# UniFace: All-in-One Face Analysis Library [![License](https://img.shields.io/badge/License-MIT-blue.svg)](https://opensource.org/licenses/MIT) ![Python](https://img.shields.io/badge/Python-3.10%2B-blue) [![PyPI Version](https://img.shields.io/pypi/v/uniface.svg)](https://pypi.org/project/uniface/) [![CI](https://github.com/yakhyo/uniface/actions/workflows/ci.yml/badge.svg)](https://github.com/yakhyo/uniface/actions) [![Downloads](https://pepy.tech/badge/uniface)](https://pepy.tech/project/uniface)
**UniFace** is a lightweight, production-ready face analysis library built on ONNX Runtime. It provides high-performance face detection, recognition, landmark detection, and attribute analysis with hardware acceleration support across platforms. --- ## Features - **High-Speed Face Detection**: ONNX-optimized RetinaFace and SCRFD models - **Facial Landmark Detection**: Accurate 106-point landmark localization - **Face Recognition**: ArcFace, MobileFace, and SphereFace embeddings - **Attribute Analysis**: Age, gender, and emotion detection - **Face Alignment**: Precise alignment for downstream tasks - **Hardware Acceleration**: ARM64 optimizations (Apple Silicon), CUDA (NVIDIA), CPU fallback - **Simple API**: Intuitive factory functions and clean interfaces - **Production-Ready**: Type hints, comprehensive logging, PEP8 compliant --- ## Installation ### Quick Install (All Platforms) ```bash pip install uniface ``` ### Platform-Specific Installation #### macOS (Apple Silicon - M1/M2/M3/M4) For Apple Silicon Macs, the standard installation automatically includes optimized ARM64 support: ```bash pip install uniface ``` The base `onnxruntime` package (included with uniface) has native Apple Silicon support with ARM64 optimizations built-in since version 1.13+. #### Linux/Windows with NVIDIA GPU For CUDA acceleration on NVIDIA GPUs: ```bash pip install uniface[gpu] ``` **Requirements:** - CUDA 11.x or 12.x - cuDNN 8.x - See [ONNX Runtime GPU requirements](https://onnxruntime.ai/docs/execution-providers/CUDA-ExecutionProvider.html) #### CPU-Only (All Platforms) ```bash pip install uniface ``` ### Install from Source ```bash git clone https://github.com/yakhyo/uniface.git cd uniface pip install -e . ``` --- ## Quick Start ### Face Detection ```python import cv2 from uniface import RetinaFace # Initialize detector detector = RetinaFace() # Load image image = cv2.imread("image.jpg") # Detect faces faces = detector.detect(image) # Process results for face in faces: bbox = face['bbox'] # [x1, y1, x2, y2] confidence = face['confidence'] landmarks = face['landmarks'] # 5-point landmarks print(f"Face detected with confidence: {confidence:.2f}") ``` ### Face Recognition ```python from uniface import ArcFace, RetinaFace from uniface import compute_similarity # Initialize models detector = RetinaFace() recognizer = ArcFace() # Detect and extract embeddings faces1 = detector.detect(image1) faces2 = detector.detect(image2) embedding1 = recognizer.get_normalized_embedding(image1, faces1[0]['landmarks']) embedding2 = recognizer.get_normalized_embedding(image2, faces2[0]['landmarks']) # Compare faces similarity = compute_similarity(embedding1, embedding2) print(f"Similarity: {similarity:.4f}") ``` ### Facial Landmarks ```python from uniface import RetinaFace, Landmark106 detector = RetinaFace() landmarker = Landmark106() faces = detector.detect(image) landmarks = landmarker.get_landmarks(image, faces[0]['bbox']) # Returns 106 (x, y) landmark points ``` ### Age & Gender Detection ```python from uniface import RetinaFace, AgeGender detector = RetinaFace() age_gender = AgeGender() faces = detector.detect(image) gender, age = age_gender.predict(image, faces[0]['bbox']) print(f"{gender}, {age} years old") ``` --- ## Documentation - [**QUICKSTART.md**](QUICKSTART.md) - 5-minute getting started guide - [**MODELS.md**](MODELS.md) - Model zoo, benchmarks, and selection guide - [**Examples**](examples/) - Jupyter notebooks with detailed examples --- ## API Overview ### Factory Functions (Recommended) ```python from uniface.detection import RetinaFace, SCRFD from uniface.recognition import ArcFace from uniface.landmark import Landmark106 # Create detector with default settings detector = RetinaFace() # Create with custom config detector = SCRFD( model_name='scrfd_10g_kps', conf_thresh=0.8, input_size=(640, 640) ) # Recognition and landmarks recognizer = ArcFace() landmarker = Landmark106() ``` ### Direct Model Instantiation ```python from uniface import RetinaFace, SCRFD, ArcFace, MobileFace, SphereFace from uniface.constants import RetinaFaceWeights # Detection detector = RetinaFace( model_name=RetinaFaceWeights.MNET_V2, conf_thresh=0.5, nms_thresh=0.4 ) # Recognition recognizer = ArcFace() # Uses default weights recognizer = MobileFace() # Lightweight alternative recognizer = SphereFace() # Angular softmax alternative ``` ### High-Level Detection API ```python from uniface import detect_faces # One-line face detection faces = detect_faces(image, method='retinaface', conf_thresh=0.8) ``` --- ## Model Performance ### Face Detection (WIDER FACE Dataset) | Model | Easy | Medium | Hard | Use Case | |--------------------|--------|--------|--------|-------------------------| | retinaface_mnet025 | 88.48% | 87.02% | 80.61% | Mobile/Edge devices | | retinaface_mnet_v2 | 91.70% | 91.03% | 86.60% | Balanced (recommended) | | retinaface_r34 | 94.16% | 93.12% | 88.90% | High accuracy | | scrfd_500m | 90.57% | 88.12% | 68.51% | Real-time applications | | scrfd_10g | 95.16% | 93.87% | 83.05% | Best accuracy/speed | *Accuracy values from original papers: [RetinaFace](https://arxiv.org/abs/1905.00641), [SCRFD](https://arxiv.org/abs/2105.04714)* **Benchmark on your hardware:** ```bash python scripts/run_detection.py --image assets/test.jpg --iterations 100 ``` See [MODELS.md](MODELS.md) for detailed model information and selection guide.
