mirror of
https://github.com/yakhyo/uniface.git
synced 2025-12-30 09:02:25 +00:00
- Add new test files for age_gender, factory, landmark, recognition, scrfd, and utils - Add new scripts for age_gender, landmarks, and video detection - Update documentation in README.md, MODELS.md, QUICKSTART.md - Improve model constants and face utilities - Update detection models (retinaface, scrfd) with enhanced functionality - Update project configuration in pyproject.toml
81 lines
2.8 KiB
Python
81 lines
2.8 KiB
Python
import os
|
|
import cv2
|
|
import time
|
|
import argparse
|
|
import numpy as np
|
|
|
|
from uniface.detection import RetinaFace, SCRFD
|
|
from uniface.visualization import draw_detections
|
|
|
|
|
|
def run_inference(detector, image_path: str, vis_threshold: float = 0.6, save_dir: str = "outputs"):
|
|
image = cv2.imread(image_path)
|
|
if image is None:
|
|
print(f"Error: Failed to load image from '{image_path}'")
|
|
return
|
|
|
|
# 1. Get the list of face dictionaries from the detector
|
|
faces = detector.detect(image)
|
|
|
|
if faces:
|
|
# 2. Unpack the data into separate lists
|
|
bboxes = [face['bbox'] for face in faces]
|
|
scores = [face['confidence'] for face in faces]
|
|
landmarks = [face['landmarks'] for face in faces]
|
|
|
|
# 3. Pass the unpacked lists to the drawing function
|
|
draw_detections(image, bboxes, scores, landmarks, vis_threshold=0.6)
|
|
|
|
|
|
os.makedirs(save_dir, exist_ok=True)
|
|
output_path = os.path.join(save_dir, f"{os.path.splitext(os.path.basename(image_path))[0]}_out.jpg")
|
|
cv2.imwrite(output_path, image)
|
|
print(f"Output saved at: {output_path}")
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser(description="Run face detection on an image.")
|
|
parser.add_argument("--image", type=str, required=True, help="Path to the input image")
|
|
parser.add_argument(
|
|
"--method",
|
|
type=str,
|
|
default="retinaface",
|
|
choices=['retinaface', 'scrfd'],
|
|
help="Detection method to use."
|
|
)
|
|
parser.add_argument("--threshold", type=float, default=0.6, help="Visualization confidence threshold")
|
|
parser.add_argument("--iterations", type=int, default=1, help="Number of inference runs for benchmarking")
|
|
parser.add_argument("--save_dir", type=str, default="outputs", help="Directory to save output images")
|
|
parser.add_argument("--verbose", action="store_true", help="Enable verbose logging")
|
|
|
|
args = parser.parse_args()
|
|
|
|
if args.verbose:
|
|
from uniface import enable_logging
|
|
enable_logging()
|
|
|
|
print(f"Initializing detector: {args.method}")
|
|
if args.method == 'retinaface':
|
|
detector = RetinaFace()
|
|
else:
|
|
detector = SCRFD()
|
|
|
|
avg_time = 0
|
|
for i in range(args.iterations):
|
|
start = time.time()
|
|
run_inference(detector, args.image, args.threshold, args.save_dir)
|
|
elapsed = time.time() - start
|
|
print(f"[{i + 1}/{args.iterations}] Inference time: {elapsed:.4f} seconds")
|
|
if i >= 0: # Avoid counting the first run if it includes model loading time
|
|
avg_time += elapsed
|
|
|
|
if args.iterations > 1:
|
|
# Adjust average calculation to exclude potential first-run overhead
|
|
effective_iterations = max(1, args.iterations)
|
|
print(
|
|
f"\nAverage inference time over {effective_iterations} runs: {avg_time / effective_iterations:.4f} seconds")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|