# Face parsing on detected faces # Usage: python run_face_parsing.py --image path/to/image.jpg # python run_face_parsing.py --webcam import argparse import os from pathlib import Path import cv2 from uniface import RetinaFace from uniface.constants import ParsingWeights from uniface.parsing import BiSeNet from uniface.visualization import vis_parsing_maps def process_image(detector, parser, image_path: str, save_dir: str = 'outputs'): image = cv2.imread(image_path) if image is None: print(f"Error: Failed to load image from '{image_path}'") return faces = detector.detect(image) print(f'Detected {len(faces)} face(s)') result_image = image.copy() for i, face in enumerate(faces): bbox = face['bbox'] x1, y1, x2, y2 = map(int, bbox[:4]) face_crop = image[y1:y2, x1:x2] if face_crop.size == 0: continue # Parse the face mask = parser.parse(face_crop) print(f' Face {i + 1}: parsed with {len(set(mask.flatten()))} unique classes') # Visualize the parsing result face_crop_rgb = cv2.cvtColor(face_crop, cv2.COLOR_BGR2RGB) vis_result = vis_parsing_maps(face_crop_rgb, mask, save_image=False) # Place the visualization back on the original image result_image[y1:y2, x1:x2] = vis_result # Draw bounding box cv2.rectangle(result_image, (x1, y1), (x2, y2), (0, 255, 0), 2) os.makedirs(save_dir, exist_ok=True) output_path = os.path.join(save_dir, f'{Path(image_path).stem}_parsing.jpg') cv2.imwrite(output_path, result_image) print(f'Output saved: {output_path}') def run_webcam(detector, parser): cap = cv2.VideoCapture(0) if not cap.isOpened(): print('Cannot open webcam') return print("Press 'q' to quit") while True: ret, frame = cap.read() if not ret: break frame = cv2.flip(frame, 1) faces = detector.detect(frame) for face in faces: bbox = face['bbox'] x1, y1, x2, y2 = map(int, bbox[:4]) face_crop = frame[y1:y2, x1:x2] if face_crop.size == 0: continue # Parse the face mask = parser.parse(face_crop) # Visualize the parsing result face_crop_rgb = cv2.cvtColor(face_crop, cv2.COLOR_BGR2RGB) vis_result = vis_parsing_maps(face_crop_rgb, mask, save_image=False) # Place the visualization back on the frame frame[y1:y2, x1:x2] = vis_result # Draw bounding box cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2) cv2.putText(frame, f'Faces: {len(faces)}', (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2) cv2.imshow('Face Parsing', frame) if cv2.waitKey(1) & 0xFF == ord('q'): break cap.release() cv2.destroyAllWindows() def main(): parser_arg = argparse.ArgumentParser(description='Run face parsing') parser_arg.add_argument('--image', type=str, help='Path to input image') parser_arg.add_argument('--webcam', action='store_true', help='Use webcam') parser_arg.add_argument('--save_dir', type=str, default='outputs') parser_arg.add_argument( '--model', type=str, default=ParsingWeights.RESNET18, choices=[ParsingWeights.RESNET18, ParsingWeights.RESNET34] ) args = parser_arg.parse_args() if not args.image and not args.webcam: parser_arg.error('Either --image or --webcam must be specified') detector = RetinaFace() parser = BiSeNet(model_name=ParsingWeights.RESNET34) if args.webcam: run_webcam(detector, parser) else: process_image(detector, parser, args.image, args.save_dir) if __name__ == '__main__': main()