Files
uniface/CONTRIBUTING.md
Yakhyokhuja Valikhujaev 50226041c9 refactor: Standardize naming conventions (#47)
* refactor: Standardize naming conventions

* chore: Update the version and re-run experiments

* chore: Improve code quality tooling and documentation

- Add pre-commit job to CI workflow for automated linting on PRs
- Update uniface/__init__.py with copyright header, module docstring,
  and logically grouped exports
- Revise CONTRIBUTING.md to reflect pre-commit handles all formatting
- Remove redundant ruff check from CI (now handled by pre-commit)
- Update build job Python version to 3.11 (matches requires-python)
2025-12-30 00:20:34 +09:00

191 lines
5.3 KiB
Markdown

# Contributing to UniFace
Thank you for considering contributing to UniFace! We welcome contributions of all kinds.
## How to Contribute
### Reporting Issues
- Use GitHub Issues to report bugs or suggest features
- Include clear descriptions and reproducible examples
- Check existing issues before creating new ones
### Pull Requests
1. Fork the repository
2. Create a new branch for your feature
3. Write clear, documented code with type hints
4. Add tests for new functionality
5. Ensure all tests pass and pre-commit hooks are satisfied
6. Submit a pull request with a clear description
## Development Setup
```bash
git clone https://github.com/yakhyo/uniface.git
cd uniface
pip install -e ".[dev]"
```
### Setting Up Pre-commit Hooks
We use [pre-commit](https://pre-commit.com/) to ensure code quality and consistency. Install and configure it:
```bash
# Install pre-commit
pip install pre-commit
# Install the git hooks
pre-commit install
# (Optional) Run against all files
pre-commit run --all-files
```
Once installed, pre-commit will automatically run on every commit to check:
- Code formatting and linting (Ruff)
- Security issues (Bandit)
- General file hygiene (trailing whitespace, YAML/TOML validity, etc.)
**Note:** All PRs are automatically checked by CI. The merge button will only be available after all checks pass.
## Code Style
This project uses [Ruff](https://docs.astral.sh/ruff/) for linting and formatting, following modern Python best practices. Pre-commit handles all formatting automatically.
### Style Guidelines
#### General Rules
- **Line length:** 120 characters maximum
- **Python version:** 3.11+ (use modern syntax)
- **Quote style:** Single quotes for strings, double quotes for docstrings
#### Type Hints
Use modern Python 3.11+ type hints (PEP 585 and PEP 604):
```python
# Preferred (modern)
def process(items: list[str], config: dict[str, int] | None = None) -> tuple[int, str]:
...
# Avoid (legacy)
from typing import List, Dict, Optional, Tuple
def process(items: List[str], config: Optional[Dict[str, int]] = None) -> Tuple[int, str]:
...
```
#### Docstrings
Use [Google-style docstrings](https://google.github.io/styleguide/pyguide.html#38-comments-and-docstrings) for all public APIs:
```python
def detect_faces(image: np.ndarray, threshold: float = 0.5) -> list[Face]:
"""Detect faces in an image.
Args:
image: Input image as a numpy array with shape (H, W, C) in BGR format.
threshold: Confidence threshold for filtering detections. Defaults to 0.5.
Returns:
List of Face objects containing bounding boxes, confidence scores,
and facial landmarks.
Raises:
ValueError: If the input image has invalid dimensions.
Example:
>>> from uniface import detect_faces
>>> faces = detect_faces(image, threshold=0.8)
>>> print(f"Found {len(faces)} faces")
"""
```
#### Import Order
Imports are automatically sorted by Ruff with the following order:
1. **Future** imports (`from __future__ import annotations`)
2. **Standard library** (`os`, `sys`, `typing`, etc.)
3. **Third-party** (`numpy`, `cv2`, `onnxruntime`, etc.)
4. **First-party** (`uniface.*`)
5. **Local** (relative imports like `.base`, `.models`)
```python
from __future__ import annotations
import os
from typing import Any
import cv2
import numpy as np
from uniface.constants import RetinaFaceWeights
from uniface.log import Logger
from .base import BaseDetector
```
#### Code Comments
- Add comments for complex logic, magic numbers, and non-obvious behavior
- Avoid comments that merely restate the code
- Use `# TODO:` with issue links for planned improvements
```python
# RetinaFace FPN strides and corresponding anchor sizes per level
steps = [8, 16, 32]
min_sizes = [[16, 32], [64, 128], [256, 512]]
# Add small epsilon to prevent division by zero
similarity = np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b) + 1e-5)
```
## Running Tests
```bash
# Run all tests
pytest tests/
# Run with verbose output
pytest tests/ -v
# Run specific test file
pytest tests/test_factory.py
# Run with coverage
pytest tests/ --cov=uniface --cov-report=html
```
## Adding New Features
When adding a new model or feature:
1. **Create the model class** in the appropriate submodule (e.g., `uniface/detection/`)
2. **Add weight constants** to `uniface/constants.py` with URLs and SHA256 hashes
3. **Export in `__init__.py`** files at both module and package levels
4. **Write tests** in `tests/` directory
5. **Add example usage** in `scripts/` or update existing notebooks
6. **Update documentation** if needed
## Examples
Example notebooks demonstrating library usage:
| Example | Notebook |
|---------|----------|
| Face Detection | [01_face_detection.ipynb](examples/01_face_detection.ipynb) |
| Face Alignment | [02_face_alignment.ipynb](examples/02_face_alignment.ipynb) |
| Face Verification | [03_face_verification.ipynb](examples/03_face_verification.ipynb) |
| Face Search | [04_face_search.ipynb](examples/04_face_search.ipynb) |
| Face Analyzer | [05_face_analyzer.ipynb](examples/05_face_analyzer.ipynb) |
| Face Parsing | [06_face_parsing.ipynb](examples/06_face_parsing.ipynb) |
| Face Anonymization | [07_face_anonymization.ipynb](examples/07_face_anonymization.ipynb) |
| Gaze Estimation | [08_gaze_estimation.ipynb](examples/08_gaze_estimation.ipynb) |
## Questions?
Open an issue or start a discussion on GitHub.