--- ## Examples ### Webcam Face Detection ```python import cv2 from uniface import RetinaFace from uniface.visualization import draw_detections detector = RetinaFace() cap = cv2.VideoCapture(0) while True: ret, frame = cap.read() if not ret: break faces = detector.detect(frame) # Extract data for visualization bboxes = [f['bbox'] for f in faces] scores = [f['confidence'] for f in faces] landmarks = [f['landmarks'] for f in faces] draw_detections(frame, bboxes, scores, landmarks, vis_threshold=0.6) cv2.imshow("Face Detection", frame) if cv2.waitKey(1) & 0xFF == ord('q'): break cap.release() cv2.destroyAllWindows() ``` ### Face Search System ```python import numpy as np from uniface import RetinaFace, ArcFace detector = RetinaFace() recognizer = ArcFace() # Build face database database = {} for person_id, image_path in person_images.items(): image = cv2.imread(image_path) faces = detector.detect(image) if faces: embedding = recognizer.get_normalized_embedding( image, faces[0]['landmarks'] ) database[person_id] = embedding # Search for a face query_image = cv2.imread("query.jpg") query_faces = detector.detect(query_image) if query_faces: query_embedding = recognizer.get_normalized_embedding( query_image, query_faces[0]['landmarks'] ) # Find best match best_match = None best_similarity = -1 for person_id, db_embedding in database.items(): similarity = np.dot(query_embedding, db_embedding.T)[0][0] if similarity > best_similarity: best_similarity = similarity best_match = person_id print(f"Best match: {best_match} (similarity: {best_similarity:.4f})") ``` More examples in the [examples/](examples/) directory. --- ## Advanced Configuration ### Custom ONNX Runtime Providers ```python from uniface.onnx_utils import get_available_providers, create_onnx_session # Check available providers providers = get_available_providers() print(f"Available: {providers}") # Force CPU-only execution from uniface import RetinaFace detector = RetinaFace() # Internally uses create_onnx_session() which auto-selects best provider ``` ### Model Download and Caching Models are automatically downloaded on first use and cached in `~/.uniface/models/`. ```python from uniface.model_store import verify_model_weights from uniface.constants import RetinaFaceWeights # Manually download and verify a model model_path = verify_model_weights( RetinaFaceWeights.MNET_V2, root='./custom_models' # Custom cache directory ) ``` ### Logging Configuration ```python from uniface import Logger import logging # Set logging level Logger.setLevel(logging.DEBUG) # DEBUG, INFO, WARNING, ERROR # Disable logging Logger.setLevel(logging.CRITICAL) ``` --- ## Testing ```bash # Run all tests pytest # Run with coverage pytest --cov=uniface --cov-report=html # Run specific test file pytest tests/test_retinaface.py -v ``` --- ## Development ### Setup Development Environment ```bash git clone https://github.com/yakhyo/uniface.git cd uniface # Install in editable mode with dev dependencies pip install -e ".[dev]" # Run tests pytest # Format code black uniface/ isort uniface/ ``` ### Project Structure ``` uniface/ ├── uniface/ │ ├── detection/ # Face detection models │ ├── recognition/ # Face recognition models │ ├── landmark/ # Landmark detection │ ├── attribute/ # Age, gender, emotion │ ├── onnx_utils.py # ONNX Runtime utilities │ ├── model_store.py # Model download & caching │ └── visualization.py # Drawing utilities ├── tests/ # Unit tests ├── examples/ # Example notebooks └── scripts/ # Utility scripts ``` --- ## References ### Model Training & Architectures - **RetinaFace Training**: [yakhyo/retinaface-pytorch](https://github.com/yakhyo/retinaface-pytorch) - PyTorch implementation and training code - **Face Recognition Training**: [yakhyo/face-recognition](https://github.com/yakhyo/face-recognition) - ArcFace, MobileFace, SphereFace training code - **InsightFace**: [deepinsight/insightface](https://github.com/deepinsight/insightface) - Model architectures and pretrained weights ### Papers - **RetinaFace**: [Single-Shot Multi-Level Face Localisation in the Wild](https://arxiv.org/abs/1905.00641) - **SCRFD**: [Sample and Computation Redistribution for Efficient Face Detection](https://arxiv.org/abs/2105.04714) - **ArcFace**: [Additive Angular Margin Loss for Deep Face Recognition](https://arxiv.org/abs/1801.07698) --- ## Contributing Contributions are welcome! Please open an issue or submit a pull request on [GitHub](https://github.com/yakhyo/uniface).