Yakhyokhuja Valikhujaev
|
||||
# GitHub: https://github.com/yakhyo
|
||||
|
||||
from typing import Tuple
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
from uniface.constants import ParsingWeights
|
||||
from uniface.log import Logger
|
||||
from uniface.model_store import verify_model_weights
|
||||
from uniface.onnx_utils import create_onnx_session
|
||||
|
||||
from .base import BaseFaceParser
|
||||
|
||||
__all__ = ['BiSeNet']
|
||||
|
||||
|
||||
class BiSeNet(BaseFaceParser):
|
||||
"""
|
||||
BiSeNet: Bilateral Segmentation Network for Face Parsing with ONNX Runtime.
|
||||
|
||||
BiSeNet is a semantic segmentation model that segments a face image into
|
||||
different facial components such as skin, eyes, nose, mouth, hair, etc. The model
|
||||
uses a BiSeNet architecture with ResNet backbone and outputs a segmentation mask
|
||||
where each pixel is assigned a class label.
|
||||
|
||||
The model supports 19 facial component classes including:
|
||||
- Background, skin, eyebrows, eyes, nose, mouth, lips, ears, hair, etc.
|
||||
|
||||
Reference:
|
||||
https://github.com/yakhyo/face-parsing
|
||||
|
||||
Args:
|
||||
model_name (ParsingWeights): The enum specifying the parsing model to load.
|
||||
Options: RESNET18, RESNET34.
|
||||
Defaults to `ParsingWeights.RESNET18`.
|
||||
input_size (Tuple[int, int]): The resolution (width, height) for the model's
|
||||
input. Defaults to (512, 512).
|
||||
|
||||
Attributes:
|
||||
input_size (Tuple[int, int]): Model input dimensions.
|
||||
input_mean (np.ndarray): Per-channel mean values for normalization (ImageNet).
|
||||
input_std (np.ndarray): Per-channel std values for normalization (ImageNet).
|
||||
|
||||
Example:
|
||||
>>> from uniface.parsing import BiSeNet
|
||||
>>> from uniface import RetinaFace
|
||||
>>>
|
||||
>>> detector = RetinaFace()
|
||||
>>> parser = BiSeNet()
|
||||
>>>
|
||||
>>> # Detect faces and parse each face
|
||||
>>> faces = detector.detect(image)
|
||||
>>> for face in faces:
|
||||
... bbox = face['bbox']
|
||||
... x1, y1, x2, y2 = map(int, bbox[:4])
|
||||
... face_crop = image[y1:y2, x1:x2]
|
||||
... mask = parser.parse(face_crop)
|
||||
... print(f"Mask shape: {mask.shape}, unique classes: {np.unique(mask)}")
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model_name: ParsingWeights = ParsingWeights.RESNET18,
|
||||
input_size: Tuple[int, int] = (512, 512),
|
||||
) -> None:
|
||||
Logger.info(f'Initializing BiSeNet with model={model_name}, input_size={input_size}')
|
||||
|
||||
self.input_size = input_size
|
||||
self.input_mean = np.array([0.485, 0.456, 0.406], dtype=np.float32)
|
||||
self.input_std = np.array([0.229, 0.224, 0.225], dtype=np.float32)
|
||||
|
||||
self.model_path = verify_model_weights(model_name)
|
||||
self._initialize_model()
|
||||
|
||||
def _initialize_model(self) -> None:
|
||||
"""
|
||||
Initialize the ONNX model from the stored model path.
|
||||
|
||||
Raises:
|
||||
RuntimeError: If the model fails to load or initialize.
|
||||
"""
|
||||
try:
|
||||
self.session = create_onnx_session(self.model_path)
|
||||
|
||||
# Get input configuration
|
||||
input_cfg = self.session.get_inputs()[0]
|
||||
input_shape = input_cfg.shape
|
||||
self.input_name = input_cfg.name
|
||||
self.input_size = tuple(input_shape[2:4][::-1]) # Update from model
|
||||
|
||||
# Get output configuration
|
||||
outputs = self.session.get_outputs()
|
||||
self.output_names = [output.name for output in outputs]
|
||||
|
||||
Logger.info(f'BiSeNet initialized with input size {self.input_size}')
|
||||
|
||||
except Exception as e:
|
||||
Logger.error(f"Failed to load parsing model from '{self.model_path}'", exc_info=True)
|
||||
raise RuntimeError(f'Failed to initialize parsing model: {e}') from e
|
||||
|
||||
def preprocess(self, face_image: np.ndarray) -> np.ndarray:
|
||||
"""
|
||||
Preprocess a face image for parsing.
