import os import cv2 import time import argparse import numpy as np from uniface.detection import RetinaFace, SCRFD from uniface.visualization import draw_detections def run_inference(detector, image_path: str, vis_threshold: float = 0.6, save_dir: str = "outputs"): image = cv2.imread(image_path) if image is None: print(f"Error: Failed to load image from '{image_path}'") return # 1. Get the list of face dictionaries from the detector faces = detector.detect(image) if faces: # 2. Unpack the data into separate lists bboxes = [face['bbox'] for face in faces] scores = [face['confidence'] for face in faces] landmarks = [face['landmarks'] for face in faces] # 3. Pass the unpacked lists to the drawing function draw_detections(image, bboxes, scores, landmarks, vis_threshold=0.6) os.makedirs(save_dir, exist_ok=True) output_path = os.path.join(save_dir, f"{os.path.splitext(os.path.basename(image_path))[0]}_out.jpg") cv2.imwrite(output_path, image) print(f"Output saved at: {output_path}") def main(): parser = argparse.ArgumentParser(description="Run face detection on an image.") parser.add_argument("--image", type=str, required=True, help="Path to the input image") parser.add_argument( "--method", type=str, default="retinaface", choices=['retinaface', 'scrfd'], help="Detection method to use." ) parser.add_argument("--threshold", type=float, default=0.6, help="Visualization confidence threshold") parser.add_argument("--iterations", type=int, default=1, help="Number of inference runs for benchmarking") parser.add_argument("--save_dir", type=str, default="outputs", help="Directory to save output images") parser.add_argument("--verbose", action="store_true", help="Enable verbose logging") args = parser.parse_args() if args.verbose: from uniface import enable_logging enable_logging() print(f"Initializing detector: {args.method}") if args.method == 'retinaface': detector = RetinaFace() else: detector = SCRFD() avg_time = 0 for i in range(args.iterations): start = time.time() run_inference(detector, args.image, args.threshold, args.save_dir) elapsed = time.time() - start print(f"[{i + 1}/{args.iterations}] Inference time: {elapsed:.4f} seconds") if i >= 0: # Avoid counting the first run if it includes model loading time avg_time += elapsed if args.iterations > 1: # Adjust average calculation to exclude potential first-run overhead effective_iterations = max(1, args.iterations) print( f"\nAverage inference time over {effective_iterations} runs: {avg_time / effective_iterations:.4f} seconds") if __name__ == "__main__": main()