# UniFace: All-in-One Face Analysis Library [![License](https://img.shields.io/badge/License-MIT-blue.svg)](https://opensource.org/licenses/MIT) ![Python](https://img.shields.io/badge/Python-3.8%2B-blue) [![PyPI Version](https://img.shields.io/pypi/v/uniface.svg)](https://pypi.org/project/uniface/) [![Build Status](https://github.com/yakhyo/uniface/actions/workflows/build.yml/badge.svg)](https://github.com/yakhyo/uniface/actions) [![GitHub Repository](https://img.shields.io/badge/GitHub-Repository-blue?logo=github)](https://github.com/yakhyo/uniface) [![Downloads](https://pepy.tech/badge/uniface)](https://pepy.tech/project/uniface) [![Code Style: PEP8](https://img.shields.io/badge/code%20style-PEP8-green.svg)](https://www.python.org/dev/peps/pep-0008/) [![GitHub Release Downloads](https://img.shields.io/github/downloads/yakhyo/uniface/total.svg?label=Model%20Downloads)](https://github.com/yakhyo/uniface/releases) **uniface** is a lightweight face detection library designed for high-performance face localization, landmark detection and face alignment. The library supports ONNX models and provides utilities for bounding box visualization and landmark plotting. To train RetinaFace model, see https://github.com/yakhyo/retinaface-pytorch. --- ## Features - [ ] Age and gender detection (Planned). - [ ] Face recognition (Planned). - [x] Face Alignment (Added: 2024-11-21). - [x] High-speed face detection using ONNX models (Added: 2024-11-20). - [x] Accurate facial landmark localization (e.g., eyes, nose, and mouth) (Added: 2024-11-20). - [x] Easy-to-use API for inference and visualization (Added: 2024-11-20). --- ## Installation The easiest way to install **UniFace** is via [PyPI](https://pypi.org/project/uniface/). This will automatically install the library along with its prerequisites. ```bash pip install uniface ``` To work with the latest version of **UniFace**, which may not yet be released on PyPI, you can install it directly from the repository: ```bash git clone https://github.com/yakhyo/uniface.git cd uniface pip install . ``` --- ## Quick Start To get started with face detection using **UniFace**, check out the [example notebook](examples/face_detection.ipynb). It demonstrates how to initialize the model, run inference, and visualize the results. --- ## Examples Explore the following example notebooks to learn how to use **UniFace** effectively: - [Face Detection](examples/face_detection.ipynb): Demonstrates how to perform face detection, draw bounding boxes, and landmarks on an image. - [Face Alignment](examples/face_alignment.ipynb): Shows how to align faces using detected landmarks. - [Age and Gender Detection](examples/age_gender.ipynb): Example for detecting age and gender from faces. (underdevelopment) ### Initialize the Model ```python from uniface import RetinaFace # Initialize the RetinaFace model uniface_inference = RetinaFace( model="retinaface_mnet_v2", # Model name conf_thresh=0.5, # Confidence threshold pre_nms_topk=5000, # Pre-NMS Top-K detections nms_thresh=0.4, # NMS IoU threshold post_nms_topk=750, # Post-NMS Top-K detections dynamic_size=False, # Arbitrary image size inference input_size=(640, 640) # Pre-defined input image size ) ``` ### Run Inference Inference on image: ```python import cv2 from uniface.visualization import draw_detections # Load an image image_path = "assets/test.jpg" original_image = cv2.imread(image_path) # Perform inference boxes, landmarks = uniface_inference.detect(original_image) # Visualize results draw_detections(original_image, (boxes, landmarks), vis_threshold=0.6) # Save the output image output_path = "output.jpg" cv2.imwrite(output_path, original_image) print(f"Saved output image to {output_path}") ``` Inference on video: ```python import cv2 from uniface.visualization import draw_detections # Initialize the webcam cap = cv2.VideoCapture(0) if not cap.isOpened(): print("Error: Unable to access the