# Face detection on image or webcam # Usage: python run_detection.py --image path/to/image.jpg # python run_detection.py --webcam import argparse import os import cv2 from uniface.detection import SCRFD, RetinaFace from uniface.visualization import draw_detections def process_image(detector, image_path: str, threshold: float = 0.6, save_dir: str = "outputs"): image = cv2.imread(image_path) if image is None: print(f"Error: Failed to load image from '{image_path}'") return faces = detector.detect(image) if faces: bboxes = [face["bbox"] for face in faces] scores = [face["confidence"] for face in faces] landmarks = [face["landmarks"] for face in faces] draw_detections(image, bboxes, scores, landmarks, vis_threshold=threshold) os.makedirs(save_dir, exist_ok=True) output_path = os.path.join(save_dir, f"{os.path.splitext(os.path.basename(image_path))[0]}_out.jpg") cv2.imwrite(output_path, image) print(f"Output saved: {output_path}") def run_webcam(detector, threshold: float = 0.6): cap = cv2.VideoCapture(0) # 0 = default webcam if not cap.isOpened(): print("Cannot open webcam") return print("Press 'q' to quit") while True: ret, frame = cap.read() frame = cv2.flip(frame, 1) # mirror for natural interaction if not ret: break faces = detector.detect(frame) # unpack face data for visualization bboxes = [f["bbox"] for f in faces] scores = [f["confidence"] for f in faces] landmarks = [f["landmarks"] for f in faces] draw_detections(frame, bboxes, scores, landmarks, vis_threshold=threshold) cv2.putText(frame, f"Faces: {len(faces)}", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2) cv2.imshow("Face Detection", frame) if cv2.waitKey(1) & 0xFF == ord("q"): break cap.release() cv2.destroyAllWindows() def main(): parser = argparse.ArgumentParser(description="Run face detection") parser.add_argument("--image", type=str, help="Path to input image") parser.add_argument("--webcam", action="store_true", help="Use webcam") parser.add_argument("--method", type=str, default="retinaface", choices=["retinaface", "scrfd"]) parser.add_argument("--threshold", type=float, default=0.6, help="Visualization threshold") parser.add_argument("--save_dir", type=str, default="outputs") args = parser.parse_args() if not args.image and not args.webcam: parser.error("Either --image or --webcam must be specified") detector = RetinaFace() if args.method == "retinaface" else SCRFD() if args.webcam: run_webcam(detector, args.threshold) else: process_image(detector, args.image, args.threshold, args.save_dir) if __name__ == "__main__": main()