mirror of
https://github.com/yakhyo/uniface.git
synced 2025-12-30 09:02:25 +00:00
- Add new test files for age_gender, factory, landmark, recognition, scrfd, and utils - Add new scripts for age_gender, landmarks, and video detection - Update documentation in README.md, MODELS.md, QUICKSTART.md - Improve model constants and face utilities - Update detection models (retinaface, scrfd) with enhanced functionality - Update project configuration in pyproject.toml
164 lines
5.4 KiB
Python
164 lines
5.4 KiB
Python
"""Age and Gender Detection Demo Script"""
|
|
|
|
import os
|
|
import cv2
|
|
import argparse
|
|
from pathlib import Path
|
|
|
|
from uniface import RetinaFace, SCRFD, AgeGender
|
|
from uniface.visualization import draw_detections
|
|
|
|
|
|
def process_image(detector, age_gender, image_path: str, save_dir: str = "outputs", vis_threshold: float = 0.6):
|
|
image = cv2.imread(image_path)
|
|
if image is None:
|
|
print(f"Error: Failed to load image from '{image_path}'")
|
|
return
|
|
|
|
print(f"Processing: {image_path}")
|
|
|
|
# Detect faces
|
|
faces = detector.detect(image)
|
|
print(f" Detected {len(faces)} face(s)")
|
|
|
|
if not faces:
|
|
print(" No faces detected")
|
|
return
|
|
|
|
# Draw detections
|
|
bboxes = [f['bbox'] for f in faces]
|
|
scores = [f['confidence'] for f in faces]
|
|
landmarks = [f['landmarks'] for f in faces]
|
|
draw_detections(image, bboxes, scores, landmarks, vis_threshold=vis_threshold)
|
|
|
|
# Predict and draw age/gender for each face
|
|
for i, face in enumerate(faces):
|
|
gender, age = age_gender.predict(image, face['bbox'])
|
|
print(f" Face {i+1}: {gender}, {age} years old")
|
|
|
|
# Draw age and gender text
|
|
bbox = face['bbox']
|
|
x1, y1 = int(bbox[0]), int(bbox[1])
|
|
text = f"{gender}, {age}y"
|
|
|
|
# Background rectangle for text
|
|
(text_width, text_height), _ = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, 0.6, 2)
|
|
cv2.rectangle(image, (x1, y1 - text_height - 10),
|
|
(x1 + text_width + 10, y1), (0, 255, 0), -1)
|
|
cv2.putText(image, text, (x1 + 5, y1 - 5),
|
|
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 0), 2)
|
|
|
|
# Save result
|
|
os.makedirs(save_dir, exist_ok=True)
|
|
output_path = os.path.join(save_dir, f"{Path(image_path).stem}_age_gender.jpg")
|
|
cv2.imwrite(output_path, image)
|
|
print(f"Output saved: {output_path}")
|
|
|
|
|
|
def run_webcam(detector, age_gender, vis_threshold: float = 0.6):
|
|
cap = cv2.VideoCapture(0)
|
|
|
|
if not cap.isOpened():
|
|
print("Cannot open webcam")
|
|
return
|
|
|
|
print("Webcam opened")
|
|
print("Press 'q' to quit\n")
|
|
|
|
frame_count = 0
|
|
|
|
try:
|
|
while True:
|
|
ret, frame = cap.read()
|
|
if not ret:
|
|
break
|
|
|
|
frame_count += 1
|
|
|
|
# Detect faces
|
|
faces = detector.detect(frame)
|
|
|
|
# Draw detections
|
|
bboxes = [f['bbox'] for f in faces]
|
|
scores = [f['confidence'] for f in faces]
|
|
landmarks = [f['landmarks'] for f in faces]
|
|
draw_detections(frame, bboxes, scores, landmarks, vis_threshold=vis_threshold)
|
|
|
|
# Predict and draw age/gender for each face
|
|
for face in faces:
|
|
gender, age = age_gender.predict(frame, face['bbox'])
|
|
|
|
# Draw age and gender text
|
|
bbox = face['bbox']
|
|
x1, y1 = int(bbox[0]), int(bbox[1])
|
|
text = f"{gender}, {age}y"
|
|
|
|
# Background rectangle for text
|
|
(text_width, text_height), _ = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, 0.6, 2)
|
|
cv2.rectangle(frame, (x1, y1 - text_height - 10),
|
|
(x1 + text_width + 10, y1), (0, 255, 0), -1)
|
|
cv2.putText(frame, text, (x1 + 5, y1 - 5),
|
|
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 0), 2)
|
|
|
|
# Add info
|
|
cv2.putText(frame, f"Faces: {len(faces)}", (10, 30),
|
|
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
|
|
cv2.putText(frame, "Press 'q' to quit", (10, frame.shape[0] - 10),
|
|
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
|
|
|
|
cv2.imshow("Age & Gender Detection", frame)
|
|
|
|
if cv2.waitKey(1) & 0xFF == ord('q'):
|
|
break
|
|
|
|
except KeyboardInterrupt:
|
|
print("\nInterrupted")
|
|
finally:
|
|
cap.release()
|
|
cv2.destroyAllWindows()
|
|
print(f"\nProcessed {frame_count} frames")
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser(description="Run age and gender detection")
|
|
parser.add_argument("--image", type=str, help="Path to input image")
|
|
parser.add_argument("--webcam", action="store_true", help="Use webcam instead of image")
|
|
parser.add_argument("--detector", type=str, default="retinaface",
|
|
choices=['retinaface', 'scrfd'], help="Face detector to use")
|
|
parser.add_argument("--threshold", type=float, default=0.6,
|
|
help="Confidence threshold for visualization")
|
|
parser.add_argument("--save_dir", type=str, default="outputs",
|
|
help="Directory to save output images")
|
|
parser.add_argument("--verbose", action="store_true", help="Enable verbose logging")
|
|
|
|
args = parser.parse_args()
|
|
|
|
# Validate input
|
|
if not args.image and not args.webcam:
|
|
parser.error("Either --image or --webcam must be specified")
|
|
|
|
if args.verbose:
|
|
from uniface import enable_logging
|
|
enable_logging()
|
|
|
|
# Initialize models
|
|
print(f"Initializing detector: {args.detector}")
|
|
if args.detector == 'retinaface':
|
|
detector = RetinaFace()
|
|
else:
|
|
detector = SCRFD()
|
|
|
|
print("Initializing age/gender model...")
|
|
age_gender = AgeGender()
|
|
print("Models initialized\n")
|
|
|
|
# Process
|
|
if args.webcam:
|
|
run_webcam(detector, age_gender, args.threshold)
|
|
else:
|
|
process_image(detector, age_gender, args.image, args.save_dir, args.threshold)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|