webcam.") exit() while True: # Capture a frame from the webcam ret, frame = cap.read() if not ret: print("Error: Failed to read frame.") break # Perform inference boxes, landmarks = uniface_inference.detect(frame) # Draw detections on the frame draw_detections(frame, (boxes, landmarks), vis_threshold=0.6) # Display the output cv2.imshow("Webcam Inference", frame) # Exit if 'q' is pressed if cv2.waitKey(1) & 0xFF == ord('q'): break # Release the webcam and close all OpenCV windows cap.release() cv2.destroyAllWindows() ``` --- ### Evaluation results of available models on WiderFace | RetinaFace Models | Easy | Medium | Hard | | ------------------ | ---------- | ---------- | ---------- | | retinaface_mnet025 | 88.48% | 87.02% | 80.61% | | retinaface_mnet050 | 89.42% | 87.97% | 82.40% | | retinaface_mnet_v1 | 90.59% | 89.14% | 84.13% | | retinaface_mnet_v2 | 91.70% | 91.03% | 86.60% | | retinaface_r18 | 92.50% | 91.02% | 86.63% | | retinaface_r34 | **94.16%** | **93.12%** | **88.90%** | ## API Reference ### `RetinaFace` Class #### Initialization ```python from typings import Tuple RetinaFace( model: str, conf_thresh: float = 0.5, pre_nms_topk: int = 5000, nms_thresh: float = 0.4, post_nms_topk: int = 750, dynamic_size: bool = False, input_size: Tuple[int, int] = (640, 640) ) ``` **Parameters**: - `model` _(str)_: Name of the model to use. Supported models: - `retinaface_mnet025`, `retinaface_mnet050`, `retinaface_mnet_v1`, `retinaface_mnet_v2` - `retinaface_r18`, `retinaface_r34` - `conf_thresh` _(float, default=0.5)_: Minimum confidence score for detections. - `pre_nms_topk` _(int, default=5000)_: Max detections to keep before NMS. - `nms_thresh` _(float, default=0.4)_: IoU threshold for Non-Maximum Suppression. - `post_nms_topk` _(int, default=750)_: Max detections to keep after NMS. - `dynamic_size` _(Optional[bool], default=False)_: Use dynamic input size. - `input_size` _(Optional[Tuple[int, int]], default=(640, 640))_: Static input size for the model (width, height). --- ### `detect` Method ```python detect( image: np.ndarray, max_num: int = 0, metric: str = "default", center_weight: float = 2.0 ) -> Tuple[np.ndarray, np.ndarray] ``` **Description**: Detects faces in the given image and returns bounding boxes and landmarks. **Parameters**: - `image` _(np.ndarray)_: Input image in BGR format. - `max_num` _(int, default=0)_: Maximum number of faces to return. `0` means return all. - `metric` _(str, default="default")_: Metric for prioritizing detections: - `"default"`: Prioritize detections closer to the image center. - `"max"`: Prioritize larger bounding box areas. - `center_weight` _(float, default=2.0)_: Weight for prioritizing center-aligned faces. **Returns**: - `bounding_boxes` _(np.ndarray)_: Array of detections as `[x_min, y_min, x_max, y_max, confidence]`. - `landmarks` _(np.ndarray)_: Array of landmarks as `[(x1, y1), ..., (x5, y5)]`. --- ### Visualization Utilities #### `draw_detections` ```python draw_detections( image: np.ndarray, detections: Tuple[np.ndarray, np.ndarray], vis_threshold: float = 0.6 ) -> None ``` **Description**: Draws bounding boxes and landmarks on the given image. **Parameters**: - `image` _(np.ndarray)_: The input image in BGR format. - `detections` _(Tuple[np.ndarray, np.ndarray])_: A tuple of bounding boxes and landmarks. - `vis_threshold` _(float, default=0.6)_: Minimum confidence score for visualization. --- ## Contributing We welcome contributions to enhance the library! Feel free to: - Submit bug reports or feature requests. - Fork the repository and create a pull request. --- ## License This project is licensed under the MIT License. See the [LICENSE](LICENSE) file for details. --- ## Acknowledgments - Based on the RetinaFace model for face detection ([https://github.com/yakhyo/retinaface-pytorch](https://github.com/yakhyo/retinaface-pytorch)). - Inspired by InsightFace and other face detection projects. ---