# UniFace Model Zoo Complete guide to all available models, their performance characteristics, and selection criteria. --- ## Face Detection Models ### RetinaFace Family RetinaFace models are trained on the WIDER FACE dataset and provide excellent accuracy-speed tradeoffs. | Model Name | Params | Size | Easy | Medium | Hard | Use Case | | -------------- | ------ | ----- | ------ | ------ | ------ | ----------------------------- | | `MNET_025` | 0.4M | 1.7MB | 88.48% | 87.02% | 80.61% | Mobile/Edge devices | | `MNET_050` | 1.0M | 2.6MB | 89.42% | 87.97% | 82.40% | Mobile/Edge devices | | `MNET_V1` | 3.5M | 3.8MB | 90.59% | 89.14% | 84.13% | Balanced mobile | | `MNET_V2` ⭐ | 3.2M | 3.5MB | 91.70% | 91.03% | 86.60% | **Recommended default** | | `RESNET18` | 11.7M | 27MB | 92.50% | 91.02% | 86.63% | Server/High accuracy | | `RESNET34` | 24.8M | 56MB | 94.16% | 93.12% | 88.90% | Maximum accuracy | **Accuracy**: WIDER FACE validation set (Easy/Medium/Hard subsets) - from [RetinaFace paper](https://arxiv.org/abs/1905.00641) **Speed**: Benchmark on your own hardware using `scripts/run_detection.py --iterations 100` #### Usage ```python from uniface import RetinaFace from uniface.constants import RetinaFaceWeights # Default (recommended) detector = RetinaFace() # Uses MNET_V2 # Specific model detector = RetinaFace( model_name=RetinaFaceWeights.MNET_025, # Fastest conf_thresh=0.5, nms_thresh=0.4, input_size=(640, 640) ) ``` --- ### SCRFD Family SCRFD (Sample and Computation Redistribution for Efficient Face Detection) models offer state-of-the-art speed-accuracy tradeoffs. | Model Name | Params | Size | Easy | Medium | Hard | Use Case | | ---------------- | ------ | ----- | ------ | ------ | ------ | ------------------------------- | | `SCRFD_500M` | 0.6M | 2.5MB | 90.57% | 88.12% | 68.51% | Real-time applications | | `SCRFD_10G` ⭐ | 4.2M | 17MB | 95.16% | 93.87% | 83.05% | **High accuracy + speed** | **Accuracy**: WIDER FACE validation set - from [SCRFD paper](https://arxiv.org/abs/2105.04714) **Speed**: Benchmark on your own hardware using `scripts/run_detection.py --iterations 100` #### Usage ```python from uniface import SCRFD from uniface.constants import SCRFDWeights # Fast real-time detection detector = SCRFD( model_name=SCRFDWeights.SCRFD_500M_KPS, conf_thresh=0.5, input_size=(640, 640) ) # High accuracy detector = SCRFD( model_name=SCRFDWeights.SCRFD_10G_KPS, conf_thresh=0.5 ) ``` --- ### YOLOv5-Face Family YOLOv5-Face models provide excellent detection accuracy with 5-point facial landmarks, optimized for real-time applications. | Model Name | Size | Easy | Medium | Hard | Use Case | | -------------- | ---- | ------ | ------ | ------ | ------------------------------ | | `YOLOV5N` | 11MB | 93.61% | 91.52% | 80.53% | Lightweight/Mobile | | `YOLOV5S` ⭐ | 28MB | 94.33% | 92.61% | 83.15% | **Real-time + accuracy** | | `YOLOV5M` | 82MB | 95.30% | 93.76% | 85.28% | High accuracy | **Accuracy**: WIDER FACE validation set - from [YOLOv5-Face paper](https://arxiv.org/abs/2105.12931) **Speed**: Benchmark on your own hardware using `scripts/run_detection.py --iterations 100` **Note**: Fixed input size of 640×640. Models exported to ONNX from [deepcam-cn/yolov5-face](https://github.com/deepcam-cn/yolov5-face) #### Usage ```python from uniface import YOLOv5Face from uniface.constants import YOLOv5FaceWeights # Lightweight/Mobile detector = YOLOv5Face( model_name=YOLOv5FaceWeights.YOLOV5N, conf_thresh=0.6, nms_thresh=0.5 ) # Real-time detection (recommended) detector = YOLOv5Face( model_name=YOLOv5FaceWeights.YOLOV5S, conf_thresh=0.6, nms_thresh=0.5 ) # High accuracy detector = YOLOv5Face( model_name=YOLOv5FaceWeights.YOLOV5M, conf_thresh=0.6 ) # Detect faces with landmarks faces = detector.detect(image) for face in faces: bbox = face['bbox'] # [x1, y1, x2, y2] confidence = face['confidence'] landmarks = face['landmarks'] # 5-point landmarks (5, 2) ``` --- ## Face Recognition Models ### ArcFace State-of-the-art face recognition using additive angular margin loss. | Model Name | Backbone | Params | Size | Use Case | | ----------- | --------- | ------ | ----- | -------------------------------- | | `MNET` ⭐ | MobileNet | 2.0M | 8MB | **Balanced (recommended)** | | `RESNET` | ResNet50 | 43.6M | 166MB | Maximum accuracy | **Dataset**: Trained on MS1M-V2 (5.8M images, 85K identities) **Accuracy**: Benchmark on your own dataset or use standard face verification benchmarks #### Usage ```python from uniface import ArcFace from uniface.constants import ArcFaceWeights # Default (MobileNet backbone) recognizer = ArcFace() # High accuracy (ResNet50 backbone) recognizer = ArcFace(model_name=ArcFaceWeights.RESNET) # Extract embedding embedding = recognizer.get_normalized_embedding(image, landmarks) # Returns: (1, 512) normalized embedding vector ``` --- ### MobileFace Lightweight face recognition optimized for mobile devices. | Model Name | Backbone | Params | Size | LFW | CALFW | CPLFW | AgeDB-30 | Use Case | | ----------------- | ---------------- | ------ | ---- | ------ | ------ | ------ | -------- | --------------------- | | `MNET_025` | MobileNetV1 0.25 | 0.36M | 1MB | 98.76% | 92.02% | 82.37% | 90.02% | Ultra-lightweight | | `MNET_V2` ⭐ | MobileNetV2 | 2.29M | 4MB | 99.55% | 94.87% | 86.89% | 95.16% | **Mobile/Edge** | | `MNET_V3_SMALL` | MobileNetV3-S | 1.25M | 3MB | 99.30% | 93.77% | 85.29% | 92.79% | Mobile optimized | | `MNET_V3_LARGE` | MobileNetV3-L | 3.52M | 10MB | 99.53% | 94.56% | 86.79% | 95.13% | Balanced mobile | **Dataset**: Trained on MS1M-V2 (5.8M images, 85K identities) **Accuracy**: Evaluated on LFW, CALFW, CPLFW, and AgeDB-30 benchmarks **Note**: These models are lightweight alternatives to ArcFace for resource-constrained environments #### Usage ```python from uniface import MobileFace from uniface.constants import MobileFaceWeights # Lightweight recognizer = MobileFace(model_name=MobileFaceWeights.MNET_V2) ``` --- ### SphereFace Face recognition using angular softmax loss. | Model Name | Backbone | Params | Size | LFW | CALFW | CPLFW | AgeDB-30 | Use Case | | ------------ | -------- | ------ | ---- | ------ | ------ | ------ | -------- | ------------------- | | `SPHERE20` | Sphere20 | 24.5M | 50MB | 99.67% | 95.61% | 88.75% | 96.58% | Research/Comparison | | `SPHERE36` | Sphere36 | 34.6M | 92MB | 99.72% | 95.64% | 89.92% | 96.83% | Research/Comparison | **Dataset**: Trained on MS1M-V2 (5.8M images, 85K identities) **Accuracy**: Evaluated on LFW, CALFW, CPLFW, and AgeDB-30 benchmarks **Note**: SphereFace uses angular softmax loss, an earlier approach before ArcFace. These models provide good accuracy with moderate resource requirements. #### Usage ```python from uniface import SphereFace from uniface.constants import SphereFaceWeights recognizer = SphereFace(model_name=SphereFaceWeights.SPHERE20) ``` --- ## Facial Landmark Models ### 106-Point Landmark Detection High-precision facial landmark localization. | Model Name | Points | Params | Size | Use Case | | ---------- | ------ | ------ | ---- | ------------------------ | | `2D106` | 106 | 3.7M | 14MB | Face alignment, analysis | **Note**: