# Emotion detection on detected faces # Usage: python run_emotion.py --image path/to/image.jpg # python run_emotion.py --webcam import argparse import os from pathlib import Path import cv2 from uniface import SCRFD, Emotion, RetinaFace from uniface.visualization import draw_detections def draw_emotion_label(image, bbox, emotion: str, confidence: float): """Draw emotion label above the bounding box.""" x1, y1 = int(bbox[0]), int(bbox[1]) text = f'{emotion} ({confidence:.2f})' (tw, th), _ = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, 0.6, 2) cv2.rectangle(image, (x1, y1 - th - 10), (x1 + tw + 10, y1), (255, 0, 0), -1) cv2.putText(image, text, (x1 + 5, y1 - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2) def process_image( detector, emotion_predictor, image_path: str, save_dir: str = 'outputs', threshold: float = 0.6, ): image = cv2.imread(image_path) if image is None: print(f"Error: Failed to load image from '{image_path}'") return faces = detector.detect(image) print(f'Detected {len(faces)} face(s)') if not faces: return bboxes = [f['bbox'] for f in faces] scores = [f['confidence'] for f in faces] landmarks = [f['landmarks'] for f in faces] draw_detections( image=image, bboxes=bboxes, scores=scores, landmarks=landmarks, vis_threshold=threshold, fancy_bbox=True ) for i, face in enumerate(faces): emotion, confidence = emotion_predictor.predict(image, face['landmarks']) print(f' Face {i + 1}: {emotion} (confidence: {confidence:.3f})') draw_emotion_label(image, face['bbox'], emotion, confidence) os.makedirs(save_dir, exist_ok=True) output_path = os.path.join(save_dir, f'{Path(image_path).stem}_emotion.jpg') cv2.imwrite(output_path, image) print(f'Output saved: {output_path}') def run_webcam(detector, emotion_predictor, threshold: float = 0.6): cap = cv2.VideoCapture(0) # 0 = default webcam if not cap.isOpened(): print('Cannot open webcam') return print("Press 'q' to quit") while True: ret, frame = cap.read() frame = cv2.flip(frame, 1) # mirror for natural interaction if not ret: break faces = detector.detect(frame) # unpack face data for visualization bboxes = [f['bbox'] for f in faces] scores = [f['confidence'] for f in faces] landmarks = [f['landmarks'] for f in faces] draw_detections(frame, bboxes, scores, landmarks, vis_threshold=threshold) for face in faces: emotion, confidence = emotion_predictor.predict(frame, face['landmarks']) draw_emotion_label(frame, face['bbox'], emotion, confidence) cv2.putText( frame, f'Faces: {len(faces)}', (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2, ) cv2.imshow('Emotion Detection', frame) if cv2.waitKey(1) & 0xFF == ord('q'): break cap.release() cv2.destroyAllWindows() def main(): parser = argparse.ArgumentParser(description='Run emotion detection') parser.add_argument('--image', type=str, help='Path to input image') parser.add_argument('--webcam', action='store_true', help='Use webcam') parser.add_argument('--detector', type=str, default='retinaface', choices=['retinaface', 'scrfd']) parser.add_argument('--threshold', type=float, default=0.6, help='Visualization threshold') parser.add_argument('--save_dir', type=str, default='outputs') args = parser.parse_args() if not args.image and not args.webcam: parser.error('Either --image or --webcam must be specified') detector = RetinaFace() if args.detector == 'retinaface' else SCRFD() emotion_predictor = Emotion() if args.webcam: run_webcam(detector, emotion_predictor, args.threshold) else: process_image(detector, emotion_predictor, args.image, args.save_dir, args.threshold) if __name__ == '__main__': main()