# Age and gender prediction on detected faces # Usage: python run_age_gender.py --image path/to/image.jpg # python run_age_gender.py --webcam import argparse import os from pathlib import Path import cv2 from uniface import SCRFD, AgeGender, RetinaFace from uniface.visualization import draw_detections def draw_age_gender_label(image, bbox, gender: str, age: int): """Draw age/gender label above the bounding box.""" x1, y1 = int(bbox[0]), int(bbox[1]) text = f"{gender}, {age}y" (tw, th), _ = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, 0.6, 2) cv2.rectangle(image, (x1, y1 - th - 10), (x1 + tw + 10, y1), (0, 255, 0), -1) cv2.putText(image, text, (x1 + 5, y1 - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 0), 2) def process_image(detector, age_gender, image_path: str, save_dir: str = "outputs", threshold: float = 0.6): image = cv2.imread(image_path) if image is None: print(f"Error: Failed to load image from '{image_path}'") return faces = detector.detect(image) print(f"Detected {len(faces)} face(s)") if not faces: return bboxes = [f["bbox"] for f in faces] scores = [f["confidence"] for f in faces] landmarks = [f["landmarks"] for f in faces] draw_detections(image, bboxes, scores, landmarks, vis_threshold=threshold) for i, face in enumerate(faces): gender, age = age_gender.predict(image, face["bbox"]) print(f" Face {i + 1}: {gender}, {age} years old") draw_age_gender_label(image, face["bbox"], gender, age) os.makedirs(save_dir, exist_ok=True) output_path = os.path.join(save_dir, f"{Path(image_path).stem}_age_gender.jpg") cv2.imwrite(output_path, image) print(f"Output saved: {output_path}") def run_webcam(detector, age_gender, threshold: float = 0.6): cap = cv2.VideoCapture(0) # 0 = default webcam if not cap.isOpened(): print("Cannot open webcam") return print("Press 'q' to quit") while True: ret, frame = cap.read() frame = cv2.flip(frame, 1) # mirror for natural interaction if not ret: break faces = detector.detect(frame) # unpack face data for visualization bboxes = [f["bbox"] for f in faces] scores = [f["confidence"] for f in faces] landmarks = [f["landmarks"] for f in faces] draw_detections(frame, bboxes, scores, landmarks, vis_threshold=threshold) for face in faces: gender, age = age_gender.predict(frame, face["bbox"]) # predict per face draw_age_gender_label(frame, face["bbox"], gender, age) cv2.putText(frame, f"Faces: {len(faces)}", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2) cv2.imshow("Age & Gender Detection", frame) if cv2.waitKey(1) & 0xFF == ord("q"): break cap.release() cv2.destroyAllWindows() def main(): parser = argparse.ArgumentParser(description="Run age and gender detection") parser.add_argument("--image", type=str, help="Path to input image") parser.add_argument("--webcam", action="store_true", help="Use webcam") parser.add_argument("--detector", type=str, default="retinaface", choices=["retinaface", "scrfd"]) parser.add_argument("--threshold", type=float, default=0.6, help="Visualization threshold") parser.add_argument("--save_dir", type=str, default="outputs") args = parser.parse_args() if not args.image and not args.webcam: parser.error("Either --image or --webcam must be specified") detector = RetinaFace() if args.detector == "retinaface" else SCRFD() age_gender = AgeGender() if args.webcam: run_webcam(detector, age_gender, args.threshold) else: process_image(detector, age_gender, args.image, args.save_dir, args.threshold) if __name__ == "__main__": main()