mirror of
https://github.com/yakhyo/uniface.git
synced 2025-12-30 09:02:25 +00:00
- Add new test files for age_gender, factory, landmark, recognition, scrfd, and utils - Add new scripts for age_gender, landmarks, and video detection - Update documentation in README.md, MODELS.md, QUICKSTART.md - Improve model constants and face utilities - Update detection models (retinaface, scrfd) with enhanced functionality - Update project configuration in pyproject.toml
143 lines
4.8 KiB
Python
143 lines
4.8 KiB
Python
"""Video Face Detection Script"""
|
|
|
|
import cv2
|
|
import argparse
|
|
from pathlib import Path
|
|
from tqdm import tqdm
|
|
|
|
from uniface import RetinaFace, SCRFD
|
|
from uniface.visualization import draw_detections
|
|
|
|
|
|
def process_video(detector, input_path: str, output_path: str, vis_threshold: float = 0.6,
|
|
fps: int = None, show_preview: bool = False):
|
|
# Open input video
|
|
cap = cv2.VideoCapture(input_path)
|
|
if not cap.isOpened():
|
|
print(f"Error: Cannot open video file '{input_path}'")
|
|
return
|
|
|
|
# Get video properties
|
|
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
|
source_fps = cap.get(cv2.CAP_PROP_FPS)
|
|
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
|
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
|
|
|
output_fps = fps if fps is not None else source_fps
|
|
|
|
print(f"📹 Input: {input_path}")
|
|
print(f" Resolution: {width}x{height}")
|
|
print(f" FPS: {source_fps:.2f}")
|
|
print(f" Total frames: {total_frames}")
|
|
print(f"\n📹 Output: {output_path}")
|
|
print(f" FPS: {output_fps:.2f}\n")
|
|
|
|
# Initialize video writer
|
|
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
|
out = cv2.VideoWriter(output_path, fourcc, output_fps, (width, height))
|
|
|
|
if not out.isOpened():
|
|
print(f"Error: Cannot create output video '{output_path}'")
|
|
cap.release()
|
|
return
|
|
|
|
# Process frames
|
|
frame_count = 0
|
|
total_faces = 0
|
|
|
|
try:
|
|
with tqdm(total=total_frames, desc="Processing", unit="frames") as pbar:
|
|
while True:
|
|
ret, frame = cap.read()
|
|
if not ret:
|
|
break
|
|
|
|
frame_count += 1
|
|
|
|
# Detect faces
|
|
faces = detector.detect(frame)
|
|
total_faces += len(faces)
|
|
|
|
# Draw detections
|
|
bboxes = [f['bbox'] for f in faces]
|
|
scores = [f['confidence'] for f in faces]
|
|
landmarks = [f['landmarks'] for f in faces]
|
|
draw_detections(frame, bboxes, scores, landmarks, vis_threshold=vis_threshold)
|
|
|
|
# Add frame info
|
|
cv2.putText(frame, f"Faces: {len(faces)}", (10, 30),
|
|
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
|
|
|
|
# Write frame
|
|
out.write(frame)
|
|
|
|
# Show preview if requested
|
|
if show_preview:
|
|
cv2.imshow("Processing Video - Press 'q' to cancel", frame)
|
|
if cv2.waitKey(1) & 0xFF == ord('q'):
|
|
print("\nProcessing cancelled by user")
|
|
break
|
|
|
|
pbar.update(1)
|
|
|
|
except KeyboardInterrupt:
|
|
print("\nProcessing interrupted")
|
|
finally:
|
|
cap.release()
|
|
out.release()
|
|
if show_preview:
|
|
cv2.destroyAllWindows()
|
|
|
|
# Summary
|
|
print(f"\nProcessing complete!")
|
|
print(f" Processed: {frame_count} frames")
|
|
print(f" Total faces detected: {total_faces}")
|
|
print(f" Average faces per frame: {total_faces/frame_count:.2f}" if frame_count > 0 else "")
|
|
print(f" Output saved: {output_path}")
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser(description="Process video with face detection")
|
|
parser.add_argument("--input", type=str, required=True, help="Path to input video")
|
|
parser.add_argument("--output", type=str, required=True, help="Path to output video")
|
|
parser.add_argument("--detector", type=str, default="retinaface",
|
|
choices=['retinaface', 'scrfd'], help="Face detector to use")
|
|
parser.add_argument("--threshold", type=float, default=0.6,
|
|
help="Confidence threshold for visualization")
|
|
parser.add_argument("--fps", type=int, default=None,
|
|
help="Output FPS (default: same as input)")
|
|
parser.add_argument("--preview", action="store_true",
|
|
help="Show live preview during processing")
|
|
parser.add_argument("--verbose", action="store_true", help="Enable verbose logging")
|
|
|
|
args = parser.parse_args()
|
|
|
|
# Check input exists
|
|
if not Path(args.input).exists():
|
|
print(f"Error: Input file '{args.input}' does not exist")
|
|
return
|
|
|
|
# Create output directory if needed
|
|
output_dir = Path(args.output).parent
|
|
if output_dir != Path('.'):
|
|
output_dir.mkdir(parents=True, exist_ok=True)
|
|
|
|
if args.verbose:
|
|
from uniface import enable_logging
|
|
enable_logging()
|
|
|
|
# Initialize detector
|
|
print(f"Initializing detector: {args.detector}")
|
|
if args.detector == 'retinaface':
|
|
detector = RetinaFace()
|
|
else:
|
|
detector = SCRFD()
|
|
print("Detector initialized\n")
|
|
|
|
# Process video
|
|
process_video(detector, args.input, args.output, args.threshold, args.fps, args.preview)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|