|
||||
|
||||
Args:
|
||||
face_image (np.ndarray): A face image in BGR format.
|
||||
|
||||
Returns:
|
||||
np.ndarray: Preprocessed image tensor with shape (1, 3, H, W).
|
||||
"""
|
||||
# Convert BGR to RGB
|
||||
image = cv2.cvtColor(face_image, cv2.COLOR_BGR2RGB)
|
||||
|
||||
# Resize to model input size
|
||||
image = cv2.resize(image, self.input_size, interpolation=cv2.INTER_LINEAR)
|
||||
|
||||
# Normalize to [0, 1] and apply normalization
|
||||
image = image.astype(np.float32) / 255.0
|
||||
image = (image - self.input_mean) / self.input_std
|
||||
|
||||
# HWC -> CHW -> NCHW
|
||||
image = np.transpose(image, (2, 0, 1))
|
||||
image = np.expand_dims(image, axis=0).astype(np.float32)
|
||||
|
||||
return image
|
||||
|
||||
def postprocess(self, outputs: np.ndarray, original_size: Tuple[int, int]) -> np.ndarray:
|
||||
"""
|
||||
Postprocess model output to segmentation mask.
|
||||
|
||||
Args:
|
||||
outputs (np.ndarray): Raw model output.
|
||||
original_size (Tuple[int, int]): Original image size (width, height).
|
||||
|
||||
Returns:
|
||||
np.ndarray: Segmentation mask resized to original dimensions.
|
||||
"""
|
||||
# Get the class with highest probability for each pixel
|
||||
predicted_mask = outputs.squeeze(0).argmax(0).astype(np.uint8)
|
||||
|
||||
# Resize back to original size
|
||||
restored_mask = cv2.resize(predicted_mask, original_size, interpolation=cv2.INTER_NEAREST)
|
||||
|
||||
return restored_mask
|
||||
|
||||
def parse(self, face_image: np.ndarray) -> np.ndarray:
|
||||
"""
|
||||
Perform end-to-end face parsing on a face image.
|
||||
|
||||
This method orchestrates the full pipeline: preprocessing the input,
|
||||
running inference, and postprocessing to return the segmentation mask.
|
||||
|
||||
Args:
|
||||
face_image (np.ndarray): A face image in BGR format.
|
||||
|
||||
Returns:
|
||||
np.ndarray: Segmentation mask with the same size as input image.
|
||||
"""
|
||||
original_size = (face_image.shape[1], face_image.shape[0]) # (width, height)
|
||||
input_tensor = self.preprocess(face_image)
|
||||
outputs = self.session.run(self.output_names, {self.input_name: input_tensor})
|
||||
|
||||
return self.postprocess(outputs[0], original_size)
|
||||
@@ -7,6 +7,52 @@ from typing import List, Tuple, Union
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
# Face parsing component names (19 classes)
|
||||
FACE_PARSING_LABELS = [
|
||||
'background',
|
||||
'skin',
|
||||
'l_brow',
|
||||
'r_brow',
|
||||
'l_eye',
|
||||
'r_eye',
|
||||
'eye_g',
|
||||
'l_ear',
|
||||
'r_ear',
|
||||
'ear_r',
|
||||
'nose',
|
||||
'mouth',
|
||||
'u_lip',
|
||||
'l_lip',
|
||||
'neck',
|
||||
'neck_l',
|
||||
'cloth',
|
||||
'hair',
|
||||
'hat',
|
||||
]
|
||||
|
||||
# Color palette for face parsing visualization
|
||||
FACE_PARSING_COLORS = [
|
||||
[0, 0, 0],
|
||||
[255, 85, 0],
|
||||
[255, 170, 0],
|
||||
[255, 0, 85],
|
||||
[255, 0, 170],
|
||||
[0, 255, 0],
|
||||
[85, 255, 0],
|
||||
[170, 255, 0],
|
||||
[0, 255, 85],
|