Provides 106 facial keypoints for detailed face analysis and alignment #### Usage ```python from uniface import Landmark106 landmarker = Landmark106() landmarks = landmarker.get_landmarks(image, bbox) # Returns: (106, 2) array of (x, y) coordinates ``` **Landmark Groups:** - Face contour: 0-32 (33 points) - Eyebrows: 33-50 (18 points) - Nose: 51-62 (12 points) - Eyes: 63-86 (24 points) - Mouth: 87-105 (19 points) --- ## Attribute Analysis Models ### Age & Gender Detection | Model Name | Attributes | Params | Size | Use Case | | ----------- | ----------- | ------ | ---- | --------------- | | `DEFAULT` | Age, Gender | 2.1M | 8MB | General purpose | **Dataset**: Trained on CelebA **Note**: Accuracy varies by demographic and image quality. Test on your specific use case. #### Usage ```python from uniface import AgeGender predictor = AgeGender() gender, age = predictor.predict(image, bbox) # Returns: (gender, age_in_years) # gender: 0 for Female, 1 for Male ``` --- ### Emotion Detection | Model Name | Classes | Params | Size | Use Case | | ------------- | ------- | ------ | ---- | --------------- | | `AFFECNET7` | 7 | 0.5M | 2MB | 7-class emotion | | `AFFECNET8` | 8 | 0.5M | 2MB | 8-class emotion | **Classes (7)**: Neutral, Happy, Sad, Surprise, Fear, Disgust, Anger **Classes (8)**: Above + Contempt **Dataset**: Trained on AffectNet **Note**: Emotion detection accuracy depends heavily on facial expression clarity and cultural context #### Usage ```python from uniface import Emotion from uniface.constants import DDAMFNWeights predictor = Emotion(model_name=DDAMFNWeights.AFFECNET7) emotion, confidence = predictor.predict(image, landmarks) ``` --- ## Model Updates Models are automatically downloaded and cached on first use. Cache location: `~/.uniface/models/` ### Manual Model Management ```python from uniface.model_store import verify_model_weights from uniface.constants import RetinaFaceWeights # Download specific model model_path = verify_model_weights( RetinaFaceWeights.MNET_V2, root='./custom_cache' ) # Models are verified with SHA-256 checksums ``` ### Download All Models ```bash # Using the provided script python scripts/download_model.py # Download specific model python scripts/download_model.py --model MNET_V2 ``` --- ## References ### Model Training & Architectures - **RetinaFace Training**: [yakhyo/retinaface-pytorch](https://github.com/yakhyo/retinaface-pytorch) - PyTorch implementation and training code - **YOLOv5-Face Original**: [deepcam-cn/yolov5-face](https://github.com/deepcam-cn/yolov5-face) - Original PyTorch implementation - **YOLOv5-Face ONNX**: [yakhyo/yolov5-face-onnx-inference](https://github.com/yakhyo/yolov5-face-onnx-inference) - ONNX inference implementation - **Face Recognition Training**: [yakhyo/face-recognition](https://github.com/yakhyo/face-recognition) - ArcFace, MobileFace, SphereFace training code - **InsightFace**: [deepinsight/insightface](https://github.com/deepinsight/insightface) - Model architectures and pretrained weights ### Papers - **RetinaFace**: [Single-Shot Multi-Level Face Localisation in the Wild](https://arxiv.org/abs/1905.00641) - **SCRFD**: [Sample and Computation Redistribution for Efficient Face Detection](https://arxiv.org/abs/2105.04714) - **YOLOv5-Face**: [YOLO5Face: Why Reinventing a Face Detector](https://arxiv.org/abs/2105.12931) - **ArcFace**: [Additive Angular Margin Loss for Deep Face Recognition](https://arxiv.org/abs/1801.07698) - **SphereFace**: [Deep Hypersphere Embedding for Face Recognition](https://arxiv.org/abs/1704.08063)