# Copyright 2025 Yakhyokhuja Valikhujaev # Author: Yakhyokhuja Valikhujaev # GitHub: https://github.com/yakhyo """Face detection on image or webcam. Usage: python run_detection.py --image path/to/image.jpg python run_detection.py --webcam """ from __future__ import annotations import argparse import os import cv2 from uniface.detection import SCRFD, RetinaFace, YOLOv5Face from uniface.visualization import draw_detections def process_image(detector, image_path: str, threshold: float = 0.6, save_dir: str = 'outputs'): image = cv2.imread(image_path) if image is None: print(f"Error: Failed to load image from '{image_path}'") return faces = detector.detect(image) if faces: bboxes = [face.bbox for face in faces] scores = [face.confidence for face in faces] landmarks = [face.landmarks for face in faces] draw_detections(image, bboxes, scores, landmarks, vis_threshold=threshold) os.makedirs(save_dir, exist_ok=True) output_path = os.path.join(save_dir, f'{os.path.splitext(os.path.basename(image_path))[0]}_out.jpg') cv2.imwrite(output_path, image) print(f'Output saved: {output_path}') def run_webcam(detector, threshold: float = 0.6): cap = cv2.VideoCapture(0) # 0 = default webcam if not cap.isOpened(): print('Cannot open webcam') return print("Press 'q' to quit") while True: ret, frame = cap.read() frame = cv2.flip(frame, 1) # mirror for natural interaction if not ret: break faces = detector.detect(frame) # unpack face data for visualization bboxes = [f.bbox for f in faces] scores = [f.confidence for f in faces] landmarks = [f.landmarks for f in faces] draw_detections( image=frame, bboxes=bboxes, scores=scores, landmarks=landmarks, vis_threshold=threshold, draw_score=True, fancy_bbox=True, ) cv2.putText( frame, f'Faces: {len(faces)}', (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2, ) cv2.imshow('Face Detection', frame) if cv2.waitKey(1) & 0xFF == ord('q'): break cap.release() cv2.destroyAllWindows() def main(): parser = argparse.ArgumentParser(description='Run face detection') parser.add_argument('--image', type=str, help='Path to input image') parser.add_argument('--webcam', action='store_true', help='Use webcam') parser.add_argument('--method', type=str, default='retinaface', choices=['retinaface', 'scrfd', 'yolov5face']) parser.add_argument('--threshold', type=float, default=0.25, help='Visualization threshold') parser.add_argument('--save_dir', type=str, default='outputs') args = parser.parse_args() if not args.image and not args.webcam: parser.error('Either --image or --webcam must be specified') if args.method == 'retinaface': detector = RetinaFace() elif args.method == 'scrfd': detector = SCRFD() else: from uniface.constants import YOLOv5FaceWeights detector = YOLOv5Face(model_name=YOLOv5FaceWeights.YOLOV5M) if args.webcam: run_webcam(detector, args.threshold) else: process_image(detector, args.image, args.threshold, args.save_dir) if __name__ == '__main__': main()