||||
[0, 255, 170],
|
||||
[0, 0, 255],
|
||||
[85, 0, 255],
|
||||
[170, 0, 255],
|
||||
[0, 85, 255],
|
||||
[0, 170, 255],
|
||||
[255, 255, 0],
|
||||
[255, 255, 85],
|
||||
[255, 255, 170],
|
||||
[255, 0, 255],
|
||||
]
|
||||
|
||||
|
||||
def draw_detections(
|
||||
*,
|
||||
@@ -126,3 +172,159 @@ def draw_fancy_bbox(
|
||||
# Bottom-right corner
|
||||
cv2.line(image, (x2, y2), (x2, y2 - corner_length), color, thickness)
|
||||
cv2.line(image, (x2, y2), (x2 - corner_length, y2), color, thickness)
|
||||
|
||||
|
||||
def draw_gaze(
|
||||
image: np.ndarray,
|
||||
bbox: np.ndarray,
|
||||
pitch: np.ndarray,
|
||||
yaw: np.ndarray,
|
||||
*,
|
||||
draw_bbox: bool = True,
|
||||
fancy_bbox: bool = True,
|
||||
draw_angles: bool = True,
|
||||
):
|
||||
"""
|
||||
Draws gaze direction with optional bounding box on an image.
|
||||
|
||||
Args:
|
||||
image: Input image to draw on (modified in-place).
|
||||
bbox: Face bounding box [x1, y1, x2, y2].
|
||||
pitch: Vertical gaze angle in radians.
|
||||
yaw: Horizontal gaze angle in radians.
|
||||
draw_bbox: Whether to draw the bounding box. Defaults to True.
|
||||
fancy_bbox: Use fancy corner-style bbox. Defaults to True.
|
||||
draw_angles: Whether to display pitch/yaw values as text. Defaults to False.
|
||||
"""
|
||||
x_min, y_min, x_max, y_max = map(int, bbox[:4])
|
||||
|
||||
# Calculate dynamic line thickness based on image size (same as draw_detections)
|
||||
line_thickness = max(round(sum(image.shape[:2]) / 2 * 0.003), 2)
|
||||
|
||||
# Calculate dynamic font scale based on bbox height (same as draw_detections)
|
||||
bbox_h = y_max - y_min
|
||||
font_scale = max(0.4, min(0.7, bbox_h / 200))
|
||||
font_thickness = 2
|
||||
|
||||
# Draw bounding box if requested
|
||||
if draw_bbox:
|
||||
if fancy_bbox:
|
||||
draw_fancy_bbox(image, bbox, color=(0, 255, 0), thickness=line_thickness)
|
||||
else:
|
||||
cv2.rectangle(image, (x_min, y_min), (x_max, y_max), (0, 255, 0), line_thickness)
|
||||
|
||||
# Calculate center of the bounding box
|
||||
x_center = (x_min + x_max) // 2
|
||||
y_center = (y_min + y_max) // 2
|
||||
|
||||
# Calculate the direction of the gaze
|
||||
length = x_max - x_min
|
||||
dx = int(-length * np.sin(pitch) * np.cos(yaw))
|
||||
dy = int(-length * np.sin(yaw))
|
||||
|
||||
point1 = (x_center, y_center)
|
||||
point2 = (x_center + dx, y_center + dy)
|
||||
|
||||
# Calculate dynamic center point radius based on line thickness
|
||||
center_radius = max(line_thickness + 1, 4)
|
||||
|
||||
# Draw gaze direction
|
||||
cv2.circle(image, (x_center, y_center), radius=center_radius, color=(0, 0, 255), thickness=-1)
|
||||
cv2.arrowedLine(
|
||||
image,
|
||||
point1,
|
||||
point2,
|
||||
color=(0, 0, 255),
|
||||
thickness=line_thickness,
|
||||
line_type=cv2.LINE_AA,
|
||||
tipLength=0.25,
|
||||
)
|
||||
|
||||
# Draw angle values
|
||||
if draw_angles:
|
||||
text = f'P:{np.degrees(pitch):.0f}deg Y:{np.degrees(yaw):.0f}deg'
|
||||
(text_width, text_height), baseline = cv2.getTextSize(
