"""Age and Gender Detection Demo Script""" import os import cv2 import argparse from pathlib import Path from uniface import RetinaFace, SCRFD, AgeGender from uniface.visualization import draw_detections def process_image(detector, age_gender, image_path: str, save_dir: str = "outputs", vis_threshold: float = 0.6): image = cv2.imread(image_path) if image is None: print(f"Error: Failed to load image from '{image_path}'") return print(f"Processing: {image_path}") # Detect faces faces = detector.detect(image) print(f" Detected {len(faces)} face(s)") if not faces: print(" No faces detected") return # Draw detections bboxes = [f['bbox'] for f in faces] scores = [f['confidence'] for f in faces] landmarks = [f['landmarks'] for f in faces] draw_detections(image, bboxes, scores, landmarks, vis_threshold=vis_threshold) # Predict and draw age/gender for each face for i, face in enumerate(faces): gender, age = age_gender.predict(image, face['bbox']) print(f" Face {i+1}: {gender}, {age} years old") # Draw age and gender text bbox = face['bbox'] x1, y1 = int(bbox[0]), int(bbox[1]) text = f"{gender}, {age}y" # Background rectangle for text (text_width, text_height), _ = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, 0.6, 2) cv2.rectangle(image, (x1, y1 - text_height - 10), (x1 + text_width + 10, y1), (0, 255, 0), -1) cv2.putText(image, text, (x1 + 5, y1 - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 0), 2) # Save result os.makedirs(save_dir, exist_ok=True) output_path = os.path.join(save_dir, f"{Path(image_path).stem}_age_gender.jpg") cv2.imwrite(output_path, image) print(f"Output saved: {output_path}") def run_webcam(detector, age_gender, vis_threshold: float = 0.6): cap = cv2.VideoCapture(0) if not cap.isOpened(): print("Cannot open webcam") return print("Webcam opened") print("Press 'q' to quit\n") frame_count = 0 try: while True: ret, frame = cap.read() if not ret: break frame_count += 1 # Detect faces faces = detector.detect(frame) # Draw detections bboxes = [f['bbox'] for f in faces] scores = [f['confidence'] for f in faces] landmarks = [f['landmarks'] for f in faces] draw_detections(frame, bboxes, scores, landmarks, vis_threshold=vis_threshold) # Predict and draw age/gender for each face for face in faces: gender, age = age_gender.predict(frame, face['bbox']) # Draw age and gender text bbox = face['bbox'] x1, y1 = int(bbox[0]), int(bbox[1]) text = f"{gender}, {age}y" # Background rectangle for text (text_width, text_height), _ = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, 0.6, 2) cv2.rectangle(frame, (x1, y1 - text_height - 10), (x1 + text_width + 10, y1), (0, 255, 0), -1) cv2.putText(frame, text, (x1 + 5, y1 - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 0), 2) # Add info cv2.putText(frame, f"Faces: {len(faces)}", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2) cv2.putText(frame, "Press 'q' to quit", (10, frame.shape[0] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1) cv2.imshow("Age & Gender Detection", frame) if cv2.waitKey(1) & 0xFF == ord('q'): break except KeyboardInterrupt: print("\nInterrupted") finally: cap.release() cv2.destroyAllWindows() print(f"\nProcessed {frame_count} frames") def main(): parser = argparse.ArgumentParser(description="Run age and gender detection") parser.add_argument("--image", type=str, help="Path to input image") parser.add_argument("--webcam", action="store_true", help="Use webcam instead of image") parser.add_argument("--detector", type=str, default="retinaface", choices=['retinaface', 'scrfd'], help="Face detector to use") parser.add_argument("--threshold", type=float, default=0.6, help="Confidence threshold for visualization") parser.add_argument("--save_dir", type=str, default="outputs", help="Directory to save output images") parser.add_argument("--verbose", action="store_true", help="Enable verbose logging") args = parser.parse_args() # Validate input if not args.image and not args.webcam: parser.error("Either --image or --webcam must be specified") if args.verbose: from uniface import enable_logging enable_logging() # Initialize models print(f"Initializing detector: {args.detector}") if args.detector == 'retinaface': detector = RetinaFace() else: detector = SCRFD() print("Initializing age/gender model...") age_gender = AgeGender() print("Models initialized\n") # Process if args.webcam: run_webcam(detector, age_gender, args.threshold) else: process_image(detector, age_gender, args.image, args.save_dir, args.threshold) if __name__ == "__main__": main()