|
||||
text, cv2.FONT_HERSHEY_SIMPLEX, font_scale, font_thickness
|
||||
)
|
||||
|
||||
# Draw background rectangle for text
|
||||
cv2.rectangle(
|
||||
image,
|
||||
(x_min, y_min - text_height - baseline - 10),
|
||||
(x_min + text_width + 10, y_min),
|
||||
(0, 0, 255),
|
||||
-1,
|
||||
)
|
||||
|
||||
# Draw text
|
||||
cv2.putText(
|
||||
image,
|
||||
text,
|
||||
(x_min + 5, y_min - 5),
|
||||
cv2.FONT_HERSHEY_SIMPLEX,
|
||||
font_scale,
|
||||
(255, 255, 255),
|
||||
font_thickness,
|
||||
)
|
||||
|
||||
|
||||
def vis_parsing_maps(
|
||||
image: np.ndarray,
|
||||
segmentation_mask: np.ndarray,
|
||||
*,
|
||||
save_image: bool = False,
|
||||
save_path: str = 'result.png',
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Visualizes face parsing segmentation mask by overlaying colored regions on the image.
|
||||
|
||||
Args:
|
||||
image: Input face image in RGB format with shape (H, W, 3).
|
||||
segmentation_mask: Segmentation mask with shape (H, W) where each pixel
|
||||
value represents a facial component class (0-18).
|
||||
save_image: Whether to save the visualization to disk. Defaults to False.
|
||||
save_path: Path to save the visualization if save_image is True.
|
||||
|
||||
Returns:
|
||||
np.ndarray: Blended image with segmentation overlay in BGR format.
|
||||
|
||||
Example:
|
||||
>>> import cv2
|
||||
>>> from uniface.parsing import BiSeNet
|
||||
>>> from uniface.visualization import vis_parsing_maps
|
||||
>>>
|
||||
>>> parser = BiSeNet()
|
||||
>>> face_image = cv2.imread('face.jpg')
|
||||
>>> mask = parser.parse(face_image)
|
||||
>>>
|
||||
>>> # Visualize
|
||||
>>> face_rgb = cv2.cvtColor(face_image, cv2.COLOR_BGR2RGB)
|
||||
>>> result = vis_parsing_maps(face_rgb, mask)
|
||||
>>> cv2.imwrite('parsed_face.jpg', result)
|
||||
"""
|
||||
# Create numpy arrays for image and segmentation mask
|
||||
image = np.array(image).copy().astype(np.uint8)
|
||||
segmentation_mask = segmentation_mask.copy().astype(np.uint8)
|
||||
|
||||
# Create a color mask
|
||||
segmentation_mask_color = np.zeros((segmentation_mask.shape[0], segmentation_mask.shape[1], 3))
|
||||
|
||||
num_classes = np.max(segmentation_mask)
|
||||
|
||||
for class_index in range(1, num_classes + 1):
|
||||
class_pixels = np.where(segmentation_mask == class_index)
|
||||
segmentation_mask_color[class_pixels[0], class_pixels[1], :] = FACE_PARSING_COLORS[class_index]
|
||||
|
||||
segmentation_mask_color = segmentation_mask_color.astype(np.uint8)
|
||||
|
||||
# Convert image to BGR format for blending
|
||||
bgr_image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
||||
|
||||
# Blend the image with the segmentation mask
|
||||
blended_image = cv2.addWeighted(bgr_image, 0.6, segmentation_mask_color, 0.4, 0)
|
||||
|
||||
# Save the result if required
|
||||
if save_image:
|
||||
cv2.imwrite(save_path, blended_image, [int(cv2.IMWRITE_JPEG_QUALITY), 100])
|
||||
|
||||
return blended_image
|
||||
|
||||
Reference in New Issue
Block a user